Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Environ Health ; 23(1): 46, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38702725

RESUMEN

BACKGROUND: Long-term exposure to transportation noise is related to cardio-metabolic diseases, with more recent evidence also showing associations with diabetes mellitus (DM) incidence. This study aimed to evaluate the association between transportation noise and DM mortality within the Swiss National Cohort. METHODS: During 15 years of follow-up (2001-2015; 4.14 million adults), over 72,000 DM deaths were accrued. Source-specific noise was calculated at residential locations, considering moving history. Multi-exposure, time-varying Cox regression was used to derive hazard ratios (HR, and 95%-confidence intervals). Models included road traffic, railway and aircraft noise, air pollution, and individual and area-level covariates including socio-economic position. Analyses included exposure-response modelling, effect modification, and a subset analysis around airports. The main findings were integrated into meta-analyses with published studies on mortality and incidence (separately and combined). RESULTS: HRs were 1.06 (1.05, 1.07), 1.02 (1.01, 1.03) and 1.01 (0.99, 1.02) per 10 dB day evening-night level (Lden) road traffic, railway and aircraft noise, respectively (adjusted model, including NO2). Splines suggested a threshold for road traffic noise (~ 46 dB Lden, well below the 53 dB Lden WHO guideline level), but not railway noise. Substituting for PM2.5, or including deaths with type 1 DM hardly changed the associations. HRs were higher for males compared to females, and in younger compared to older adults. Focusing only on type 1 DM showed an independent association with road traffic noise. Meta-analysis was only possible for road traffic noise in relation to mortality (1.08 [0.99, 1.18] per 10 dB, n = 4), with the point estimate broadly similar to that for incidence (1.07 [1.05, 1.09] per 10 dB, n = 10). Combining incidence and mortality studies indicated positive associations for each source, strongest for road traffic noise (1.07 [1.05, 1.08], 1.02 [1.01, 1.03], and 1.02 [1.00, 1.03] per 10 dB road traffic [n = 14], railway [n = 5] and aircraft noise [n = 5], respectively). CONCLUSIONS: This study provides new evidence that transportation noise is associated with diabetes mortality. With the growing evidence and large disease burden, DM should be viewed as an important outcome in the noise and health discussion.


Asunto(s)
Diabetes Mellitus , Exposición a Riesgos Ambientales , Ruido del Transporte , Ruido del Transporte/efectos adversos , Humanos , Suiza/epidemiología , Diabetes Mellitus/epidemiología , Diabetes Mellitus/mortalidad , Masculino , Femenino , Exposición a Riesgos Ambientales/efectos adversos , Estudios de Cohortes , Persona de Mediana Edad , Adulto , Anciano , Aeronaves
2.
Diabetes Metab Res Rev ; 39(2): e3595, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36408740

RESUMEN

AIMS: To examine the longitudinal association between transportation noise exposure (road traffic, aircraft, and railway noise) and T2D in a meta-analysis. MATERIALS AND METHODS: We systematically searched PubMed, Embase, Scopus, Cochrane, and Web of Science published up to February 2022. The GRADE approach was used to evaluate the study quality, and the pooled effect estimate was calculated by the fixed-effects model or the random-effects model. RESULTS: We included 10 prospective studies with a total of 4,994,171 participants and 417,332 T2D cases in the meta-analysis. According to the Navigation guide, 8 studies out of 10 were rated as having a probably high or high risk of bias. For road noise, the pooled relative risk (RR) per 10 dB higher Lden for developing T2D was 1.06 (95% CI:1.03, 1.09) with high heterogeneity (I2  = 90.1%, p < 0.001). Similar associations were also observed in aircraft and railway noise: the pooled RR were separately were: 1.01 (1.00, 1.01) and 1.02 (1.01, 1.03) separately. A 'dose-response' analysis found a similar linear association between road noise exposure and the risk of T2D. CONCLUSIONS: An overall 6% increase in the risk of T2D per 10 dB increase in road exposure was observed. Further studies are needed to confirm our findings, especially for aircraft and railway noise, and to identify the mechanisms involved.


Asunto(s)
Diabetes Mellitus Tipo 2 , Ruido del Transporte , Humanos , Ruido del Transporte/efectos adversos , Estudios Prospectivos , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/etiología , Exposición a Riesgos Ambientales/efectos adversos , Riesgo
3.
Environ Res ; 224: 115454, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36764429

RESUMEN

Background Colon cancer incidence is rising globally, and factors pertaining to urbanization have been proposed involved in this development. Traffic noise may increase colon cancer risk by causing sleep disturbance and stress, thereby inducing known colon cancer risk-factors, e.g. obesity, diabetes, physical inactivity, and alcohol consumption, but few studies have examined this. Objectives The objective of this study was to investigate the association between traffic noise and colon cancer (all, proximal, distal) in a pooled population of 11 Nordic cohorts, totaling 155,203 persons. Methods We identified residential address history and estimated road, railway, and aircraft noise, as well as air pollution, for all addresses, using similar exposure models across cohorts. Colon cancer cases were identified through national registries. We analyzed data using Cox Proportional Hazards Models, adjusting main models for harmonized sociodemographic and lifestyle data. Results During follow-up (median 18.8 years), 2757 colon cancer cases developed. We found a hazard ratio (HR) of 1.05 (95% confidence interval (CI): 0.99-1.10) per 10-dB higher 5-year mean time-weighted road traffic noise. In sub-type analyses, the association seemed confined to distal colon cancer: HR 1.06 (95% CI: 0.98-1.14). Railway and aircraft noise was not associated with colon cancer, albeit there was some indication in sub-type analyses that railway noise may also be associated with distal colon cancer. In interaction-analyses, the association between road traffic noise and colon cancer was strongest among obese persons and those with high NO2-exposure. Discussion A prominent study strength is the large population with harmonized data across eleven cohorts, and the complete address-history during follow-up. However, each cohort estimated noise independently, and only at the most exposed façade, which may introduce exposure misclassification. Despite this, the results of this pooled study suggest that traffic noise may be a risk factor for colon cancer, especially of distal origin.


Asunto(s)
Contaminación del Aire , Neoplasias del Colon , Ruido del Transporte , Humanos , Estudios de Cohortes , Factores de Riesgo , Exposición a Riesgos Ambientales/análisis , Dinamarca/epidemiología
4.
Environ Res ; 217: 114795, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36402187

RESUMEN

BACKGROUND: Some studies have found transportation noise to be associated with higher diabetes risk. This includes studies based on millions of participants, relying entirely on register-based confounder adjustment, which raises concern about residual lifestyle confounding. We aimed to investigate associations between noise and type 2 diabetes (T2D), including investigation of effects of increasing confounder adjustment for register-data and lifestyle. METHODS: In a cohort of 286,151 participants randomly selected across Denmark in 2010-2013 and followed up until 2017, we identified 7574 incident T2D cases. Based on residential address-history for all participants linked with exposure assessment of high spatial resolution, we calculated 10-year time-weighted mean road and railway noise at the most (LdenMax) and least (LdenMin) exposed façades and air pollution (PM2.5). We used Cox models to calculate hazard ratios (HR) with increasing adjustment for individual- and area-level register-based sociodemographic covariates, self-reported lifestyle and air pollution. RESULTS: We found that a 10 dB increase in 10-year mean road LdenMin was associated with HRs (95% CI) of 1.06 (1.02-1.10) after adjustment for age, sex and year, 1.08 (1.04-1.13) after further adjustment for register-based sociodemographic covariates, 1.07 (1.03-1.12) after further lifestyle adjustment (e.g. smoking, diet and alcohol) and 1.06 (1.02-1.11) after further PM2.5 adjustment. For road LdenMax, the corresponding HRs were 1.07 (1.04-1.10), 1.05 (1.02-1.08), 1.04 (1.01-1.07) and 1.03 (1.00-1.06). Railway noise was associated with HRs of 1.04 (0.98-1.11) for LdenMax and 1.02 (0.92-1.12) for LdenMin after adjustment for sociodemographic and lifestyle covariates and PM2.5. CONCLUSIONS: Long-term exposure to road traffic noise was associated with T2D, which together with previous literature indicates that T2D should be considered when calculating health impacts of noise. After sociodemographic adjustment, further lifestyle adjustment only changed HRs slightly, suggesting that large register-based studies with adjustment for key sociodemographic covariates can produce reliable results.


Asunto(s)
Diabetes Mellitus Tipo 2 , Exposición a Riesgos Ambientales , Ruido del Transporte , Humanos , Estudios de Cohortes , Dinamarca/epidemiología , Diabetes Mellitus Tipo 2/epidemiología , Exposición a Riesgos Ambientales/efectos adversos , Ruido del Transporte/efectos adversos
5.
Environ Res ; 233: 116480, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37352957

RESUMEN

BACKGROUND: The combined health impact of concurrent railway noise and railway vibration exposure is not yet well understood. OBJECTIVES: This systematic review gives an overview of epidemiological studies on health effects from railway vibration, aiming to quantify this association with exposure-effect curves. Moreover, the combined health effects of vibration and concurrent noise were investigated. METHODS: We converted the vibration metric to an equivalent noise level and calculated an overall noise level by energetically summing the equivalent and railway noise level. The combined health effect was determined by using published evidence-based exposure-effect formulas. RESULTS: Studies included in this systematic review predominately investigated annoyance and self-reported sleep disturbances; no studies on manifest diseases were identified. For the combined effects of vibration and noise on "total" annoyance, the results based on the pooled analysis of CargoVibes project are recommended as conservative approach. DISCUSSION: Converting railway vibration into equivalent noise levels in dB may offer a pragmatic approach to assess the combined health effects of railway noise and railway vibration exposure. Future studies should include cardiovascular and mental diseases in addition to vibration-induced annoyance and sleep disturbances. Furthermore, future studies should include in-depth investigations of the interaction between railway noise and railway vibration to allow for a more accurate assessment of the railway-induced burden of disease.


Asunto(s)
Trastornos Mentales , Ruido del Transporte , Vías Férreas , Humanos , Vibración/efectos adversos , Ruido del Transporte/efectos adversos , Corazón , Autoinforme , Exposición a Riesgos Ambientales/efectos adversos
6.
Environ Res ; 231(Pt 1): 116077, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37156356

RESUMEN

BACKGROUND: Environmental noise is of increasing concern for public health. Quantification of associated health impacts is important for regulation and preventive strategies. AIM: To estimate the burden of disease (BoD) due to road traffic and railway noise in four Nordic countries and their capitals, in terms of DALYs (Disability-Adjusted Life Years), using comparable input data across countries. METHOD: Road traffic and railway noise exposure was obtained from the noise mapping conducted according to the Environmental Noise Directive (END) as well as nationwide noise exposure assessments for Denmark and Norway. Noise annoyance, sleep disturbance and ischaemic heart disease were included as the main health outcomes, using exposure-response functions from the WHO, 2018 systematic reviews. Additional analyses included stroke and type 2 diabetes. Country-specific DALY rates from the Global Burden of Disease (GBD) study were used as health input data. RESULTS: Comparable exposure data were not available on a national level for the Nordic countries, only for capital cities. The DALY rates for the capitals ranged from 329 to 485 DALYs/100,000 for road traffic noise and 44 to 146 DALY/100,000 for railway noise. Moreover, the DALY estimates for road traffic noise increased with up to 17% upon inclusion of stroke and diabetes. DALY estimates based on nationwide noise data were 51 and 133% higher than the END-based estimates, for Norway and Denmark, respectively. CONCLUSION: Further harmonization of noise exposure data is required for between-country comparisons. Moreover, nationwide noise models indicate that DALY estimates based on END considerably underestimate national BoD due to transportation noise. The health-related burden of traffic noise was comparable to that of air pollution, an established risk factor for disease in the GBD framework. Inclusion of environmental noise as a risk factor in the GBD is strongly encouraged.


Asunto(s)
Diabetes Mellitus Tipo 2 , Ruido del Transporte , Humanos , Ruido del Transporte/efectos adversos , Factores de Riesgo , Países Escandinavos y Nórdicos/epidemiología , Costo de Enfermedad , Exposición a Riesgos Ambientales
7.
Environ Monit Assess ; 195(3): 426, 2023 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36828946

RESUMEN

Urban environment noise is a complex mixture of transportation, industrial, household, and recreational noise, which is identified as an emerging environmental threat. Present study monitors and evaluates a noise pollution hotspot: a railway level crossing, where several activities related to transportation noise were involved. Train honking, train movement, road vehicles, and pedestrians contribute to the noise level at a railway level crossing. Train horns are generally performed as train approach railway level crossings and they are mandatorily used to alert road users. However, the train horns are regarded as nuisance to the nearby residents. A detailed evaluation of train horn effectiveness is very much essential in the current contemporary environment. Thus, the main objective of this study is to measure noise levels emanating from train horns at a level crossing with due consideration to train types and climatic conditions. A comprehensive noise monitoring survey was conducted at an access-controlled level crossing. Furthermore, an artificial neural network (ANN)-based railway noise prediction model was developed to forecast maximum ([Formula: see text]) and equivalent (Leq) noise levels. Results revealed that train horn produced impulsive sound signals which fall under high frequency one-third octave bands causing severe irritation to trackside inhabitants. The proposed ANN models produced accurate results for [Formula: see text] and Leq noise levels and this model is identified as a vital tool for railway noise abatement. The results from this study are helpful to the urban planning and development authorities to implement strategic laws and policies to eradicate the urban environment noise.


Asunto(s)
Ruido del Transporte , Vías Férreas , Monitoreo del Ambiente/métodos , Redes Neurales de la Computación , India
8.
Environ Res ; 212(Pt B): 113477, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35588775

RESUMEN

Railway noise is expected to increase in Europe and Sweden as well, following recommendations for a more sustainable transportation mode. This forecasted increase might lead to higher level of noise exposure, higher population exposure and potentially increased night-time exposure. Evidence supports an effect of transportation noise on several health outcomes, including metabolic conditions such as diabetes. However, few studies were directed to railway noise; present studies on railway noise and diabetes so far show ambiguous results while some studies report an association between railway noise and obesity. The aim of this study is to investigate the relationship between railway noise and diabetes prevalence and to assess whether obesity might be a mediator in this association. The study population (N = 5381) was randomly selected from residents living within 1 km of a trafficked railway in Västra Götaland, Sweden. Survey data was combined with modelled exposures and health register data (ICD10 codes for diabetes). The study uses a cross sectional design, logistic regression analysis and a counterfactual mediation analysis. We found an increase in the prevalence of diabetes associated with the exposure to railway noise: OR = 1.33 per 10 dB increase Lden (95% CI 1.09-1.63) accounting for sociodemographic and lifestyle factors. BMI and waist circumference partially mediate the association between railway noise and diabetes. This is the first study to report an association between railway noise and diabetes in Sweden. BMI and waist circumference seem to be a potential mediators in this association. Still, future studies should further explore the mechanisms from noise to diabetes, considering different pathways in relation to obesity but also exploring other potential mediators.


Asunto(s)
Diabetes Mellitus , Vías Férreas , Estudios Transversales , Diabetes Mellitus/epidemiología , Diabetes Mellitus/etiología , Exposición a Riesgos Ambientales , Humanos , Análisis de Mediación , Obesidad/epidemiología , Suecia/epidemiología
9.
Environ Res ; 211: 113106, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35304113

RESUMEN

BACKGROUND: Transportation noise increases the risk of ischemic heart disease (IHD), but few studies have investigated subtypes of IHD, such as myocardial infarction (MI), angina pectoris, or heart failure. We aimed to study whether exposure to road, railway and aircraft noise increased risk for ischemic heart disease (IHD), IHD subtypes, and heart failure in the entire adult Danish population, investigating exposures at both maximum exposed and silent façades of each residence. METHODS: We modelled road, railway, and aircraft noise at the most and least exposed façades for the period 1995-2017 for all addresses in Denmark and calculated 10-year time-weighted running means for 2.5 million individuals age ≥50 years, of whom 122,523 developed IHD and 79,358 developed heart failure during follow-up (2005-2017). Data were analyzed using Cox proportional hazards models, adjusted for individual and area-level sociodemographic covariates and air pollution. RESULTS: We found road traffic noise at the most exposed façade (Lden) to be associated with higher risk of IHD, myocardial infarction (MI), angina pectoris, and heart failure, with hazard ratios (HRs) (95% confidence intervals (CI)) of 1.052 (1.044-1.059), 1.041 (1.032-1.051), 1.095 (1.071-1.119), and 1.039 (1.033-1.045) per 10 dB higher 10-year mean exposure, respectively. These associations followed a near-linear exposure-response relationship and were robust to adjustment for air pollution with PM2.5. Railway noise at the least exposed façade was associated with heart failure (HR 1.28; 95% CI: 1.004-1.053), but not the other outcomes. Exposure to aircraft noise (>45 dB) seemed associated with increased risk for MI and heart failure. CONCLUSIONS: We found road traffic noise and potentially railway and aircraft noise to increase risk of various major cardiovascular outcomes, highlighting the importance of preventive actions towards transportation noise.


Asunto(s)
Enfermedades Cardiovasculares , Insuficiencia Cardíaca , Infarto del Miocardio , Isquemia Miocárdica , Ruido del Transporte , Adulto , Angina de Pecho , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/etiología , Estudios de Cohortes , Dinamarca/epidemiología , Exposición a Riesgos Ambientales , Humanos , Persona de Mediana Edad , Infarto del Miocardio/epidemiología , Infarto del Miocardio/etiología , Ruido del Transporte/efectos adversos
10.
Environ Res ; 160: 292-297, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29045908

RESUMEN

BACKGROUND: Road traffic noise exposure has been found associated with diabetes incidence. Evidence for an association between railway noise exposure is less clear, as large studies with detailed railway noise modelling are lacking. PURPOSE: To investigate the association between residential railway noise and diabetes incidence, and to repeat previous analyses on road traffic noise and diabetes with longer follow-up time. METHODS: Among 50,534 middle-aged Danes enrolled into the Diet, Cancer and Health cohort from 1993 to 97, we identified 5062 cases of incident diabetes during a median follow-up of 15.5 years. Present and historical residential addresses from 1987 to 2012 were found in national registries, and railway and road traffic noise (Lden) were modelled for all addresses, using the Nordic prediction method. We used Cox proportional hazard models to investigate the association between residential traffic noise over 1 and 5 years before diagnosis, and diabetes incidence. Hazard ratios (HRs) were calculated as crude and adjusted for potential confounders. RESULTS: We found no association between railway noise exposure and diabetes incidence among the 9527 persons exposed, regardless of exposure time-window: HR 0.99 (0.94-1.04) per 10dB for 5-year exposure in fully adjusted models. There was no effect modification by sex, road traffic noise, and education. We confirmed the previously found association between road traffic noise exposure and diabetes including 6 additional years of follow-up: HR 1.08 (1.04-1.13) per 10dB for 5-year exposure in fully adjusted models. CONCLUSION: The study does not suggest an association between residential railway noise exposure and diabetes incidence, but supports the finding of a direct association with residential road traffic noise.


Asunto(s)
Diabetes Mellitus/epidemiología , Ruido del Transporte/efectos adversos , Dinamarca/epidemiología , Diabetes Mellitus/etiología , Femenino , Humanos , Incidencia , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Vías Férreas/estadística & datos numéricos
11.
Noise Health ; 20(92): 9-15, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29457601

RESUMEN

OBJECTIVE: The present study aimed to evaluate the influences of combined traffic noise (CTN) on the ability of learning and memory in mice. MATERIALS AND METHODS: The Institute of Cancer Research (ICR) mice were exposed to CTN from highways and high-speed railways for 42 days, whose day-night equivalent continuous A-weighted sound pressure level (Ldn) was 70 dB(A). On the basis of behavioral reactions in Morris water maze (MWM) and the concentrations of amino acid neurotransmitters in the hippocampus, the impacts of CTN on learning and memory in mice were examined. RESULTS: The MWM test showed that the ability of learning and memory in mice was improved after short-term exposure (6-10 days, the first batch) to 70 dB(A) CTN, which showed the excitatory effect of stimuli. Long-term exposure (26-30 days, the third batch; 36-40 days, the fourth batch) led to the decline of learning and memory ability, which indicated the inhibitory effect of stimuli. Assays testing amino acid neurotransmitters showed that the glutamate level of the experimental group was higher than that of the control group in the first batch. However, the former was lower than the latter in the third and fourth batches. Both, behavioral reactions and the concentrations of amino acid neurotransmitters, testified that short-term exposure and long-term exposure resulted in excitatory effect and inhibitory effect on the ability of learning and memory, respectively. CONCLUSION: The effects of 70 dB(A) CTN on the ability of learning and memory were closely related to the exposure duration. Furthermore, those effects were regulated and controlled by the level of glutamate in the hippocampus.


Asunto(s)
Ácido Glutámico/metabolismo , Hipocampo/metabolismo , Aprendizaje por Laberinto/fisiología , Memoria/fisiología , Neurotransmisores/metabolismo , Ruido , Animales , Automóviles , China , Ácido Glutámico/análisis , Masculino , Ratones , Ratones Endogámicos ICR , Estrés Fisiológico , Transportes
12.
Environ Res ; 152: 263-271, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27816007

RESUMEN

BACKGROUND: Few studies have examined the relationship between traffic noise and depression providing inconclusive results. This large case-control study is the first to assess and directly compare depression risks by aircraft, road traffic and railway noise. METHODS: The study population included individuals aged ≥40 years that were insured by three large statutory health insurance funds and were living in the region of Frankfurt international airport. Address-specific exposure to aircraft, road and railway traffic noise in 2005 was estimated. Based on insurance claims and prescription data, 77,295 cases with a new clinical depression diagnosis between 2006 and 2010 were compared with 578,246 control subjects. RESULTS: For road traffic noise, a linear exposure-risk relationship was found with an odds ratio (OR) of 1.17 (95% CI=1.10-1.25) for 24-h continuous sound levels ≥70dB. For aircraft noise, the risk estimates reached a maximum OR of 1.23 (95% CI=1.19-1.28) at 50-55dB and decreased at higher exposure categories. For railway noise, risk estimates peaked at 60-65dB (OR=1.15, 95% CI=1.08-1.22). The highest OR of 1.42 (95% CI=1.33-1.52) was found for a combined exposure to noise above 50dB from all three sources. CONCLUSIONS: This study indicates that traffic noise exposure might lead to depression. As a potential explanation for the decreasing risks at high traffic noise levels, vulnerable people might actively cope with noise (e.g. insulate or move away).


Asunto(s)
Aeronaves , Depresión/epidemiología , Exposición a Riesgos Ambientales , Vehículos a Motor , Ruido del Transporte/efectos adversos , Adulto , Anciano , Anciano de 80 o más Años , Aeropuertos , Estudios de Casos y Controles , Depresión/etiología , Femenino , Alemania/epidemiología , Humanos , Masculino , Persona de Mediana Edad , Oportunidad Relativa , Vías Férreas
13.
J Environ Manage ; 191: 75-82, 2017 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-28088060

RESUMEN

Negative outcomes such as noise and vibration generated by railways have become a challenge for both industry and academia in order to guarantee that the railway system can accomplish its purposes and at the same time provide comfort for users and people living in the neighbourhood along the railway corridor. The research interest on this field has been increasing and the advancement in noise and vibration mitigation methodologies can be observed using various engineering techniques that are constantly put into test to solve such effects. In contrast, the life cycle analysis of the mitigation measures has not been thoroughly carried out. There is also a lack of detailed evaluation in the efficiency of various mechanisms for controlling rolling noise and ground-borne vibration. This research is thus focussed on the evaluation of materials used, the total cost associated with the maintenance of such the measures and the carbon footprint left for each type of mechanism. The insight into carbon footprint together with life cycle cost will benefit decision making process for the industry in the selection of optimal and suitable mechanism since the environmental impact is a growing concern around the world.


Asunto(s)
Ruido del Transporte , Vías Férreas , Emociones , Humanos , Características de la Residencia , Vibración
14.
Environ Sci Pollut Res Int ; 31(16): 24344-24359, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38443535

RESUMEN

Railway noise has become a significant concern for trackside residents due to increased volume of high-speed passenger and freight train traffic. To address this, active measures, such as reducing noise at the source, and passive measures, such as installing noise barriers along the transmission path, are widely being used. In urban areas, railway boundary walls are constructed to prevent encroachments of railway lands and to avoid pedestrian trespassing of railway tracks. This study aims to evaluate the effectiveness of such a boundary wall for reducing noise and proposes an improved alternative through computational fluid dynamics (CFD) simulations. Various noise barriers with different geometry, shape, and surface materials were simulated and validated with the field conditions based on a rectangular wall of height 2.75 m. Noise attenuation was evaluated by measuring railway noise spectra at different positions, including 0.5 m in front and behind the barrier and at the facade of the residential area. The insertion loss based on field measurements for a rectangular barrier of height 2.75 m was observed to be 5.2 dBA. The simulation results indicated a positive correlation between barrier height and insertion loss, with a maximum attenuation of 17 dBA achieved with a barrier of height 6 m. The most effective noise barrier for reducing railway noise was a T-shaped barrier with a height of 6 m and a projection length of 2 m, with an insertion loss of 22 dBA. This study recommends constructing the barrier with soft materials on its surface to reflect and absorb sound waves effectively. These findings have potential implications for urban planners and policymakers in designing effective noise barriers in residential areas near railway lines.


Asunto(s)
Ruido del Transporte , Vías Férreas , Ruido del Transporte/prevención & control , Hidrodinámica , Simulación por Computador , Acústica , Exposición a Riesgos Ambientales
15.
Environ Int ; 178: 108108, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37490787

RESUMEN

BACKGROUND: Environmental noise is an important environmental exposure that can affect health. An association between transportation noise and breast cancer incidence has been suggested, although current evidence is limited. We investigated the pooled association between long-term exposure to transportation noise and breast cancer incidence. METHODS: Pooled data from eight Nordic cohorts provided a study population of 111,492 women. Road, railway, and aircraft noise were modelled at residential addresses. Breast cancer incidence (all, estrogen receptor (ER) positive, and ER negative) was derived from cancer registries. Hazard ratios (HR) were estimated using Cox Proportional Hazards Models, adjusting main models for sociodemographic and lifestyle variables together with long-term exposure to air pollution. RESULTS: A total of 93,859 women were included in the analyses, of whom 5,875 developed breast cancer. The median (5th-95th percentile) 5-year residential road traffic noise was 54.8 (40.0-67.8) dB Lden, and among those exposed, the median railway noise was 51.0 (41.2-65.8) dB Lden. We observed a pooled HR for breast cancer (95 % confidence interval (CI)) of 1.03 (0.99-1.06) per 10 dB increase in 5-year mean exposure to road traffic noise, and 1.03 (95 % CI: 0.96-1.11) for railway noise, after adjustment for lifestyle and sociodemographic covariates. HRs remained unchanged in analyses with further adjustment for PM2.5 and attenuated when adjusted for NO2 (HRs from 1.02 to 1.01), in analyses using the same sample. For aircraft noise, no association was observed. The associations did not vary by ER status for any noise source. In analyses using <60 dB as a cutoff, we found HRs of 1.08 (0.99-1.18) for road traffic and 1.19 (0.95-1.49) for railway noise. CONCLUSIONS: We found weak associations between road and railway noise and breast cancer risk. More high-quality prospective studies are needed, particularly among those exposed to railway and aircraft noise before conclusions regarding noise as a risk factor for breast cancer can be made.


Asunto(s)
Neoplasias de la Mama , Ruido del Transporte , Humanos , Femenino , Ruido del Transporte/efectos adversos , Estudios de Cohortes , Neoplasias de la Mama/epidemiología , Neoplasias de la Mama/etiología , Factores de Riesgo , Estudios Prospectivos , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis
16.
Environ Pollut ; 328: 121642, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37061017

RESUMEN

Studies have indicated that transportation noise is associated with higher cardiovascular mortality, whereas evidence of noise as a risk factor for respiratory and cancer mortality is scarce and inconclusive. Also, knowledge on effects of low-level noise on mortality is very limited. We aimed to investigate associations between road and railway noise and natural-cause and cause-specific mortality in the Danish population. We estimated address-specific road and railway noise at the most (LdenMax) and least (LdenMin) exposed façades for all residential addresses in Denmark from 1990 to 2017 using high-quality exposure models. Using these data, we calculated 10-year time-weighted mean noise exposure for 2.6 million Danes aged >50 years, of whom 600,492 died from natural causes during a mean follow-up of 11.7 years. We analyzed data using Cox proportional hazards models with adjustment for individual and area-level sociodemographic variables and air pollution (PM2.5 and NO2). We found that a 10-year mean exposure to road LdenMax and road LdenMin per 10 dB were associated with hazard ratios (95% confidence intervals) of, respectively, 1.09 (1.09; 1.10) and 1.10 (1.10; 1.11) for natural-cause mortality, 1.09 (1.08; 1.10) and 1.09 (1.08; 1.10) for cardiovascular mortality, 1.13 (1.12; 1.14) and 1.17 (1.16; 1.19) for respiratory mortality and 1.03 (1.02; 1.03) and 1.06 (1.05; 1.07) for cancer mortality. For LdenMax, the associations followed linear exposure-response relationships from 35 dB to 60-<65 dB, after which the function levelled off. For LdenMin, exposure-response relationships were linear from 35 dB and up, with some levelling off at high noise levels for natural-cause and cardiovascular mortality. Railway noise did not seem associated with higher mortality in an exposure-response dependent manner. In conclusion, road traffic noise was associated with higher mortality and the increase in risk started well below the current World Health Organization guideline limit for road traffic noise of 53 dB.


Asunto(s)
Enfermedades Cardiovasculares , Neoplasias , Ruido del Transporte , Humanos , Estudios de Cohortes , Ruido del Transporte/efectos adversos , Factores de Riesgo , Enfermedades Cardiovasculares/epidemiología , Neoplasias/epidemiología , Dinamarca/epidemiología , Exposición a Riesgos Ambientales
17.
Environ Int ; 178: 107966, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37390771

RESUMEN

BACKGROUND: Noise pollution from transportation is one of the leading contributors to the environmental disease burden in Europe. We provide a novel assessment of spatial variations of these health impacts within a country, using England as an example. METHODS: We estimated the burden of annoyance (highly annoyed), sleep disturbance (highly sleep disturbed), ischemic heart disease (IHD), stroke, and diabetes attributable to long-term transportation noise exposures in England for the adult population in 2018 down to local authority level (average adult population: 136,000). To derive estimates, we combined literature-informed exposure-response relationships, with population data on noise exposures, disease, and mortalities. Long-term average noise exposures from road, rail and aircraft were sourced from strategic noise mapping, with a lower exposure threshold of 50 dB (decibels) Lden and Lnight. RESULTS: 40 %, 4.5 % and 4.8 % of adults in England were exposed to road, rail, and aircraft noise exceeding 50 dB Lden. We estimated close to a hundred thousand (∼97,000) disability adjusted life years (DALY) lost due to road-traffic, ∼13,000 from railway, and âˆ¼ 17,000 from aircraft noise. This excludes some noise-outcome pairs as there were too few studies available to provide robust exposure-response estimates. Annoyance and sleep disturbance accounted for the majority of the DALYs, followed by strokes, IHD, and diabetes. London, the South East, and North West regions had the greatest number of road-traffic DALYs lost, while 63 % of all aircraft noise DALYs were found in London. The strategic noise mapping did not include all roads, which may still have significant traffic flows. In sensitivity analyses using modelled noise from all roads in London, the DALYs were 1.1x to 2.2x higher. CONCLUSION: Transportation noise exposures contribute to a significant and unequal environmental disease burden in England. Omitting minor roads from the noise exposure modelling leads to underestimation of the disease burden.


Asunto(s)
Isquemia Miocárdica , Ruido del Transporte , Trastornos del Sueño-Vigilia , Accidente Cerebrovascular , Adulto , Humanos , Ruido del Transporte/efectos adversos , Europa (Continente) , Costo de Enfermedad , Inglaterra/epidemiología , Aeronaves , Trastornos del Sueño-Vigilia/epidemiología , Trastornos del Sueño-Vigilia/etiología , Exposición a Riesgos Ambientales/efectos adversos
18.
Int J Epidemiol ; 50(4): 1147-1156, 2021 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-33755127

RESUMEN

BACKGROUND: Studies on transportation noise and incident stroke are few and inconclusive. We aimed to investigate associations between road-traffic and railway noise and the risk of incident stroke in the entire Danish population. METHODS: We estimated road-traffic and railway noise (Lden) at the most and least exposed façades for all residential addresses across Denmark (2.8 million) for the period 1990-2017. Based on this, we estimated the 10-year time-weighted mean noise exposure for 3.6 million Danes aged >35 years, of whom 184 523 developed incident stroke during follow-up from 2000 to 2017. Analyses were conducted using Cox proportional-hazards models, with adjustment for various individual- and area-level demographic and socio-economic covariates collected from registries and air pollution [fine particulate matter with particles with a diameter of ≤2.5 µm (PM2.5) and nitrogen dioxide (NO2)]. RESULTS: A 10-dB increase in the 10-year mean road-traffic noise at the most exposed façade was associated with an incidence rate ratio (IRR) of 1.04 [95% confidence interval (CI): 1.03-1.05] for all strokes. For road-traffic noise at the least exposed façade, the IRR per 10 dB was 1.03 (95% CI: 1.02-1.04) for all strokes. Railway noise was not associated with a higher risk of stroke. CONCLUSION: Road-traffic noise increased the risk of stroke. These findings add to the evidence of road-traffic noise as a cardiovascular risk factor.


Asunto(s)
Contaminación del Aire , Ruido del Transporte , Accidente Cerebrovascular , Contaminación del Aire/efectos adversos , Dinamarca/epidemiología , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis , Humanos , Ruido del Transporte/efectos adversos , Estudios Prospectivos , Accidente Cerebrovascular/epidemiología
19.
Sci Total Environ ; 757: 143721, 2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33229078

RESUMEN

Rail freight transport has grown worldwide and in Brazil as well, which increases people's exposure to railway noise. A promising tool to manage it is Strategic Noise Mapping (SNM), which has advanced around the world favoring a common and more accurate calculation method that requires more accurate measurements. This paper presents a framework to manage railway noise exposure in Brazil based on a case study carried out in the city with the longest stretches of railway tracks in urban areas. Background noise due to road traffic and train pass-by noise levels were measured for knowledge of noise sources and SNM calibration. Background noise predicted by the CNOSSOS-EU (Road) method reached an accuracy within ±2 dB(A) and was overestimated by the NMPB-96 method. The combination with railway noise using the SRM II and ISO 9613 calculation methods maintained the aforementioned accuracy, while the current best fit CNOSSOS-EU (Railway and Industry) configuration for the study area overestimated it. Although the study area is a quiet suburb, a quarter of its population is exposed to road traffic noise levels above those recommended by WHO, and more than 40% are affected by rail noise that is 5 dB(A) or higher than the background noise. The elimination of level crossings (LC) and the need to sound the train horn is more cost-effective than noise barriers. Therefore, the strategy to manage exposure to rail noise in Brazil should involve altering residential zoning of non-built-up areas next to the railways to repurpose them for other land uses and/or establish acoustic performance criteria for new buildings; federal government investing in reducing the number of LC or railway variants; and railway operators investing in the creation of an emission database for noise control at the source.

20.
Int J Hyg Environ Health ; 231: 113652, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33126026

RESUMEN

BACKGROUND: Few studies have investigated whether road traffic noise is associated with gestational diabetes mellitus (GDM), and have yielded inconsistent findings. We aimed to investigate whether maternal exposure to residential transportation noise, before and during pregnancy, was associated with GDM in a nationwide cohort. METHODS: From the Danish population (2004-2017) we identified 629,254 pregnancies using the Danish Medical Birth Register. By linkage with the National Patient Registry, we identified 15,973 pregnancies complicated by GDM. Road traffic and railway noise (Lden) at the most and least exposed façades for all residential addresses from five years before pregnancy until birth were estimated for all. Analyses were conducted using generalized estimating equation models with adjustment for various individual and area-level sociodemographic covariates gathered from Danish registries, as well as green space and air pollution (PM2.5) estimated for all addresses. RESULTS: We found no positive associations between road traffic noise at either façade and GDM. For railway noise, a 10 dB increase in railway noise at the most and least exposed façades during the first trimester was associated with GDM, with an odds ratio (OR) of 1.06 (95% confidence interval (CI): 1.03-1.10) and 1.07 (95% CI: 1.02-1.13), respectively. We found indications of higher odds of GDM among women exposed to both high road traffic and railway noise at the least exposed facade during the first trimester (OR: 1.24; 95% CI: 1.07-1.44). CONCLUSION: In conclusion, this nationwide study suggests that railway noise but not road traffic noise might be associated with GDM.


Asunto(s)
Diabetes Gestacional , Ruido del Transporte , Estudios de Cohortes , Dinamarca/epidemiología , Diabetes Gestacional/epidemiología , Diabetes Gestacional/etiología , Exposición a Riesgos Ambientales , Femenino , Humanos , Ruido del Transporte/efectos adversos , Embarazo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA