Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 931
Filtrar
Más filtros

Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(19): e2121550119, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35522706

RESUMEN

Reconstruction of past solar activity or high-energy events of our space environment using cosmogenic radionuclides allows evaluation of their intensities, frequencies, and potential damages to humans in near space, modern satellite technologies, and ecosystems. This approach is limited by our understanding of cosmogenic radionuclide production, transformation, and transport in the atmosphere. Cosmogenic radiosulfur (35S) provides additional insights due to its ideal half-life (87.4 d), extensively studied atmospheric chemistry (gas and solid), and ubiquitous nature. Here, we report multiyear measurements of atmospheric 35S and show the sensitivity of 35S in tracking solar activity in Solar Cycle 24 and regional atmospheric circulation changes during the 2015/2016 El Niño. Incorporating 35S into a universal cosmogenic radionuclide model as an independent parameter facilitates better modeling of production and transport of other long-lived radionuclides with different atmospheric chemistries used for reconstructing past astronomical, geomagnetic, and climatic events.

2.
Eur J Nucl Med Mol Imaging ; 51(10): 2903-2921, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38189911

RESUMEN

Radioguidance that makes use of ß-emitting radionuclides is gaining in popularity and could have potential to strengthen the range of existing radioguidance techniques. While there is a strong tendency to develop new PET radiotracers, due to favorable imaging characteristics and the success of theranostics research, there are practical challenges that need to be overcome when considering use of ß-emitters for surgical radioguidance. In this position paper, the EANM identifies the possibilities and challenges that relate to the successful implementation of ß-emitters in surgical guidance, covering aspects related to instrumentation, radiation protection, and modes of implementation.


Asunto(s)
Partículas beta , Partículas beta/uso terapéutico , Humanos , Radioisótopos/química , Medicina Nuclear , Radiofármacos , Cirugía Asistida por Computador/métodos , Protección Radiológica/métodos
3.
Eur J Nucl Med Mol Imaging ; 51(7): 1981-1988, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38376804

RESUMEN

BACKGROUND: Fibroblast activation protein (FAP) has emerged as a promising target for diagnosis and therapeutic intervention due to high expression and accumulation in the stromal compartments of a variety of malignant tumors. FAP-2286 utilizes cyclic peptides with FAP-binding characteristics to enhance the retention of the imaging agent within tumors, in contrast to the small-molecule FAP inhibitors (FAPI) like FAPI-04/46. The aim of this study was to quantify the tumor uptake of [68Ga] Gallium-FAP-2286 within primary solid tumors, adjacent excised tissues, and metastatic lesions. METHODS: In this prospective study, 21 patients (average age 51.9) with various diagnoses of remaining and metastatic cancers participated. Among them, six had metastatic sarcoma, and 14 had adenocarcinoma, including eight breast, two rectum, two lung, two pancreas, and one thyroid cases. The patients underwent a [68Ga]Ga-FAP-2286 PET/CT scan. An hour post-administration of [68Ga]Ga-FAP-2286, a visual assessment of whole body scans and semi-quantification of the PET/CT results were carried out. The standardized uptake values (SUV)max of [68Ga]Ga-FAP-2286 in tumor lesions and the tumor-to-background ratio (TBR) were then calculated. RESULTS: The vital signs of the patients, such as heart rate, blood pressure, and temperature, were observed before, during, and after the diagnostic procedure during the 4-h follow-up. All individuals underwent the [68Ga]Ga-FAP-2286 PET/CT scans without any signs of drug-associated pharmacological effects. The PET/CT scans displayed substantial absorption of [68Ga]Ga-FAP-2286 in tumor lesions in all patients (100% (21/21)). Irrespective of the tumors' origins (epithelial or mesothelium) and whether they exhibited local recurrence, distant recurrence, or metastatic lesions, the PET/CT scans revealed the uptake of [68Ga]Ga-FAP-2286 in these lesions. CONCLUSION: Overall, these data suggest that [68Ga]Ga-FAP-2286 is a promising FAP derivative for efficient metastatic cancer diagnosis and being considered as a potential compound for therapeutic application in patients with advanced metastatic cancers.


Asunto(s)
Radioisótopos de Galio , Metástasis de la Neoplasia , Neoplasias , Tomografía Computarizada por Tomografía de Emisión de Positrones , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Endopeptidasas , Proteínas de la Membrana , Neoplasias/diagnóstico por imagen , Péptidos Cíclicos/farmacocinética , Péptidos Cíclicos/química , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Radiofármacos/farmacocinética
4.
Environ Sci Technol ; 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39105719

RESUMEN

Under climatic warming, glaciers are becoming a secondary source of atmospheric contaminants originally released into the environment decades ago. This phenomenon has been well-documented for glaciers near emission sources. However, less is known about polar ice sheets and ice caps. Radionuclides are one of the contaminants that can be remobilised through ice melting and accumulate in cryoconite material on the surface of glaciers. To understand the cycling of radionuclides in polar glacial contexts, we evaluate the radioactivity of cryoconite samples from Flade Isblink, a High Arctic ice cap in northeast Greenland. The measured radioactivity is among the highest reported across the High Arctic and the highest from Greenland. The high variability observed among the samples is explained by considering the different macroscopic features of single cryoconite deposits. The radioactivity source is compatible with the stratospheric reservoir established during atmospheric nuclear tests and with weapons-grade fissile fuel, likely originating from Novaya Zemlya proving grounds. This study shows that the ability of cryoconite to accumulate radioactivity in remote areas is undisputed, highlighting the need for a deeper understanding of the remobilisation of radioactive species in polar glacial contexts.

5.
Environ Res ; 244: 118000, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38128601

RESUMEN

The present investigation is the first of its kind which aims to study the characteristics of microbial consortium inhabiting one of the natural high background radiation areas of the world, Chavara Coast in Kerala, India. The composition of the microbial community and their structural changes were evaluated under the natural circumstances with exorbitant presence of radionuclides in the sediments and after the radionuclide's recession due to mining effects. For this purpose, the concentration of radionuclides, heavy metals, net radioactivity estimation via gross alpha and beta emitters and other physiochemical characteristics were assessed in the sediments throughout the estuarine stretch. According to the results, the radionuclides had a significant effect in shaping the community structure and composition, as confirmed by the bacterial heterogeneity achieved between the samples. The results indicate that high radioactivity in the background environment reduced the abundance and growth of normal microbial fauna and favoured only the growth of certain extremophiles belonging to families of Piscirickettsiacea, Rhodobacteriacea and Thermodesulfovibrionaceae, which were able to tolerate and adapt towards the ionizing radiation present in the environment. In contrast, communities from Comamondacea, Sphingomonadacea, Moraxellacea and Erythrobacteracea were present in the sediments collected from industrial outlet, reinforcing the potent role of radionuclides in governing the community pattern of microbes present in the natural environment. The study confirms the presence of these novel and unidentified bacterial communities and further opens the possibility of utilizing their usefulness in future prospects.


Asunto(s)
Extremófilos , Metales Pesados , Consorcios Microbianos , Radiación de Fondo , Radioisótopos/análisis , Radioisótopos/farmacología , Metales Pesados/análisis , Bacterias , India , Sedimentos Geológicos
6.
J Nanobiotechnology ; 22(1): 7, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38166931

RESUMEN

Radionuclides internal radiotherapy (RIT) is a clinically powerful method for cancer treatment, but still poses unsatisfactory therapeutic outcomes due to the hypoxic characteristic of tumor microenvironment (TME). Catalase (CAT) or CAT-like nanomaterials can be used to enzymatically decompose TME endogenous H2O2 to boost TME oxygenation and thus alleviate the hypoxic level within tumors, but their effectiveness is still hindered by the short-lasting of hypoxia relief owing to their poor stability or degradability, thereby failing to match the long therapeutic duration of RIT. Herein, we proposed an innovative strategy of using facet-dependent CAT-like Pd-based two-dimensional (2D) nanoplatforms to continuously enhance RIT. Specifically, rationally designed 2D Pd@Au nanosheets (NSs) enable consistent enzymatic conversion of endogenous H2O2 into O2 to overcome hypoxia-induced RIT resistance. Furthermore, partially coated Au layer afford NIR-II responsiveness and moderate photothermal treatment that augmenting their enzymatic functionality. This approach with dual-effect paves the way for reshaping TME and consequently facilitating the brachytherapy ablation of cancer. Our work offers a significant advancement in the integration of catalytic nanomedicine and nuclear medicine, with the overarching goal of amplifying the clinical benefits of RIT-treated patients.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , Peróxido de Hidrógeno , Microambiente Tumoral , Hipoxia/tratamiento farmacológico , Catálisis , Nanomedicina , Línea Celular Tumoral , Neoplasias/tratamiento farmacológico , Neoplasias/radioterapia
7.
Ecotoxicol Environ Saf ; 284: 116893, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39173225

RESUMEN

Diatoms and bacteria play a vital role in investigating the ecological effects of heavy metals in the environment. Despite separate studies on metal interactions with diatoms and bacteria, there is a significant gap in research regarding heavy metal interactions within a diatom-bacterium system, which closely mirrors natural conditions. In this study, we aim to address this gap by examining the interaction of uranium(VI) (U(VI)) with Achnanthidium saprophilum freshwater diatoms and their natural bacterial community, primarily consisting of four successfully isolated bacterial strains (Acidovorax facilis, Agrobacterium fabrum, Brevundimonas mediterranea, and Pseudomonas peli) from the diatom culture. Uranium (U) bio-association experiments were performed both on the xenic A. saprophilum culture and on the four bacterial isolates. Scanning electron microscopy and transmission electron microscopy coupled with spectrum imaging analysis based on energy-dispersive X-ray spectroscopy revealed a clear co-localization of U and phosphorus both on the surface and inside A. saprophilum diatoms and the associated bacterial cells. Time-resolved laser-induced fluorescence spectroscopy with parallel factor analysis identified similar U(VI) binding motifs both on A. saprophilum diatoms and the four bacterial isolates. This is the first work providing valuable microscopic and spectroscopic data on U localization and speciation within a diatom-bacterium system, demonstrating the contribution of the co-occurring bacteria to the overall interaction with U, a factor non-negligible for future modeling and assessment of radiological effects on living microorganisms.

8.
J Environ Manage ; 365: 121616, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38941854

RESUMEN

Volcanic eruption is associated with the release of large volumes of pollutants in the environment, which can pose a risk to humans and other living organisms. The elemental and radioisotope composition of ash released during the Shiveluch Volcano eruption in 2023 was analyzed using ICP-MS and low-background gamma spectrometry. The ash consisted of 59% SiO2, 16.7% Al2O3, 5.3% CaO, 4.6 % Na2O, 4.5% Fe2O3, 1.4% K2O, 0.48% TiO2, 0.17% P2O5, 0.15% S, 0.078% MnO and 44 trace elements. Hazard Quotient and Hazard Index were calculated in order to evaluate the potential health risks to children and adults due to exposure to contaminants via inhalation, ingestion, and dermal contact. All values were below the unit, indicating a low probability of non-carcinogenic and cancerogenic risk occurrence in target groups. The average activity concentrations of the natural radionuclides were 350, 12.4 and 4.84 Bq/kg for 40K, 226Ra and 232Th. Radiological indices, including external and internal risk assessment, radium equivalent activity, annual effective dose, gamma index, and excess lifetime cancer risk were calculated to estimate the radiological hazard for the population. The values of all indices were below the recommended safety limits, indicating a low level of hazard for the exposed population.


Asunto(s)
Metales , Radioisótopos , Erupciones Volcánicas , Humanos , Metales/análisis , Radioisótopos/análisis , Radio (Elemento)/análisis , Medición de Riesgo , Torio/análisis
9.
Int J Environ Health Res ; : 1-18, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39135536

RESUMEN

Air pollutants are associated with potentially toxic metals (PTMs) and natural and/or artificial radionuclides, which can pose a major threat to human and environmental health. Pollens can be utilized as a bioindicator to determine the level of air pollution in urban areas. In this study, the concentrations of PTMs and natural radionuclides in 35 airborne pollen samples of 22 species belonging to Pinaceae, Cupressaceae, Araucariaceae, Betulaceae, Salicaceae, and Oleaceae families grown in different urban areas in Turkey were determined using an energy-dispersive X-ray fluorescence spectrometry. For the first time, non-carcinogenic and radiologic health risk assessments for adults were done, estimating hazard index (HI) and annual effective dose (AED), respectively. The concentrations of Fe, Mn, Zn, Ti, Sr, Cu, Ni, Co, Cr, V and Pb analyzed in airborne pollen samples varied from 52.1 to 3078.0, 26.1 to 159.6, 15.6 to 199.7, 9.1 to 282.2, 1.0 to 128.4, 5.0 to 40.1, 5.4 to 23.6,

10.
Environ Geochem Health ; 46(6): 181, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38695964

RESUMEN

This study determined natural and artificial radionuclide concentrations to evaluate natural radioactivity and health risk levels of nine travertines in the Yaprakhisar and Balkayasi regions in Turkey. The samples coded B1-M, B2, B5, B7, B8, and B10 represent waste derived from the Yaprakhisar travertines, as well as samples T5-M, T12, and Z1 travertines derived from Balkayasi. The levels of natural and artificial radionuclide concentrations (232Th, 40K, and 137Cs) were measured using a high-purity germanium (HpGe) detector system. The travertine activity ranged from 2.09 to 12.07 Bq kg-1 for 232Th, 4.21 to 13.41 Bq kg-1 for 40K, and 0.42-3.26 Bq kg-1 for 137Cs. The results showed that the activity concentration values for 232Th, 40K, and 137Cs were coherent with the travertine analysis results in the UNSCEAR, 2000; 2008 publications. The values obtained were lower than the average values in the UNSEAR reports. The radiological hazard parameters calculated in this study were absorbed gamma dose rate (D), radium equivalent activity (Raeq), annual gonadal dose equivalent (AGDE), exposure dose (ER), total annual effective dose (AEDEtotal), excess lifetime cancer risk (ELCRtotal), gamma representative level (GRL), internal hazard index (Hin) and external hazard index (Hex).


Asunto(s)
Radioisótopos de Cesio , Radioisótopos de Potasio , Monitoreo de Radiación , Turquía , Monitoreo de Radiación/métodos , Radioisótopos de Potasio/análisis , Radioisótopos de Cesio/análisis , Torio/análisis , Contaminantes Radiactivos del Suelo/análisis , Radiación de Fondo , Humanos , Medición de Riesgo
11.
Environ Monit Assess ; 196(3): 330, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38427152

RESUMEN

The Kanyakumari coast is known to be a high background natural radiation area due to the placer deposits of heavy minerals such as ilmenite, monazite, and rutile. The Kanyakumari river sediments that could be the source of the elevated amounts of natural radionuclides in the coastal sands have been studied in this paper. The activity concentrations of primordial radionuclides 226Ra, 232Th, and 40K were determined using high-purity germanium (HPGe) gamma-ray spectrometry. The mean activity concentrations of 226Ra, 232Th, and 40K were found to be 75 Bq kg-1, 565 Bq kg-1, and 360 Bq kg-1, respectively. The mean absorbed dose rate was 395 nGy h-1. Radiological hazard parameters were studied and compared with the world average values. The contribution of 232Th to the total dose rate was found to be higher than that of the two other radionuclides. The high mean ratio of 232Th/226Ra suggested an enrichment of 232Th and the occurrence of 226Ra leaching due to an oxidizing environment. Principal component analysis (PCA) was carried out for the radionuclides in order to discriminate the source of the sediments. This study provides new insights into the distribution of natural radionuclides in sediments of rivers and streams.


Asunto(s)
Monitoreo de Radiación , Contaminantes Radiactivos del Suelo , Ríos , Radiación de Fondo , Monitoreo del Ambiente , Torio/análisis , Radioisótopos/análisis , Contaminantes Radiactivos del Suelo/análisis , India , Medición de Riesgo , Monitoreo de Radiación/métodos , Radioisótopos de Potasio/análisis
12.
Environ Monit Assess ; 196(2): 139, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38206400

RESUMEN

Natural radioactive concentration assessment was conducted on sediment, water, and biota obtained on Vaan and Koswari islands in the Tuticorin group of islands, Tamil Nadu, India. For biotic and abiotic components, radiation profiles such as gross alpha, beta, primordial radionuclide, polonium, and lead analyses were performed. The gross α and ß range from BDL to 15.18 ± 1.7 Bq/kg and 40.43 ± 4.9 Bq/kg to 105.12 ± 11.7 Bq/kg, respectively. Primordial radionuclides were analyzed using Nal(TI)-based scintillator with PC-MCA, and the concentrations ranged from 13.43 ± 3.3 Bq/kg to 30.97 ± 9.6 Bq/kg with a mean of 21.31 ± 2.7 Bq/kg for 238U; for 232Th, the values ranged from 11.09 ± 2.6 Bq/kg to 33.55 ± 9.5 Bq/kg with an average value of 23.89 ± 3.7 Bq/kg; and for 40 K, the values are 93.33 ± 27.3 Bq/kg to 219.91 ± 39.6 Bq/kg with an average value of 148.27 ± 21.7 Bq/kg. The present study values are lesser than the world average values. 210Po and 210Pb concentrations with an average value were determined to be 33.13 Bq/L and 16.56 Bq/L, 47.55 Bq/L and 22.37 Bq/L in the water sample, and 50.437 Bq kg1 and 62.012 Bq kg1, 46.99 Bq/kg and 58.625 Bq/kg in sediments of Vaan island and Koswari island. The concentrations of 210Po and 210Pb of Pogonias cromis were 19.27 ± 1.5 Bq/kg and 8.27 ± 1.01 Bq/kg, Belonidae 28.54 ± 2.4 Bq/kg and 18.32 ± 2.3 Bq/kg, Lepisosteidae 18.68 ± 1.4 Bq/kg and 11.17 ± 1.8 Bq/kg. The committed effective dosage was determined to be 35.74-54.61 µSv/y for 210Po and 25.39-56.25 µSv/y for 210Pb, in which the 210Pb value is lower; however, the 210Po value is higher than the global average value. The annual committed effective dosage as well as the radiological hazard indices were assessed and found to be much below the global average and the recommended limit, respectively. This research provides an extensive analysis of natural background radiation and establishes a baseline report on the radiological profile of biotic and abiotic factors in the Tuticorin group of islands, namely Vaan and Koswari, in Tamil Nadu, India.


Asunto(s)
Monitoreo del Ambiente , Plomo , India , Medición de Riesgo , Agua
13.
Crit Rev Biotechnol ; : 1-19, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37258417

RESUMEN

Civilian and military nuclear programs of several nations over more than 70 years have led to significant quantities of heterogenous solid, organic, and aqueous radioactive wastes bearing actinides, fission products, and activation products. While many physicochemical treatments have been developed to remediate, decontaminate and reduce waste volumes, they can involve high costs (energy input, expensive sorbants, ion exchange resins, chemical reducing/precipitation agents) or can lead to further secondary waste forms. Microorganisms can directly influence radionuclide solubility, via sorption, accumulation, precipitation, redox, and volatilization pathways, thus offering a more sustainable approach to remediation or effluent treatments. Much work to date has focused on fundamentals or laboratory-scale remediation trials, but there is a paucity of information toward field-scale bioremediation and, to a lesser extent, toward biological liquid effluent treatments. From the few biostimulation studies that have been conducted at legacy weapon production/test sites and uranium mining and milling sites, some marked success via bioreduction and biomineralisation has been observed. However, rebounding of radionuclide mobility from (a)biotic scale-up factors are often encountered. Radionuclide, heavy metal, co-contaminant, and/or matrix effects provide more challenging conditions than traditional industrial wastewater systems, thus innovative solutions via indirect interactions with stable element biogeochemical cycles, natural or engineered cultures or communities of metal and irradiation tolerant strains and reactor design inspirations from existing metal wastewater technologies, are required. This review encompasses the current state of the art in radionuclide biogeochemistry fundamentals and bioremediation and establishes links toward transitioning these concepts toward future radioactive effluent treatments.

14.
Crit Rev Food Sci Nutr ; 63(21): 5094-5116, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34904474

RESUMEN

Honey is a natural food with many pro-health properties, which comprises a wide variety of valuable ingredients. It can also be the source of chemical contaminants of environmental origin, including POPs that can contribute to adverse health effects to human. Monitoring the degree of pollution of honey/bee products with hazardous chemicals is important from a nutraceutical point of view. In the present work, overview of recent literature data on chemical pollutants in honey/bee products originating from the environment was performed. Their MLs, MRLs and EDI were discussed. It can be concluded that huge amount of research concerned on the presence of TMs and pesticides in honey. Most of the studies have shown that honey/bee products sampled from urban and industrialized areas were more contaminated than these sampled from ecological and rural locations. More pollutants were usually detected in propolis and bee pollen than in honey. Based on their research and regulations, authors stated, that most of the toxic pollutants of environmental origin in honey/bee products are at levels that do not pose a threat to the health of the potential consumer. The greatest concern relates to pesticides and TMs, because in some research MLs in individual samples were highly exceeded.


Asunto(s)
Contaminantes Ambientales , Miel , Plaguicidas , Animales , Humanos , Contaminantes Ambientales/toxicidad , Miel/análisis , Monitoreo del Ambiente , Plaguicidas/toxicidad , Plaguicidas/análisis , Sustancias Peligrosas
15.
Nanotechnology ; 35(7)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37963406

RESUMEN

Nuclear medicine presents one of the most promising modalities for efficient non-invasive treatment of a variety of cancers, but the application of radionuclides in cancer therapy and diagnostics is severely limited by their nonspecific tissue accumulation and poor biocompatibility. Here, we explore the use of nanosized metal-organic frameworks (MOFs) as carriers of radionuclides to order to improve their delivery to tumour. To demonstrate the concept, we prepared polymer-coated MIL-101(Cr)-NH2MOFs and conjugated them with clinically utilized radionuclide188Re. The nanoparticles demonstrated high loading efficacy of radionuclide reaching specific activity of 49 MBq mg-1. Pharmacokinetics of loaded MOFs was investigated in mice bearing colon adenocarcinoma. The biological half-life of the radionuclide in blood was (20.9 ± 1.3) h, and nanoparticles enabled it to passively accumulate and retain in the tumour. The radionuclide delivery with MOFs led to a significant decrease of radioactivity uptake by the thyroid gland and stomach as compared with perrhenate salt injection, which is beneficial for reducing the side toxicity of nuclear therapy. The reported data on the functionalization and pharmacokinetics of MIL-101(Cr)-NH2for radionuclide delivery unveils the promising potential of these MOFs for nuclear medicine.


Asunto(s)
Adenocarcinoma , Neoplasias del Colon , Estructuras Metalorgánicas , Nanopartículas , Medicina Nuclear , Ratones , Animales , Radioisótopos
16.
Environ Sci Technol ; 57(49): 20830-20843, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37897703

RESUMEN

Minor actinides are major contributors to the long-term radiotoxicity of nuclear fuels and other radioactive wastes. In this context, understanding their interactions with natural chelators and minerals is key to evaluating their transport behavior in the environment. The lanmodulin family of metalloproteins is produced by ubiquitous bacteria and Methylorubrum extorquens lanmodulin (LanM) was recently identified as one of nature's most selective chelators for trivalent f-elements. Herein, we investigated the behavior of neptunium, americium, and curium in the presence of LanM, carbonate ions, and common minerals (calcite, montmorillonite, quartz, and kaolinite). We show that LanM's aqueous complexes with Am(III) and Cm(III) remain stable in carbonate-bicarbonate solutions. Furthermore, the sorption of Am(III) to these minerals is strongly impacted by LanM, while Np(V) sorption is not. With calcite, even a submicromolar concentration of LanM leads to a significant reduction in the Am(III) distribution coefficient (Kd, from >104 to ∼102 mL/g at pH 8.5), rendering it even more mobile than Np(V). Thus, LanM-type chelators can potentially increase the mobility of trivalent actinides and lanthanide fission products under environmentally relevant conditions. Monitoring biological chelators, including metalloproteins, and their biogenerators should therefore be considered during the evaluation of radioactive waste repository sites and the risk assessment of contaminated sites.


Asunto(s)
Elementos de Series Actinoides , Metaloproteínas , Quelantes , Elementos de Series Actinoides/química , Minerales , Carbonato de Calcio , Carbonatos
17.
Environ Sci Technol ; 57(24): 8983-8993, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37285386

RESUMEN

Hydrocarbon spills that reach the subsurface can modify aquifer geochemical conditions. Biogeochemical zones typically form proximal to the source zone that include iron (Fe(III)) and manganese (Mn(III/IV)) (hydr)oxide reduction, with potential to release associated geogenic contaminants to groundwater. Here, multi-level monitoring systems are used to investigate radium (226Ra, 228Ra) activities in an aquifer contaminated with a mixture of chlorinated solvents, ketones, and aromatics occurring as a dense non-aqueous phase liquid in the source zone. 226Ra activities are up to 10 times higher than background 60 m downgradient from the source zone, where pH is lower, total dissolved solid concentrations are higher, and conditions are methanogenic. Correlations indicate that Fe and Mn (hydr)oxide reduction and sorption site competition are likely responsible for elevated Ra activities within the dissolved phase plume. 226Ra activities return to background within the Fe(III)/SO42--reducing zone 600 m downgradient from the source, near the middle of the dissolved phase plume. Geochemical models indicate that sorption to secondary phases (e.g., clays) is important in sequestering Ra within the plume. Although maximum Ra activities within the plume are well below the U.S. drinking water standard, elevated activities compared to background emphasize the importance of investigating Ra and other trace elements at hydrocarbon-impacted sites.


Asunto(s)
Agua Subterránea , Radio (Elemento) , Contaminantes Químicos del Agua , Compuestos Férricos , Contaminantes Químicos del Agua/análisis , Óxidos , Hidrocarburos
18.
Proc Natl Acad Sci U S A ; 117(46): 28649-28654, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33139546

RESUMEN

Northern Hemispheric high-latitude climate variations during the last glacial are expected to propagate globally in a complex way. Investigating the evolution of these variations requires a precise synchronization of the considered environmental archives. Aligning the globally common production rate variations of the cosmogenic radionuclide 10Be in different archives provides a tool for such synchronizations. Here, we present a 10Be record at <40-y resolution along with subdecadal proxy records from one Black Sea sediment core around Greenland Interstadial 10 (GI-10) ∼41 ka BP and the Laschamp geomagnetic excursion. We synchronized our 10Be record to that from Greenland ice cores based on its globally common production rate variations. The synchronized environmental proxy records reveal a bipartite climate response in the Black Sea region at the onset of GI-10. First, in phase with Greenland warming, reduced sedimentary coastal ice rafted detritus contents indicate less severe winters. Second, and with a lag of 190 (± 44) y, an increase in the detrital K/Ti ratio and authigenic Ca precipitation point to enhanced regional precipitation and warmer lake surface temperatures. We explain the lagged climatic response by a shift in the dominant mode of atmospheric circulation, likely connected with a time-transgressive adjustment of the regional thermal ocean interior to interstadial conditions.

19.
Ecotoxicol Environ Saf ; 260: 115085, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37267782

RESUMEN

Wild European perch (Perca fluviatilis) is one of the most important freshwater fish species, in Sweden, due to its widespread and his value for recreational fishing. Little it is known regarding the biodistribution of naturally occurring radionuclides such as 238U, 234U, 226Ra, 210Po in perch. Therefore, in this study, perches from five lakes located in different counties in Sweden were collected to investigate the biodistribution of 238U, 234U, 226Ra, 210Po and 137Cs in organs and tissues of perch as well as their radiological impact. The results showed that uranium radionuclides ranged between 0.1 and 6 Bq/kg with an average value of 1.1 ± 1.5 Bq/kg. 226Ra varied from 0.4 to 8 Bq/kg with a mean concentration of 1.7 ± 1.9 Bq/kg. The ranged of 210Po was 0.5 - 250 Bq/kg, with an average value of 24 ± 52 Bq/kg. On the other hand, the highest activity concentration of 137Cs, 151 ± 1 Bq/kg, was detected in muscle samples of perch from Redsjösjön lake. For uranium radionuclides and 226Ra uptake from water is the main source whereas for 210Po and 137Cs the uptake is controlled by the perch diet. Regarding naturally occurring radionuclides, the perch tended to accumulated uranium radionuclides in fins, gills, and skin; 226Ra in bones, fins and skin and 210Po in the organs linked to digestive system. Finally, in case of consumption, it is advised the consumption of skinned fillets of perch due to the higher bioaccumulation of the radionuclides investigated in the skin and scales.


Asunto(s)
Percas , Uranio , Animales , Distribución Tisular , Radioisótopos de Cesio/análisis , Lagos
20.
Ecotoxicol Environ Saf ; 263: 115210, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37418943

RESUMEN

This study investigated the distribution features of uranium-238 (238U), radium-226 (226Ra), thorium-232 (232Th), and potassium-40 (40K) and evaluated the associated environmental radiological hazards of the topsoil and river sediments in the Jinding lead-zinc (Pb-Zn) mine catchment from Southwest China. The activity concentrations of 238U, 226Ra, 232Th, and 40K ranged from 24.0 ± 2.29-60.3 ± 5.26 Bq.kg-1, from 32.5 ± 3.95-69.8 ± 3.39 Bq.kg-1, from 15.3 ± 2.24-58.3 ± 4.92 Bq.kg-1, and from 203 ± 10.2-1140 ± 27.4 Bq.kg-1, respectively. The highest activity concentrations for all these radionuclides were primarily found in the mining areas and decreased with increasing distance from the mining sites. The radiological hazard indices, including radium equivalent activity, absorbed gamma dose rate in the air, outdoor annual effective dose equivalent, annual gonadal dose equivalent, and excess lifetime cancer, revealed that the highest values were observed in the mining area and downstream, specifically in the vicinity of the ore body. These elevated values exceeded the global mean value but remained below the threshold value, suggesting that routine protection measures for Pb-Zn miners during production activities are sufficient. The correlation analysis and cluster analysis revealed strong associations between radionuclides such as 238U, 226Ra, and 232Th, indicating a common source of these radionuclides. The activity ratios of 226Ra/238U, 226Ra/232Th, and 238U/40K varied with distance, suggesting the influence of geological processes and lithological composition on their transport and accumulation. In the mining catchment areas, the variations in these activity ratios increased indicated the impact of limestone material dilution on the levels of 232Th, 40K, and 238U in the upstream region. Moreover, the presence of sulfide minerals in the mining soils contributed to the enrichment of 226Ra and the removal of 238U caused those activity ratios decreased in the mining areas. Therefore, in the Jinding PbZn deposit, the patterns of mining activities and surface runoff processes in the catchment area favored the accumulation of 232Th and 226Ra over 40K and 238U. This study provides the first case study on the geochemical distributions of natural radionuclides in a typical Mississippi Valley-type PbZn mining area and offers fundamental information on radionuclide migration and baseline radiometric data for PbZn deposits worldwide.


Asunto(s)
Monitoreo de Radiación , Radio (Elemento) , Contaminantes Radiactivos del Suelo , Uranio , Suelo , Plomo/análisis , Zinc/análisis , Radioisótopos/análisis , Uranio/análisis , Radio (Elemento)/análisis , Torio/análisis , Contaminantes Radiactivos del Suelo/análisis , Minería
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA