RESUMEN
The stressed right ventricle (RV) is particularly susceptible to producing and accumulating reactive oxygen species, leading to extracellular matrix deposition and secretion of natriuretic peptides. The role of specific enzymes with antioxidative capacity, like glutathione peroxidase 3 (GPx3), in RV pathogenesis is currently unknown. Here, we use a murine model of pulmonary artery banding (PAB) to study the role of GPx3 in isolated RV pathology. Compared with wild-type (WT) mice undergoing PAB surgery, GPx3-deficient PAB mice presented with higher RV systolic pressure and higher LV eccentricity indices. PAB-induced changes in Fulton's Index, RV free wall thickness, and RV fractional area change were more pronounced in GPx3-deficient mice compared with WT controls. Adverse RV remodeling was enhanced in GPx3-deficient PAB animals, evidenced by increased RV expression levels of connective tissue growth factor (CTGF), transforming growth factor-ß (TGF-ß), and atrial natriuretic peptide (ANP). In summary, GPx3 deficiency exacerbates maladaptive RV remodeling and causes signs of RV dysfunction.
Asunto(s)
Glutatión Peroxidasa , Disfunción Ventricular Derecha , Remodelación Ventricular , Animales , Ratones , Ventrículos Cardíacos/patología , Arteria Pulmonar/patología , Factor de Crecimiento Transformador beta/metabolismo , Función Ventricular Derecha , Glutatión Peroxidasa/metabolismoRESUMEN
We provide an overview about the current landscape of transcatheter tricuspid valve interventions (TTVI) and summarize recent findings from trials including TRILUMINATE, TRILUMINATE Pivotal, bRIGHT, TRICLASP, TRISCEND, TRISCEND II, TRICUS, and Cardioband TR EFS. These studies have demonstrated the safety and efficacy of TTVI. Yet, they have failed to show a prognostic benefit over conservative treatment. On the other hand, significant improvements in health status assessments have been observed. Assessment of right ventricular (RV) function prior to tricuspid interventions is crucial, as changes in preload and afterload may lead to RV failure which is associated with a high mortality. Therefore, this review emphasizes the impact of TTVIs on quality of life and explores the influence of RV dysfunction on therapeutic success and prognosis.
RESUMEN
The main aim of this study was to assess the prognostic utility of TAPSE/PASP as an echocardiographic parameter of maladaptive RV remodeling in cardiomyopathy patients using cardiac magnetic resonance (CMR) imaging. Furthermore, we sought to compare TAPSE/PASP to TAPSE. The association of the echocardiographic parameters TAPSE/PASP and TAPSE with CMR parameters of RV and LV remodeling was evaluated in 111 patients with ischemic and non-ischemic cardiomyopathy and cut-off values for maladaptive RV remodeling were defined. In a second step, the prognostic value of TAPSE/PASP and its cut-off value were analyzed regarding mortality in a validation cohort consisting of 221 patients with ischemic and non-ischemic cardiomyopathy. A low TAPSE/PASP (<0.38 mm/mmHg) and TAPSE (<16 mm) were associated with a lower RVEF and a long-axis RV global longitudinal strain (GLS) as well as higher RVESVI, RVEDVI and NT-proBNP. A low TAPSE/PASP, but not TAPSE, was associated with a lower LVEF and long-axis LV GLS, and a higher LVESVI, LVEDVI and T1 relaxation time at the interventricular septum and the RV insertion points. Furthermore, in the validation cohort, low TAPSE/PASP was associated with a higher mortality and TAPSE/PASP was an independent predictor of mortality. TAPSE/PASP is a predictor of maladaptive RV and LV remodeling associated with poor outcomes in cardiomyopathy patients.
RESUMEN
BACKGROUND: In patients with pulmonary arterial hypertension (PAH), mast cells (MCs) are extensively observed around pulmonary vessels. However, their temporal and spatial variation during PAH development remains obscure. This study investigated the dynamic evolution of MCs in lungs and right ventricles (RV) to illuminate their role in pulmonary vascular and RV remodeling. METHODS: The PAH model was established by a single intra-peritoneal injection of monocrotaline (MCT, 60 mg/kg) in rats. On day 0, 3, 7, 14, and 28 after MCT injection, lung and RV tissues were harvested for staining with hematoxylin and eosin (HE), Gomori aldehyde fuchsin (GAF), toluidine blue (TB) and picrosirius red (PSR). Immunohistochemistry was performed to evaluate the levels of α-SMA, CD68 and tryptase. A simple RV remolding model was produced as well by pulmonary artery banding (PAB). RV tissues were collected to determine the degree of MCs infiltration. RESULTS: After MCT challenge, elevated mean pulmonary arterial pressure (mPAP), increased RV systolic pressure (RVSP), pulmonary arterial media hypertrophy as well as distal vascular muscularization gradually occurred with time. MCs recruitment along with CD68+ macrophages accumulation was observed around distal pulmonary vessels and in alveolar septa. Excessive infiltration and degranulation of MCs were detected in MCT-treated group in lung tissues but not in RV. In addition, no exacerbation of MCs infiltration and degranulation in RV was noted in PAB-treated rats, suggesting few contributions of MCs to RV remodeling. CONCLUSIONS: Our findings implied a crucial role of MCs in the remodeling of pulmonary vessels, not RV, which probably through releasing cytokines such as tryptase. The present study enriches the knowledge about PAH, providing a potential profile of MCs as a switch for the treatment of PAH.