Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Chemistry ; 30(39): e202401036, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38742490

RESUMEN

Electrochemiluminescence (ECL) featuring thermally activated delayed fluorescence (TADF) properties has attracted considerable interest, showcasing their potential for 100 % exciton harvesting, which marks a significant advancement in the realm of organic ECL. However, the challenge of elucidating the precise contribution of TADF to the enhanced ECL efficiency arises due to the lack of comparative studies of organic compounds with or without efficient TADF properties. In this study, we present four carbazole-benzonitrile molecules possessing similar chemical structures and comparable exchange energy (ΔEST). Despite their comparable properties, these compounds exhibited varying TADF efficiencies, warranting a closer examination of their underlying structural and electronic characteristics governing the optical properties. Consequently, intense ECL emission was only observed from 4CzBN with a remarkable TADF efficiency, underscoring the substantial difference in the ECL signal among molecules with comparable ΔEST and similar spectral properties but varying TADF activity.

2.
Chemistry ; 30(29): e202400215, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38530218

RESUMEN

Recent advances in synthetic methods, combined with tip-induced on-surface chemistry, have enabled the formation of numerous cyclocarbon molecules. Here, we investigate computationally the experimentally studied C16 and C18 molecules as well as their van der Waals (vdW) complexes with several typical donor and acceptor molecules. Our results demonstrate a remarkable electron-withdrawing ability of cyclocarbon molecules. The vdW complexes of C16 and C18 exhibit a thermodynamically favorable photoinduced electron transfer (ET) from the donor partner to the cyclocarbons that occurs on a picosecond time scale. The lower reorganization energy of C16 compared to C18 leads to a significant acceleration of the ET reactions.

3.
Chemphyschem ; : e202400503, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39080510

RESUMEN

Thio-caged fluorophores can be effectively desulfurized into their oxygenated derivatives through visible light, thereby restoring the strong emission, and are applied in live cell super-resolution imaging. Herein, we theoretically investigated the reasons for the low fluorescence quantum yields of a series of thio-caged fluorophores and the underlying reasons for the differences in fluorescence quantum yields of their oxygenated derivatives. The calculation results show that the S atom on the thiocarbonyl group is more likely to excite n electrons to form the nπ* state, which reduces the energy of the nπ* state and leads to fluorescence quenching. In contrast, oxygenated derivatives is more likely to excite π electrons to form ππ* state, which is the main reason for restoring the strong emission of fluorophore. Meanwhile, the calculation results show that the difference of fluorescence intensity caused by oxygenated derivatives is determined by the number of the carbonyl group, which affects the vibronic coupling between ππ* and nπ* states and thereby leads to fluorescence quenching. These results can effectively reveal the fluorescence quenching mechanism of thio-caged fluorophores and the luminescence mechanism of their oxygenated derivatives, and provide correct and guiding design strategies for the development of new thio-caged fluorophores.

4.
Nano Lett ; 23(23): 10871-10878, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-37955520

RESUMEN

Plasmon-enhanced electrochemistry (PEEC) has been observed to facilitate energy conversion systems by converting light energy to chemical energy. However, comprehensively understanding the PEEC mechanism remains challenging due to the predominant use of ensemble-based methodologies on macroscopic electrodes, which fails to measure electron-transfer kinetics due to constraints from mass transport and the averaging effect. In this study, we have employed nanoparticle impact electrochemistry (NIE), a newly developed electroanalytical technique capable of measuring electrochemical dynamics at a single-nanoparticle level under optimal mass transport conditions, along with microscopic electron-transfer theory for data interpretation. By investigating the plasmon enhanced hydrogen evolution reaction (HER) at individual silver nanoparticles (AgNPs), we have clearly revealed the previously unknown influence of solvent effects within the PEEC mechanism. This finding suggests an additional approach to optimize plasmon-assisted electrocatalysis and electrosynthesis systems.

5.
Molecules ; 29(15)2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39124979

RESUMEN

This study explores the impact of sulfur oxidation on the structural, optical, and electronic properties of [1]benzothieno[3,2-b][1]benzothiophene (BTBT) derivatives, specifically focusing on 2,7-dibromo BTBT (2,7-diBr-BTBT) and its oxidized forms, 5,5-dioxide (2,7-diBr-BTBTDO) and 5,5,10,10-tetraoxide (2,7-diBr-BTBTTO). The bromination of BTBT followed by sequential oxidation with m-chloroperoxybenzoic acid yielded the target compounds in good yields. They were characterized using a wide array of analytical techniques including different spectroscopic methods, X-ray analysis, thermal analysis, and quantum chemical calculations. The results revealed that sulfur oxidation significantly alters the crystal packing, thermal stability, and optoelectronic properties of BTBT derivatives. Notably, the oxidized forms exhibited increased thermal stability and enhanced emission properties, with quantum yields exceeding 99%. These findings provide valuable insights for designing advanced organic semiconductors and fluorescent materials with tunable properties, based on the BTBT core.

6.
Molecules ; 28(12)2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37375198

RESUMEN

The charged forms of π-conjugated chromophores are relevant in the field of organic electronics as charge carriers in optoelectronic devices, but also as energy storage substrates in organic batteries. In this context, intramolecular reorganization energy plays an important role in controlling material efficiency. In this work, we investigate how the diradical character influences the reorganization energies of holes and electrons by considering a library of diradicaloid chromophores. We determine the reorganization energies with the four-point adiabatic potential method using quantum-chemical calculations at density functional theory (DFT) level. To assess the role of diradical character, we compare the results obtained, assuming both closed-shell and open-shell representations of the neutral species. The study shows how the diradical character impacts the geometrical and electronic structure of neutral species, which in turn control the magnitude of reorganization energies for both charge carriers. Based on computed geometries of neutral and charged species, we propose a simple scheme to rationalize the small, computed reorganization energies for both n-type and p-type charge transport. The study is supplemented with the calculation of intermolecular electronic couplings governing charge transport for selected diradicals, further supporting the ambipolar character of the investigated diradicals.

7.
Small ; 18(4): e2106462, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34862733

RESUMEN

Multi-resonance thermally activated delayed fluorescence (MR-TADF) material, which possesses the ability to achieve narrowband emission in organic light-emitting diodes (OLEDs), is of significant importance for wide color gamut and high-resolution display applications. To date, MR-TADF material with narrow full width at half-maximum (FWHM) below 0.14 eV still remains a great challenge. Herein, through peripheral protection of MR framework by phenyl derivatives, four efficient narrowband MR-TADF emitters are successfully designed and synthesized. The introduction of peripheral phenyl-based moieties via a single bond significantly suppresses the high-frequency stretching vibrations and reduces the reorganization energies, accordingly deriving the resulting molecules with small FWMH values around 20 nm/0.11 eV and fast radiative decay rates exceeding 108 s-1 . The corresponding green OLED based on TPh-BN realizes excellent performance with the maximum external quantum efficiency (EQE) up to 28.9% without utilizing any sensitizing host and a relatively narrow FWHM of 0.14 eV (28 nm), which is smaller than the reported green MR-TADF molecules in current literatures. Especially, the devices show significantly reduced efficiency roll-off and relatively long operational lifetimes among the sensitizer-free MR-TADF devices. These results clearly indicate the promise of this design strategy for highly efficient OLEDs with ultra-high color purity.

8.
Chemistry ; 28(2): e202103712, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-34767281

RESUMEN

Chemical structure of small molecule acceptors determines their performance in organic solar cells. Multiscale simulations are necessary to avoid trial-and-error based design, ultimately to save time and resources. In current study, the effect of sp2 -hybridized nitrogen substitution at the inner or the outmost position of central core, side chain, and terminal group of small molecule acceptors is investigated using multiscale computational modelling. Quantum chemical analysis is used to study the electronic behavior. Nitrogen substitution at end-capping has significantly decreased the electron-reorganization energy. No big change is observed in transfer integral and excited state behavior. However, nitrogen substitution at terminal group position is good way to improve electron-mobility. Power conversion efficiency (PCE) of newly designed acceptors is predicted using machine learning. Molecular dynamics simulations are also performed to explore the dynamics of acceptor and their blends with PBDB-T polymer donor. Florgy-Huggins parameter is calculated to study the mixing of designed small molecule acceptors with PBDB-T. Radial distribution function has indicated that PBDB-T has a closer packing with N3 and N4. From all analysis, it is found that nitrogen substitution at end-capping group is a better strategy to design efficient small molecule acceptors.

9.
Proc Natl Acad Sci U S A ; 116(30): 14899-14904, 2019 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-31292256

RESUMEN

The oxygen reduction reaction (ORR) is a critical reaction in secondary batteries based on alkali metal chemistries. The nonaqueous electrolyte mediates ion and oxygen transport and determines the heterogeneous charge transfer rates by controlling the nature and degree of solvation. This study shows that the solvent reorganization energy (λ) correlates well with the oxygen diffusion coefficient [Formula: see text] and with the ORR rate constant [Formula: see text] in nonaqueous Li-, Na-, and K-O2 cells, thereby elucidating the impact of variations in the solvation shell on the ORR. Increasing cation size (from Li+ to K+) doubled [Formula: see text], indicating an increased sensitivity of k to the choice of anion, while variations in [Formula: see text]were minimal over this cation size range. At the level of a symmetric K-O2 cell, both the formation of solvent-separated ion pairs [K+-(DMSO)n-ClO4- + (DMSO)m-ClO4-] and the anions being unsolvated (in case of PF6-) lowered ORR activation barriers with a 200-mV lower overpotential for the PF6- and ClO4- electrolytes compared with OTf- and TFSI- electrolytes with partial anion solvation [predominantly K+-(DMSO)n-OTf-]. Balancing transport and kinetic requirements, KPF6 in DMSO is identified as a promising electrolyte for K-O2 batteries.

10.
Nano Lett ; 21(20): 8741-8748, 2021 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-34609148

RESUMEN

Exciton-phonon coupling (EXPC) plays a key role in the optoelectronic properties of semiconductor nanocrystals (NCs), but a microscopic picture of EXPC is still lacking, particularly regarding the magnitude and scaling with NC size, the dependence on phonon frequency, and the role of the NC surface. The computational complexity associated with accurately describing excitons and phonons has limited previous theoretical studies of EXPC to small NCs, noninteracting electron-hole models, and/or a small number of phonon modes. Here, we develop an atomistic approach for describing EXPC in NCs of experimentally relevant sizes. We validate our approach by calculating the reorganization energies, a measure of EXPC, for CdSe and CdSe-CdS core-shell NCs, finding good agreement with experimental measurements. We demonstrate that exciton formation distorts the NC lattice primarily along the coordinates of low-frequency acoustic modes. Modes at the NC surface play a significant role in smaller NCs while interior modes dominate for larger systems.


Asunto(s)
Compuestos de Cadmio , Puntos Cuánticos , Compuestos de Selenio , Electrones , Fonones
11.
Angew Chem Int Ed Engl ; 61(6): e202114341, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34806275

RESUMEN

Adequate hole mobility is the prerequisite for dopant-free polymeric hole-transport materials (HTMs). Constraining the configurational variation of polymer chains to afford a rigid and planar backbone can reduce unfavorable reorganization energy and improve hole mobility. Herein, a noncovalent conformational locking via S-O secondary interaction is exploited in a phenanthrocarbazole (PC) based polymeric HTM, PC6, to fix the molecular geometry and significantly reduce reorganization energy. Systematic studies on structurally explicit repeats to targeted polymers reveals that the broad and planar backbone of PC remarkably enhances π-π stacking of adjacent polymers, facilitating intermolecular charge transfer greatly. The inserted "Lewis soft" oxygen atoms passivate the trap sites efficiently at the perovskite/HTM interface and further suppress interfacial recombination. Consequently, a PSC employing PC6 as a dopant-free HTM offers an excellent power conversion efficiency of 22.2 % and significantly improved longevity, rendering it as one of the best PSCs based on dopant-free HTMs.

12.
Chemphyschem ; 22(21): 2247-2255, 2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34427964

RESUMEN

Liquid water confined within nanometer-sized channels exhibits a strongly reduced local dielectric constant perpendicular to the wall, especially at the interface, and this has been suggested to induce faster electron transfer kinetics at the interface than in the bulk. We study a model electron transfer reaction in aqueous solution confined between graphene sheets with classical molecular dynamics. We show that the solvent reorganization energy is reduced at the interface compared to the bulk, which explains the larger rate constant. However, this facilitated solvent reorganization is due to the partial desolvation by the graphene sheet of the ions involved in the electron transfer and not to a local dielectric constant reduction effect.

13.
Bioorg Med Chem ; 51: 116464, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34798378

RESUMEN

The intramolecular reorganization energy (ΔEReorg) of compounds upon binding to proteins is a component of the binding free energy, which has long received particular attention, for fundamental and practical reasons. Understanding ΔEReorg would benefit the science of molecular recognition and drug design. For instance, the tolerable strain energy of compounds upon binding has been elusive. Prior studies found some large ΔEReorg values (e.g. > 10 kcal/mol), received with skepticism since they imply excessive opposition to binding. Indeed, estimating ΔEReorg is technically difficult. Typically, ΔEReorg has been approached by taking two energy-minimized conformers representing the bound and unbound states, and subtracting their conformational energy. This is a drastic oversimplification, liable to conformational collapse of the unbound conformer. Instead, the present work applies extensive molecular dynamics (MD) and the modern OPLS3 force-field to simulate compounds bound and unbound states, in explicit solvent under physically relevant conditions. The thermalized unbound compounds populate multiple conformations, not reducible to one or a few energy-minimized conformers. The intramolecular energies in the bound and unbound states were averaged over pertinent conformational ensembles, and the reorganization enthalpy upon binding (ΔHReorg) deduced by subtraction. This was applied to 76 systems, including 43 approved drugs, carefully selected for i) the quality of the bioactive X-ray structures and ii) the diversity of the chemotypes, their properties and protein targets. It yielded comparatively low ΔHReorg values (median = 1.4 kcal/mol, mean = 3.0 kcal/mol). A new finding is the observation of negative ΔHReorg values. Indeed, reorganization energies do not have to oppose binding, e.g. when intramolecular interactions stabilize preferentially the bound state. Conversely, even with competing water molecules, intramolecular interactions can occur predominantly in the unbound compound, and be replaced by intermolecular counterparts upon protein binding. Such disruption of intramolecular interactions upon binding gives rise to occasional larger ΔHReorg values. Such counterintuitive larger ΔHReorg values may be rationalized as a redistribution of interactions upon binding, qualitatively compatible with binding.


Asunto(s)
Simulación de Dinámica Molecular , Preparaciones Farmacéuticas/química , Proteínas/química , Termodinámica , Sitios de Unión , Ligandos , Solventes/química
14.
Proc Natl Acad Sci U S A ; 115(44): E10287-E10294, 2018 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-30254163

RESUMEN

Hydrogen atom abstraction (HAA) reactions are cornerstones of chemistry. Various (metallo)enzymes performing the HAA catalysis evolved in nature and inspired the rational development of multiple synthetic catalysts. Still, the factors determining their catalytic efficiency are not fully understood. Herein, we define the simple thermodynamic factor η by employing two thermodynamic cycles: one for an oxidant (catalyst), along with its reduced, protonated, and hydrogenated form; and one for the substrate, along with its oxidized, deprotonated, and dehydrogenated form. It is demonstrated that η reflects the propensity of the substrate and catalyst for (a)synchronicity in concerted H+/e- transfers. As such, it significantly contributes to the activation energies of the HAA reactions, in addition to a classical thermodynamic (Bell-Evans-Polanyi) effect. In an attempt to understand the physicochemical interpretation of η, we discovered an elegant link between η and reorganization energy λ from Marcus theory. We discovered computationally that for a homologous set of HAA reactions, λ reaches its maximum for the lowest |η|, which then corresponds to the most synchronous HAA mechanism. This immediately implies that among HAA processes with the same reaction free energy, ΔG0, the highest barrier (≡ΔG≠) is expected for the most synchronous proton-coupled electron (i.e., hydrogen) transfer. As proof of concept, redox and acidobasic properties of nonheme FeIVO complexes are correlated with activation free energies for HAA from C-H and O-H bonds. We believe that the reported findings may represent a powerful concept in designing new HAA catalysts.

15.
J Comput Chem ; 41(10): 976-985, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-31925957

RESUMEN

Organic semiconductors (OSCs) materials are currently under intense investigation because of their potential applications such as organic field-effect transistors, organic photovoltaic devices, and organic light-emitting diodes. Inspired by the selenization strategy can promote anisotropic charge carrier migration, and selenium-containing compounds have been proved to be promising materials as OSCs both for hole and electron transfer. Herein, we now explore the anisotropic transport properties of the series of selenium-containing compounds. For the compound containing SeSe bond, the SeSe bond will break when attaching an electron, thus those compounds cannot act as n-type OSCs. About the different isomer compounds with conjugated structure, the charge transfer will be affected by the stacking of the conjugated structures. The analysis of chemical structure and charge transfer property indicates that Se-containing materials are promising high-performance OSCs and might be used as p-type, n-type, or ambipolar OSCs. Furthermore, the symmetry of the selenium-containing OSCs will affect the type of OSCs. In addition, there is no direct relationship between the R groups with their performance, whether it or not as p-type OSCs or n-types. This work demonstrates the relationship between the optoelectronic function and structure of selenium-containing OSCs materials and hence paves the way to design and improve optoelectronic function of OSCs materials.

16.
Angew Chem Int Ed Engl ; 59(51): 23268-23276, 2020 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-32889780

RESUMEN

Photoacoustic agents have been of vital importance for improving the imaging contrast and reliability against self-interference from endogenous substances. Herein, we synthesized a series of thiadiazoloquinoxaline (TQ)-based semiconducting polymers (SPs) with a broad absorption covering from NIR-I to NIR-II regions. Among them, the excited s-BDT-TQE, a repeating unit of SPs, shows a large dihedral angle and narrow adiabatic energy as well as low radiative decay, attributing to its strongly electron-deficient ester-substituted TQ-segment. In addition, its more vigorous molecular motions trigger a higher reorganization energy that further yields an efficient photoinduced nonradiative decay, which has been carefully examined and understood by theoretical calculation. Thus, BDT-TQE SP-cored nanoparticles with twisted intramolecular charge transfer (TICT) feature exhibit a high NIR-II photothermal conversion efficiency (61.6 %) and preferable PA tracking of in situ hepatic tumor growth for more than 20 days. This study highlights a unique strategy for constructing efficient NIR-II photoacoustic agents via TICT-enhanced PNRD effect, advancing their applications for in vivo bioimaging.


Asunto(s)
Antineoplásicos/química , Compuestos Azo/química , Ésteres/química , Neoplasias/diagnóstico por imagen , Técnicas Fotoacústicas , Polímeros/química , Quinoxalinas/química , Animales , Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Compuestos Azo/síntesis química , Compuestos Azo/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Teoría Funcional de la Densidad , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Rayos Infrarrojos , Ratones , Estructura Molecular , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Terapia Fototérmica , Polímeros/síntesis química , Polímeros/farmacología , Quinoxalinas/síntesis química , Quinoxalinas/farmacología , Semiconductores
17.
Proc Natl Acad Sci U S A ; 113(43): 12035-12040, 2016 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-27790986

RESUMEN

Peptidylglycine α-hydroxylating monooxygenase (PHM) and dopamine ß-monooxygenase (DßM) are copper-dependent enzymes that are vital for neurotransmitter regulation and hormone biosynthesis. These enzymes feature a unique active site consisting of two spatially separated (by 11 Å in PHM) and magnetically noncoupled copper centers that enables 1e- activation of O2 for hydrogen atom abstraction (HAA) of substrate C-H bonds and subsequent hydroxylation. Although the structures of the resting enzymes are known, details of the hydroxylation mechanism and timing of long-range electron transfer (ET) are not clear. This study presents density-functional calculations of the full reaction coordinate, which demonstrate: (i) the importance of the end-on coordination of superoxide to Cu for HAA along the triplet spin surface; (ii) substrate radical rebound to a CuII hydroperoxide favors the proximal, nonprotonated oxygen; and (iii) long-range ET can only occur at a late step with a large driving force, which serves to inhibit deleterious Fenton chemistry. The large inner-sphere reorganization energy at the ET site is used as a control mechanism to arrest premature ET and dictate the correct timing of ET.


Asunto(s)
Cobre/química , Dopamina beta-Hidroxilasa/química , Hidrógeno/química , Oxigenasas de Función Mixta/química , Complejos Multienzimáticos/química , Oxígeno/química , Superóxidos/química , Animales , Sitios de Unión , Dominio Catalítico , Humanos , Hidroxilación , Cinética , Ratones , Oxidación-Reducción , Unión Proteica , Estructura Secundaria de Proteína , Teoría Cuántica , Ratas , Termodinámica
18.
J Comput Chem ; 39(13): 773-779, 2018 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-29280163

RESUMEN

Discotic liquid crystal (DLC) materials have attracted considerable attention mainly due to their high charge carrier mobilities in quasi-one-dimensional columns. In this article, five hexaazatrinaphthylene-based DLC molecules were investigated theoretically, and their frontier molecular orbital energy levels, crystal structures, and electron/hole drift mobilities were calculated by combination of density functional theory (DFT) and semiclassical Marcus charge transfer theory. The systems studied in this work include three experimentally reported molecules (1, 2, and 3) and two theoretically designed molecules (4 and 5). Compared with the 1-3 compounds, 4 and 5 have three more extended benzene rings in the π-conjugated core. The present results show that the orders of the frontier molecular orbital energy levels and electron drift mobilities agree very well with the experiment. For 4 and 5, the electron/hole reorganization energies are lower than those of compounds 1-3. Furthermore, the calculated electron/hole transfer integral of 5 is the largest among all the five systems, leading to the highest electron and hole mobilities. In addition, the hydrophobicity and solubility were also evaluated by DFT, indicating that compound 5 has good hydrophobicity and good solubility in trichloromethane. As a result, it is expected that compound 5 can be a potential charge transport material in electronic and optoelectronic devices. © 2017 Wiley Periodicals, Inc.

19.
Photosynth Res ; 138(2): 167-175, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30022339

RESUMEN

In framework of the continuum electrostatics theory, the reorganization energies of the electron transfers QA--QB (fast phase), Bph--QA, P+-QA-, and P+-QB- in the photosynthetic bacterial reaction center have been calculated. The calculations were based on the static dielectric permittivity spatial distribution derived from the data on the electrogenesis, with the corresponding characteristic times relatively close to the reaction times of QA--QB (fast phase) and Bph--QA but much shorter than those times of the latter two recombination reactions. The calculated reorganization energies were reasonably close to the experimental estimates for QA--QB (fast phase) and Bph--QA but substantially lower than those of P+-QA- and P+-QB-. A higher effective dielectric permittivity contributes to this effect, but the dominant contribution is most probably made by a non-dielectric relaxation, especially for the P+-QB- recombination influenced by the proton transfer. This situation calls for reconsidering of the current electron transfer rate estimates.


Asunto(s)
Transporte de Electrón/fisiología , Complejos de Proteína Captadores de Luz/fisiología , Proteínas del Complejo del Centro de Reacción Fotosintética/fisiología , Quinonas/metabolismo , Rhodobacter sphaeroides/fisiología , Complejos de Proteína Captadores de Luz/química , Estructura Molecular , Proteínas del Complejo del Centro de Reacción Fotosintética/química
20.
J Comput Chem ; 38(5): 304-311, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-27888537

RESUMEN

A key parameter dictating the rate of charge transfer (CT) is reorganization energy (λ), an energy associated with geometry changes during hole/electron transfer. We show that "ironing" the inter-ring dihedral angles of oligothiophenes via proper substitutions or insertions (e.g., -OR, -F or -C≡C-), decreases the λ and thus promotes CT according to Marcus equation. Our results demonstrate, to attain a smaller λ, extending oligomer length is only significant if the flattened backbone structure is realized. Of great interest is that external electric fields, which are ubiquitous in electronic devices yet commonly overlooked in the computation of λ, can have a significantly greater impact than conventional substitutions. It is important to emphasize, the responses of λ to external fields is system-dependent. Compared to fused-ring conjugated systems, single-bond connected thiophenes are more sensitive to external fields. Fx lowers the λ (552 meV) of quaterthiophene by almost 80% at the intensity of 1 V/Å, down to a value (125 meV) which is even lower than that of pentacene (154 meV) and rubrene (219 meV) at the same level of theory. © 2016 Wiley Periodicals, Inc.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA