Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 209
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Genomics ; : 110948, 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39384163

RESUMEN

Rhubarb is a traditional medicinal plant in China, whose pharmacological effects derive mainly from its anthraquinones. However, the regulatory mechanism affecting anthraquinone biosynthesis in R. officinale remains poorly understood. We assembled a high-quality, full-length transcriptome using single-molecule real-time (SMRT) sequencing. 274 unigenes potentially involved in the biosynthesis of anthraquinones, including those in the shikimate, polyketide, MVA and MEP pathways, were identified based on full-length transcriptome. Differentially expressed genes (DEGs) induced by MeJA treatment and DEGs between different tissues were identified through next-generation sequencing (NGS), revealing the genes that may be involved in the biosynthesis of anthraquinones. The basic leucine zipper (bZIP) transcription factors of R. officinale were systematically identified. Key genes such as RobZIP50 and RobZIP53 were systematically identified and found to be associated with anthraquinone biosynthesis in R. officinale through differential expression, co-expression and protein interaction analyses. RobZIP50 and RobZIP53 were highly expressed in roots and rhizomes, and significantly increased after 12 h of MeJA treatment. Additionally, both RobZIP50 and RobZIP53 were localized exclusively in the nucleus, with RobZIP53 showing significant transcriptional activity. Taken together, our results suggest that RobZIP53 may play a role in regulating anthraquinone biosynthesis in R. officinale.

2.
BMC Genomics ; 25(1): 212, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38408895

RESUMEN

Geoherb usually represents high-quality medicinal herbs with better clinical therapeutic effects, and elucidating the geoherbalism is essential for the quality improvement of traditional Chinese Medicine. However, few researches were conducted to clarify the geoherbalism based on a large scale of transcriptomics. In the present study, we compared the transcriptomes of Rheum palmatum complex derived from top-geoherb and non-geoherb areas to show the geoherbalism properties of rhubarb. A total of 412.32 Gb clean reads were obtained with unigene numbers of 100,615 after assembly. Based on the obtained transcriptome datasets, key enzyme-encoding genes involved in the anthraquinones biosynthesis were also obtained. We also found that 21 anthraquinone-related unigenes were differentially expressed between two different groups, and some of these DEGs were correlated to the content accumulation of five free anthraquinones, indicating that the gene expression profiles may promote the geoherbalism formation of rhubarb. In addition, the selective pressure analyses indicated that most paired orthologous genes between these two groups were subject to negative selection, and only a low proportion of orthologs under positive selection were detected. Functional annotation analyses indicated that these positive-selected genes related to the functions such as gene expression, substance transport, stress response and metabolism, indicating that discrepant environment also enhanced the formation of geoherbalism. Our study not only provided insights for the genetic mechanism of geoherbalism of rhubarb, but also laid more genetic cues for the future rhubarb germplasms improvement and utilization.


Asunto(s)
Medicamentos Herbarios Chinos , Rheum , Transcriptoma , Rheum/genética , Antraquinonas , Perfilación de la Expresión Génica
3.
BMC Plant Biol ; 24(1): 261, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38594606

RESUMEN

BACKGROUND: Rhubarb is one of common traditional Chinese medicine with a diverse array of therapeutic efficacies. Despite its widespread use, molecular research into rhubarb remains limited, constraining our comprehension of the geoherbalism. RESULTS: We assembled the genome of Rheum palmatum L., one of the source plants of rhubarb, to elucidate its genome evolution and unpack the biosynthetic pathways of its bioactive compounds using a combination of PacBio HiFi, Oxford Nanopore, Illumina, and Hi-C scaffolding approaches. Around 2.8 Gb genome was obtained after assembly with more than 99.9% sequences anchored to 11 pseudochromosomes (scaffold N50 = 259.19 Mb). Transposable elements (TE) with a continuous expansion of long terminal repeat retrotransposons (LTRs) is predominant in genome size, contributing to the genome expansion of R. palmatum. Totally 30,480 genes were predicted to be protein-coding genes with 473 significantly expanded gene families enriched in diverse pathways associated with high-altitude adaptation for this species. Two successive rounds of whole genome duplication event (WGD) shared by Fagopyrum tataricum and R. palmatum were confirmed. We also identified 54 genes involved in anthraquinone biosynthesis and other 97 genes entangled in flavonoid biosynthesis. Notably, RpALS emerged as a compelling candidate gene for the octaketide biosynthesis after the key residual screening. CONCLUSION: Overall, our findings offer not only an enhanced understanding of this remarkable medicinal plant but also pave the way for future innovations in its genetic breeding, molecular design, and functional genomic studies.


Asunto(s)
Rheum , Rheum/genética , Fitomejoramiento , Antraquinonas , Cromosomas , Tamaño del Genoma , Evolución Molecular
4.
BMC Plant Biol ; 24(1): 226, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38539101

RESUMEN

BACKGROUND: Plant growth and quality are often affected by environmental factors, including geographical location, climate, and soil. In this study, we describe the effect of altitudinal differences on the growth and active ingredients in Rheum tanguticum Maxim. ex Balf. (R. tanguticum), a traditional Chinese medicinal herb known for its laxative properties. RESULTS: The results showed that plants grown at lower altitudes had better growth performances than those in higher altitude areas. The yield varied by 2.45-23.68 times with altitude, reaching a maximum of 102.01 t/ha. In addition, total anthraquinone and total sennoside contents decreased with increasing altitude, whereas total tannins increased with increasing altitude. The total anthraquinone content of the indicator compound reached 5.15% at five experimental sites, which exceeded the Chinese Pharmacopoeia standard by 70.87%. The content of the other two categories of active ingredients reached a maximum value of 0.94% (total sennosides) and 2.65% (total tannins). Redundancy analysis revealed that annual rainfall, annual average temperature, annual sunshine hours, and pH significantly affected growth and active ingredients. Moreover, key metabolites, such as flavonoids, amino acids and their derivatives, phenolic acids, lipids, and terpenes, were differentially expressed between samples from low- and high-altitude cultivation areas. These metabolites were enriched in the flavonoid and flavonol biosynthetic pathway and the monoterpene biosynthetic pathway. CONCLUSIONS: These results suggest that high anthraquinone content was observed in the lowest-latitude cultivation area due to low rainfall and alkaline soil pH. Key metabolites were significantly upregulated in high-latitude cultivation areas. These results provide a scientific basis for quality control and the systematic cultivation of R. tanguticum.


Asunto(s)
Rheum , Rheum/química , Taninos/metabolismo , Antraquinonas/química , Antraquinonas/metabolismo , Suelo
5.
J Integr Neurosci ; 23(6): 122, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38940090

RESUMEN

BACKGROUND: Rheum tanguticum root, cataloged as "Daehwang" in the Korean Pharmacopeia, is rich in various anthraquinones known for their anti-inflammatory and antioxidant properties. Formulations containing Daehwang are traditionally employed for treating neurological conditions. This study aimed to substantiate the antiepileptic and neuroprotective efficacy of R. tanguticum root extract (RTE) against trimethyltin (TMT)-induced epileptic seizures and hippocampal neurodegeneration. METHODS: The constituents of RTE were identified by ultra-performance liquid chromatography (UPLC). Experimental animals were grouped into the following five categories: control, TMT, and three TMT+RTE groups with dosages of 10, 30, and 100 mg/kg. Seizure severity was assessed daily for comparison between the groups. Brain tissue samples were examined to determine the extent of neurodegeneration and neuroinflammation using histological and molecular biology techniques. Network pharmacology analysis involved extracting herbal targets for Daehwang and disease targets for epilepsy from multiple databases. A protein-protein interaction network was built using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database, and pivotal targets were determined by topological analysis. Enrichment analysis was performed using the Database for Annotation, Visualization, and Integrated Discovery (DAVID) tool to elucidate the underlying mechanisms. RESULTS: The RTE formulation was found to contain sennoside A, sennoside B, chrysophanol, emodin, physcion, (+)-catechin, and quercetin-3-O-glucuronoid. RTE effectively inhibited TMT-induced seizures at 10, 30, and 100 mg/kg dosages and attenuated hippocampal neuronal decay and neuroinflammation at 30 and 100 mg/kg dosages. Furthermore, RTE significantly reduced mRNA levels of tumor necrosis factor (TNF-α), glial fibrillary acidic protein (GFAP), and c-fos in hippocampal tissues. Network analysis revealed TNF, Interleukin-1 beta (IL-1ß), Interleukin-6 (IL-6), Protein c-fos (FOS), RAC-alpha serine/threonine-protein kinase (AKT1), and Mammalian target of rapamycin (mTOR) as the core targets. Enrichment analysis demonstrated significant involvement of R. tanguticum components in neurodegeneration (p = 4.35 × 10-5) and TNF signaling pathway (p = 9.94 × 10-5). CONCLUSIONS: The in vivo and in silico analyses performed in this study suggests that RTE can potentially modulate TMT-induced epileptic seizures and neurodegeneration. Therefore, R. tanguticum root is a promising herbal treatment option for antiepileptic and neuroprotective applications.


Asunto(s)
Anticonvulsivantes , Modelos Animales de Enfermedad , Epilepsia , Hipocampo , Fármacos Neuroprotectores , Extractos Vegetales , Raíces de Plantas , Rheum , Compuestos de Trimetilestaño , Animales , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/administración & dosificación , Extractos Vegetales/farmacología , Extractos Vegetales/administración & dosificación , Rheum/química , Raíces de Plantas/química , Masculino , Anticonvulsivantes/farmacología , Epilepsia/tratamiento farmacológico , Epilepsia/inducido químicamente , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Enfermedades Neurodegenerativas/tratamiento farmacológico , Simulación por Computador , Farmacología en Red , Mapas de Interacción de Proteínas , Ratas
6.
Phytochem Anal ; 35(2): 288-307, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37814999

RESUMEN

BACKGROUND AND OBJECTIVE: The herb Rheum tanguticum (RT), a member of the Polygonaceae family, is listed in the Chinese Pharmacopoeia and has been widely used to treat cardiovascular and gastrointestinal disease. The research aimed to identify the different substances from two kinds of RT extraction methods and the in vivo biotransformation of RT components. METHODS: In this study, by using ultrahigh-performance liquid chromatography coupled with quadrupole-time-of-flight tandem mass spectrometry (UHPLC-Q-TOF-MS/MS), we have investigated the metabolomic variation and the in vivo metabolism of RT. A post-acquisition data processing software, PeakView, was applied to an accurate qualitative analysis of the chemical components in RT. RESULTS: Through plant metabolomics analysis, 24 related, differentially expressed metabolites of RT water extract and alcohol extract were obtained. Combined with novel identification strategies and systematic in vivo metabolism analysis, a total of 101 compounds were discovered or tentatively identified in rat serum (including 15 prototype compounds and 86 metabolites). CONCLUSION: In this study, a combination of extraction methods, liquid chromatography-mass spectrometry (LC-MS) technology, and in vivo animal metabolism studies have been established for the screening, identification, and research of chemical active components of natural medicines. LC-MS analysis combined with plant metabolomics was used to study the differential metabolites between different extraction methods of RT. Based on UHPLC-Q-TOF-MS/MS technology, the composition and metabolism of rat plasma before and after RT administration were analysed in vivo, and 15 prototype components and 86 metabolites were detected.


Asunto(s)
Etanol , Rheum , Animales , Ratas , Espectrometría de Masas en Tándem , Cromatografía Líquida de Alta Presión , Metabolómica
7.
Phytochem Anal ; 35(3): 540-551, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38053479

RESUMEN

INTRODUCTION: Pancreatic lipase is one of the most important key targets in the treatment of obesity. Inhibition of pancreatic lipase can effectively reduce lipid absorption and treat obesity and other related metabolic disorders. OBJECTIVES: The goal of this study is the efficient screening of pancreatic lipase inhibitors in the root and rhizome of Rheum palmatum using affinity ultrafiltration-high-performance liquid chromatography (AUF-HPLC) combined with high-resolution inhibition profiling (HRIP). METHODS: Potential pancreatic lipase ligands and pancreatic lipase inhibitors in ethyl acetate fraction of R. palmatum were screened using AUF-HPLC and HRIP, respectively. All screened compounds were identified by HPLC- quadrupole time-of-flight (Q-TOF)/MS. Eight compounds were screened out by both AUF-HPLC and HRIP, and six compounds were screened out by either AUF-HPLC or HRIP alone. The pancreatic lipase inhibitory activities of all screened compounds were verified by enzyme inhibition assay and molecular docking. RESULTS: Five new potent pancreatic lipase inhibitors were discovered, namely procyanidin B5 3,3'-di-O-gallate (IC50 = 0.06 ± 0.01 µM), 1,6-di-O-galloyl-2-O-cinnamoyl-ß-D-glucoside (IC50 = 12.83 ± 0.67 µM), 1-O-(1,3,5-trihydroxy)phenyl-2-O-galloyl-6-O-cinnamoyl-ß-D-glucoside (IC50 = 17.84 ± 1.33 µM), 1,2-di-O-galloyl-6-O-cinnamoyl-ß-D-glucoside (IC50 = 18.39 ± 1.52 µM), and 4-(4'-hydroxyphenyl)-2-butanone-4'-O-ß-D-(2"-O-galloyl-6"-O-cinnamoyl)-glucoside (IC50 = 2.91 ± 0.40 µM). It was found that procyanidin B5 3,3'-di-O-gallate showed higher pancreatic lipase inhibitory activity than the positive control orlistat (IC50 = 0.12 ± 0.02 µM). CONCLUSION: The combination of affinity ultrafiltration-high-performance liquid chromatography (AUF-HPLC) and high-resolution inhibition profiling (HRIP) could reduce the risk of false-negative screening and missed screening and could achieve more efficient screening of bioactive compounds in complex natural products.


Asunto(s)
Rheum , Rheum/química , Cromatografía Líquida de Alta Presión/métodos , Ultrafiltración/métodos , Simulación del Acoplamiento Molecular , Glucósidos , Lipasa , Obesidad , Inhibidores Enzimáticos/farmacología
8.
Physiol Mol Biol Plants ; 30(8): 1239-1252, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39184557

RESUMEN

Content of bioactive constituents is one of the most important characteristics in Rheum palmatum complex. Increasing ingredient content through genetic breeding is an effective strategy to solve the contradiction between large market demand and resource depletion, but currently hampered by limited understanding of metabolite biosynthesis in rhubarb. In this study, deep transcriptome sequencing was performed to compare roots, stems, and leaves of two Rheum species (PL and ZK) that show different levels of anthraquinone contents. Approximately 0.52 billion clean reads were assembled into 58,782 unigenes, of which around 80% (46,550) were found to be functionally annotated in public databases. Expression patterns of differential unigenes between PL and ZK were thoroughly investigated in different tissues. This led to the identification of various differentially expressed genes (DEGs) involved in shikimate, MEP, MVA, and polyketide pathways, as well as those involved in catechin and gallic acid biosynthesis. Some structural enzyme genes were shown to be significantly up-regulated in roots of ZK with high anthraquinone content, implying potential central roles in anthraquinone synthesis. Taken together, our study provides insights for future functional studies to unravel the mechanisms underlying metabolite biosynthesis in rhubarb. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01492-z.

9.
Ann Pharm Fr ; 82(4): 685-697, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38408722

RESUMEN

Colorectal cancer (CRC) is the second greatest cause of cancer-related death in the world and chemotherapy, as an important part of CRC treatment, has some drawbacks, including systemic toxicity. Therefore, it is crucial to discover new and more effective CRC treatment plans. Rheum khorasanicum (R. khorasanicum) is a medicinal plant with high flavonoids, stilbenes, and anthraquinone contents, so it can be a potential source of antioxidants and can be used for therapeutic purposes and trigger apoptosis in cancer cells. In this study, we investigated the effects of hydroalcoholic root extract of R. khorasanicum treatment on inducing mitochondrial apoptosis of HT-29 and Caco-2 human colorectal adenocarcinoma cells. Firstly, the total phenolic and flavonoid content was determined. Then, the cytotoxic effects of R. khorasanicum on cells of three different types, including HT-29 and Caco-2 colon cancer cells as well as normal 3T3 cells were assessed using the MTT assay. To investigate the characteristics of cellular death, flow cytometry, and western blotting were performed. The results of this study indicated considerable phenolic (356.4±9.4 GAE/gDW) and flavonoid (934.55±17.1 QE/gDW) contents in R. khorasanicum. MTT assay's finding indicated that 100, 60, and 30µg/mL concentrations of R. khorasanicum reduce cell viability in HT-29 and Caco-2 cell lines significantly (P<0.05). It has been also revealed that R. khorasanicum extract induces apoptosis rather than necrosis in these cell lines. Moreover, Bcl-2 expression was significantly reduced in both HT-29 and Caco-2 cell lines, while Bax and cleaved caspase-3 expression soared considerably in the groups under R. khorasanicum treatment (P<0.05). In conclusion, our findings have suggested that high phenol and flavonoid contents of R. khorasanicum root extract possibly play an important role in cell cytotoxicity and apoptosis induction in HT-29 and Caco-2 colon cancer cells.


Asunto(s)
Adenocarcinoma , Apoptosis , Neoplasias Colorrectales , Flavonoides , Extractos Vegetales , Raíces de Plantas , Rheum , Humanos , Extractos Vegetales/farmacología , Células CACO-2 , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/patología , Células HT29 , Rheum/química , Apoptosis/efectos de los fármacos , Raíces de Plantas/química , Flavonoides/farmacología , Animales , Antineoplásicos Fitogénicos/farmacología , Ratones , Supervivencia Celular/efectos de los fármacos , Fenoles/farmacología , Simulación por Computador , Etanol
10.
Acta Pharmacol Sin ; 44(2): 393-405, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35922553

RESUMEN

Dysregulation in lipid metabolism is the leading cause of chronic kidney disease (CKD) and also the important risk factors for high morbidity and mortality. Although lipid abnormalities were identified in CKD, integral metabolic pathways for specific individual lipid species remain to be clarified. We conducted ultra-high-performance liquid chromatography-high-definition mass spectrometry-based lipidomics and identified plasma lipid species and therapeutic effects of Rheum officinale in CKD rats. Adenine-induced CKD rats were administered Rheum officinale. Urine, blood and kidney tissues were collected for analyses. We showed that exogenous adenine consumption led to declining kidney function in rats. Compared with control rats, a panel of differential plasma lipid species in CKD rats was identified in both positive and negative ion modes. Among the 50 lipid species, phosphatidylcholine (PC), lysophosphatidylcholine (LysoPC) and lysophosphatidic acid (LysoPA) accounted for the largest number of identified metabolites. We revealed that six PCs had integral metabolic pathways, in which PC was hydrolysed into LysoPC, and then converted to LysoPA, which was associated with increased cytosolic phospholipase A2 protein expression in CKD rats. The lower levels of six PCs and their corresponding metabolites could discriminate CKD rats from control rats. Receiver operating characteristic curves showed that each individual lipid species had high values of area under curve, sensitivity and specificity. Administration of Rheum officinale significantly improved impaired kidney function and aberrant PC metabolism in CKD rats. Taken together, this study demonstrates that CKD leads to PC metabolism disorders and that the dysregulation of PC metabolism is involved in CKD pathology.


Asunto(s)
Insuficiencia Renal Crónica , Ratas , Animales , Insuficiencia Renal Crónica/tratamiento farmacológico , Fosfatidilcolinas/efectos adversos , Metabolismo de los Lípidos , Adenina/uso terapéutico , Fosfolipasas/efectos adversos , Fosfolipasas/metabolismo
11.
J Plant Res ; 136(3): 291-304, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36808315

RESUMEN

As a traditional Chinese medicine, rhubarb is used to treat several diseases such as severe acute pancreatitis, sepsis and chronic renal failure. However, few studies focused on the authentication of germplasm for the Rheum palmatum complex, and no studies have been conducted to elucidate the evolutionary history of the R. palmatum complex using plastome datasets. Hence, we aim to develop the potential molecular markers to identify the elite germplasms of rhubarb and explore the divergence and biogeographic history of the R. palmatum complex based on the newly sequenced chloroplast genome datasets. Chloroplast genomes of thirty-five the R. palmatum complex germplasms were sequenced, and the length ranged from 160,858 to 161,204 bp. The structure, gene content and gene order were highly conserved across all genomes. Eight InDels and sixty-one SNPs loci could be used to authenticate the high-quality germplasms of rhubarb in specific areas. Phylogenetic analysis revealed that all rhubarb germplasms were clustered in the same clade with high bootstrap support values and Bayesian posterior probabilities. According to the molecular dating result, the intraspecific divergence of the complex occurred in the Quaternary, which might be affected by climatic fluctuation. The biogeography reconstruction indicated that the ancestor of the R. palmatum complex might originate from the Himalaya-Hengduan Mountains or/and Bashan-Qinling Mountains, and then spread to surrounding areas. Several useful molecular markers were developed to identify rhubarb germplasms, and our study will provide further understanding on speciation, divergence and biogeography of the R. palmatum complex.


Asunto(s)
Genoma del Cloroplasto , Pancreatitis , Rheum , Filogenia , Filogeografía , Rheum/química , Rheum/genética , Teorema de Bayes , Enfermedad Aguda , Pancreatitis/genética
12.
Chem Biodivers ; 20(3): e202200901, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36788177

RESUMEN

Rheum tanguticum (Rh. tanguticum) is a Chinese medicinal plant traditionally used in the treatment of constipation. As a byproduct, the seeds of this plant are rich in nutrients and phytochemicals. This study aimed to determine and assess seed germination ability, seed physical characteristics, soluble protein content, chemical constituents and antioxidant capacity from different breeding lines, to promote the development and utilization of seed resources. Significant differences were observed for the soluble protein content and antioxidant assays among the ten lines. The contents of aloe-emodin, rhein and catechins accumulated in seeds were extremely low and significantly different from those in roots. In contrast, emodin and chrysophanol were abundant in seeds, and significant differences were observed between seeds and roots. It was found that associations between gallic acid and catechins were not significant for either soluble protein or antioxidant capacity. There was a significantly positive correlation between the contents of four anthraquinones (aloe-emodin, rhein, emodin and chrysophanol) and soluble protein. Seeds have potent antioxidative capacity and relatively high levels of soluble protein content. The rich chemical composition of seeds can be widely used in the medical industry for further development.


Asunto(s)
Antioxidantes , Rheum , Antraquinonas/farmacología , Antraquinonas/química , Antioxidantes/farmacología , Emodina , Rheum/química , Semillas/química , Tibet
13.
Int J Mol Sci ; 24(18)2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37762232

RESUMEN

Parkinson's disease (PD) is one of the large-scale health issues detrimental to human quality of life, and current treatments are only focused on neuroprotection and easing symptoms. This study evaluated in silico binding activity and estimated the stability of major metabolites in the roots of R. palmatum (RP) with main protein targets in Parkinson's disease and their ADMET properties. The major metabolites of RP were subjected to molecular docking and QSAR with α-synuclein, monoamine oxidase isoform B, catechol o-methyltransferase, and A2A adenosine receptor. From this, emodin had the greatest binding activity with Parkinson's disease targets. The chemical stability of the selected compounds was estimated using density functional theory analyses. The docked compounds showed good stability for inhibitory action compared to dopamine and levodopa. According to their structure-activity relationship, aloe-emodin, chrysophanol, emodin, and rhein exhibited good inhibitory activity to specific targets. Finally, mediocre pharmacokinetic properties were observed due to unexceptional blood-brain barrier penetration and safety profile. It was revealed that the major metabolites of RP may have good neuroprotective activity as an additional hit for PD drug development. Also, an association between redox-mediating and activities with PD-relevant protein targets was observed, potentially opening discussion on electrochemical mechanisms with biological functions.


Asunto(s)
Emodina , Fármacos Neuroprotectores , Enfermedad de Parkinson , Rheum , Humanos , Enfermedad de Parkinson/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Emodina/farmacología , Simulación del Acoplamiento Molecular , Calidad de Vida , Monoaminooxidasa
14.
Molecules ; 28(3)2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36770612

RESUMEN

Tyrosinase (TYR) plays a key role in the enzymatic reaction that is responsible for a range of unwanted discoloration effects, such as food browning and skin hyperpigmentation. TYR inhibitors could, therefore, be candidates for skin care products that aim to repair pigmentation problems. In this study, we used a metabolomics approach combined with the isobologram analysis to identify anti-TYR compounds within natural resources, and evaluate their possible synergism with each other. Rheum palmatum was determined to be a model plant for observing the effect, of which seven extracts with diverse phytochemicals were prepared by way of pressurized solvent extraction. Each Rheum palmatum extract (RPE) was profiled using nuclear magnetic resonance spectroscopy and its activity of tyrosinase inhibition was evaluated. According to the orthogonal partial least square analysis used to correlate phytochemicals in RPE with the corresponding activity, the goodness of fit of the model (R2 = 0.838) and its predictive ability (Q2 = 0.711) were high. Gallic acid and catechin were identified as the active compounds most relevant to the anti-TYR effect of RPE. Subsequently, the activity of gallic acid and catechin were evaluated individually, and when combined in various ratios by using isobologram analysis. The results showed that gallic acid and catechin in the molar ratios of 9:5 and 9:1 exhibited a synergistic inhibition on TYR, with a combination index lower than 0.77, suggesting that certain combinations of these compounds may prove effective for use in cosmetic, pharmaceutical, and food industries.


Asunto(s)
Catequina , Rheum , Monofenol Monooxigenasa , Extractos Vegetales/farmacología , Extractos Vegetales/química , Rheum/química , Ácido Gálico , Fitoquímicos/farmacología
15.
Ann Pharm Fr ; 81(3): 475-483, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36402205

RESUMEN

INTRODUCTION: For many centuries, medicinal herbs and their derivatives have been used to treat or prevent various diseases. However, environmental factors such as the season for collection of plant may change the therapeutic efficacy. The present work investigates seasonal variations of phenolic, flavonoid content, antioxidant, antibacterial, and cytotoxic potential of hydroalcoholic extract of Rheum khorasanicum (HER). METHODS: R. khorasanicum was collected in three different months: December, February, and April. The Folin-Ciocalteu assay was applied to measure the total phenolic content of HER. Antioxidant activities (DPPH and FRAP) were also determined. Next, the extracts were evaluated for antibacterial potential against some Gram-positive and Gram-negative strains. The minimal inhibitory concentration (MIC) was determined by the microdilution method. Finally, the effect of extracts on the viability of C6, A549, and HT-29 cells was evaluated via the MTT assay. RESULTS: All three extracts contained considerable phenolic and flavonoid contents and showed desirable antioxidant activity. The April sample exhibited the greatest phenolic and flavonoid content and significant antioxidant activity potential in the FRAP test. In addition, the April sample had the highest antibacterial activity and cytotoxic effect on the cancerous cell lines. CONCLUSION: The April extract showed more antioxidant, antibacterial and cytotoxic effect, probably because of its higher phenolic and flavonoid contents than other samples. These results demonstrate that the harvest timing of R. khorasanicum affects the plant's phenolic content and its antioxidant and cytotoxicity activities.


Asunto(s)
Antineoplásicos , Rheum , Flavonoides/farmacología , Antioxidantes/farmacología , Extractos Vegetales/química , Fenoles/farmacología , Antibacterianos/farmacología
16.
Plant Mol Biol ; 110(1-2): 187-197, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35943640

RESUMEN

Flower color variation is ubiquitous in many plant species, and several studies have been conducted to elucidate the underlying molecular mechanism. There are two flower color variants (yellowish-white and fuchsia) in the Rheum palmatum complex, however, few studies have investigated this phenomenon. Here, we used transcriptome sequencing of the two color variants to shed light on the molecular and biochemical basis for these color morphs. Comparison of the two transcriptomes identified 9641 differentially expressed unigenes (DEGs), including 6477 up-regulated and 3163 down-regulated genes. Functional analyses indicated that several DEGs were related to the anthocyanin biosynthesis pathway, and the expression profiles of these DEGs were coincident with the qRT-PCR validation results, indicating that expression levels of structural genes have a profound effect on the color variation in the R. palmatum complex. Our results suggested that the interaction of transcription factors (MYB, bHLH and WRKY) also regulated the anthocyanin biosynthesis in the R. palmatum complex. Estimation of selection pressures using the dN/dS ratio showed that 1106 pairs of orthologous genes have undergone positive selection. Of these positively selected genes, 21 were involved in the anthocyanin biosynthetic pathway, indicating that they may encode the proteins for structural alteration and affect flower color in the R. palmatum complex.


Asunto(s)
Rheum , Transcriptoma , Antocianinas , Color , Flores/genética , Flores/metabolismo , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Rheum/genética , Rheum/metabolismo
17.
Arch Microbiol ; 205(1): 14, 2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36469126

RESUMEN

Rheum palmatum, a well-known Traditional Chinese Medicines (TCM), has been used for medical purposes for thousand years in China. However, endophyte diversity of R. palmatum among different tissues and ages is still not revealed. In this study, we used 16S and ITS amplicon sequencing and combined with PICRUSt and FUNGuild to compare endophyte diversity and ecological function among different tissues and ages of R. palmatum. The results showed that the diversity and OTUs (Operational taxonomic units) abundance of endophytic fungi and bacteria of R. palmatum differed among different tissues and ages. The predictive function analysis showed that metabolism was main function of endophytic bacteria in different tissue and year samples, while saprotroph was dominant trophic mode of endophytic fungi in different year samples. The dominant trophic modes of endophytic fungi were saprotroph, pathotroph-symbiotroph and symbiotroph, and relative abundances differed in the different tissue samples. Our results elucidated the comprehensive diversity and composition profiles of endophytes in different tissues and year of R. palmatum. Our data offered pivotal information to clarify the role of endophytes in the production of R. palmatum and its important metabolites.


Asunto(s)
Endófitos , Rheum , Rheum/química , Hongos/genética , Bacterias , China
18.
Environ Res ; 204(Pt D): 112363, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34774505

RESUMEN

This study aims to investigate the antidiabetic, antimicrobial, DNA damage, and lipid peroxidation prevention activity of ZnO NPs/Rr formed as a result of the interaction of Rheum ribes (R.ribes) plant with ZnO. The ZnO NPs/Rr obtained as a result of the reaction were confirmed using high-reliability characterization methods. According to the data obtained as a result of the study, it is seen that the activity of ZnO NPs/Rr to prevent lipid peroxidation is quite strong. Lipid peroxidation inhibition activity of ZnO NPs/Rr at the highest concentration of 250 µg/ml was calculated as % 89.1028. It was observed that ZnO NPs/Rr prevented DNA damage by % 92.1240 at the highest concentration of 100 µg/ml. It was determined that the antidiabetic effect of ZnO NPs/Rr formed by ZnO of R. ribes plant, which is used as a medicinal plant as an antidiabetic, was significant. It appears to have a strong antidiabetic property compared to the positive control acarbose. In our current study, it was observed that ZnO NPs/Rr formed zones ranging from 8 ± 3.0 to 21 ± 4.5 against Gram-positive and Gram-negative microorganisms. It has been determined that ZnO nanoparticles have an antibacterial effect.


Asunto(s)
Nanopartículas del Metal , Rheum , Ribes , Óxido de Zinc , Antibacterianos/farmacología , Daño del ADN , Hipoglucemiantes/farmacología , Peroxidación de Lípido , Nanopartículas del Metal/toxicidad , Extractos Vegetales/farmacología , Reproducibilidad de los Resultados , Óxido de Zinc/farmacología
19.
Int J Mol Sci ; 23(21)2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36361917

RESUMEN

Trichoderma spp. are an important plant-growth-promoting fungi. Trichoderma citrinoviride HT-1 was isolated from Rheum palmatum root, which has beneficial effects on growth and metabolite accumulation. However, the improvement mechanisms for growth and metabolite accumulation of T. citrinoviride HT-1 are unclear. In this study, RNA sequencing (RNA-seq) and high-performance liquid chromatography (HPLC) were used to measure the effect of different concentrations of conidial suspension of the HT-1 strain on the growth promotion and metabolite accumulation of R. palmatum seedlings. The results showed that the highest biomass and metabolites of R. palmatum seedlings were obtained through treatment with the HT-1 strain at a final spore concentration of 107 spores/mL. RNA sequencing indicated that 1662 genes were upregulated and 2155 genes were downregulated after inoculation with 107 spores/mL of the HT-1 strain. This strain induced significant upregulation of related genes in the phenylpropanoid biosynthesis pathway, plant hormone signal transduction pathway, biosynthesis of secondary metabolites pathway, and plant-pathogen interaction pathway in R. palmatum. The gene expression trends were revealed through quantitative real-time polymerase chain reaction (qRT-PCR) and were consistent with those determined by RNA-seq. Our results will help us to understand the growth-promoting mechanisms of the HT-1 strain on R. palmatum and provide a theoretical basis for the application of T. citrinoviride HT-1 as a biological fertilizer.


Asunto(s)
Hypocreales , Rheum , Trichoderma , Rheum/química , Cromatografía Líquida de Alta Presión , Trichoderma/metabolismo , Plantones
20.
Int J Mol Sci ; 23(24)2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36555642

RESUMEN

Psoriasis is a chronic, immune-mediated inflammatory skin disorder. Rheum palmatum L. is a common traditional medicinal herb with anti-inflammatory and immunomodulatory activities. This study aimed to investigate the anti-psoriatic effects of the ethanolic extract from R. palmatum L. (RPE) and its chemical constituents, as well as the mechanisms underlying their therapeutic significance. An imiquimod (IMQ)-induced psoriasis-like mouse model was used to examine the anti-psoriatic effect of RPE in vivo. Network pharmacological analysis was performed to investigate the potential targets and related pathways of the RPE components, including rhein, emodin, chrysophanol, aloe-emodin, and physcion. The anti-inflammatory effects and underlying mechanisms of these components were examined using in vitro models. Topical application of RPE alleviated psoriasis-like symptoms and reduced levels of inflammatory cytokines and proliferation markers in the skin. Network pharmacological analysis revealed that RPE components target 20 genes that are linked to psoriasis-related pathways, such as IL-17, MAPK, and TNF signaling pathways. Among the five components of RPE, rhein and emodin showed inhibitory effects on TNF-α and IL-17 production in EL-4 cells, attenuated the production of CXCL8, CXCL10, CCL20, and MMP9, and reduced proliferation in HaCaT cells. Chrysophanol, aloe-emodin, and physcion were less effective than rhein and emodin in suppressing inflammatory responses and keratinocyte proliferation. The effects of these compounds might occur through the inhibition of the ERK, STAT3, and NF-κB signaling pathways. This study suggested the anti-psoriatic effect of RPE, with rhein and emodin as the main contributors that regulate multiple signaling pathways.


Asunto(s)
Emodina , Psoriasis , Rheum , Animales , Ratones , Antraquinonas/farmacología , Antiinflamatorios/farmacología , Emodina/farmacología , Interleucina-17/metabolismo , Psoriasis/tratamiento farmacológico , Psoriasis/inducido químicamente , Rheum/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA