Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 708
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(21): 9250-9260, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38741559

RESUMEN

The potential of recycled iron phosphates (FePs), e.g., vivianites (Fe3(PO4)2·8H2O) and Fe(III)-rich phosphorus (P) adsorbent materials, as phosphorus fertilizer is limited by the strong interaction between Fe and P. In this study, the efficiency of FePs as P fertilizer was explored by applying them as granules or powder in flooded strongly P-fixing soils (acid and calcareous), thereby taking advantage of increased P release induced by reductive dissolution of P-bearing Fe(III) minerals. First, no P diffusion from granular FeP fertilizers into flooded soils was detectable by the diffusive gradient in thin films (DGT) technique and microfocused X-ray fluorescence (µ-XRF) analysis of thin soil sections, in contrast to detectable P diffusion away from granules of soluble triple superphosphate (TSP) fertilizer. On the contrary, powdered FePs demonstrated an excellent increase in extractable P (1 mM CaCl2) in a 120-day incubation experiment in flooded soils. Second, a pot experiment was performed with rice (Oryza sativa) grown in flooded acid and calcareous soils. The fertilizer value of FePs was remarkable when dosed as powder, as it was even up to 3-fold higher than TSP in the acid soil and similar to TSP in the calcareous soil. The beneficial effect of FeP over TSP in the acid soil is attributed to the slow release of P from FePs, which allows to partly overcome P fixation. The promising results of FePs as P fertilizer applied as powders in flooded soils debunk the generally accepted idea that FePs are poor sources of P while demonstrating the importance of the timing of FeP fertilizer application.


Asunto(s)
Fertilizantes , Oryza , Fosfatos , Fósforo , Suelo , Oryza/química , Fósforo/química , Fosfatos/química , Suelo/química , Reciclaje , Hierro/química , Agricultura
2.
Environ Res ; 255: 119138, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750999

RESUMEN

The application of organic amendments is one way to manage low water irrigation in paddy soils. In this 60-day greenhouse pot experiment involving paddy soil undergoing drying-rewetting cycles, we examined the effects of two organic amendments: azo-compost with a low carbon to phosphorus ratio (C:P) of 40 and rice straw with a high C:P ratio of 202. Both were applied at rates of 1.5% of soil weight (w/w). The investigation focused on changes in certain soil biochemical characteristics related to C and P in the rice rhizosphere, as well as rice plant characteristics. The irrigation regimes applied in this study included constant soil moisture in a waterlogged state (130% water holding capacity (WHC)), mild drying-rewetting (from 130 to 100% WHC), and severe drying-rewetting (from 130 to 70% WHC). The results indicated that the application of amendments was effective in severe drying-rewetting irrigation regimes on soil characteristics. Drying-rewetting decreased soil respiration rate (by 60%), microbial biomass carbon (by 70%), C:P ratio (by 12%), soil organic P (by 16%), shoot P concentration (by 7%), and rice shoot biomass (by 30%). However, organic amendments increased soil respiration rate (by 8 times), soil microbial biomass C (51%), total C (TC) (53%), dissolved organic carbon (3 times), soil available P (AP) (100%), soil organic P (63%), microbial biomass P (4.5 times), and shoot P concentration (21%). The highest significant correlation was observed between dissolved organic carbon and total C (r= 0.89**). Organic amendments also increased P uptake by the rice plant in the order: azo-compost > rice straw > control treatments, respectively, and eliminated the undesirable effect of mild drying-rewetting irrigation regime on rice plant biomass. Overall, using suitable organic amendments proves promising for enhancing soil properties and rice growth under drying-rewetting conditions, highlighting the interdependence of P and C biochemical changes in the rhizosphere during the rice vegetative stage.


Asunto(s)
Riego Agrícola , Oryza , Suelo , Oryza/crecimiento & desarrollo , Riego Agrícola/métodos , Suelo/química , Carbono/análisis , Fósforo/análisis , Agua , Biomasa , Microbiología del Suelo
3.
Environ Res ; 259: 119531, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38960358

RESUMEN

Rise in climate change-induced drought occurrences have amplified pollution of metal(loid)s, deteriorated soil quality, and deterred growth of crops. Rice straw-derived biochars (RSB) and cow manure-enriched biochars (CEB) were used in the investigation (at doses of 0%, 2.5%, 5%, and 7.5%) to ameliorate the negative impacts of drought, improve soil fertility, minimize arsenic pollution, replace agro-chemical application, and maximize crop yields. Even in soils exposed to severe droughts, 3 months of RSB and CEB amendment (at 7.5% dose) revealed decreased bulk density (13.7% and 8.9%), and increased cation exchange capacity (6.0% and 6.3%), anion exchange capacity (56.3% and 28.0%), porosity (12.3% and 7.9%), water holding capacity (37.5% and 12.5%), soil respiration (17.8% and 21.8%), and nutrient contents (especially N and P). Additionally, RSB and CEB decreased mobile (30.3% and 35.7%), bio-available (54.7% and 45.3%), and leachable (55.0% and 56.5%) fractions of arsenic. Further, pot experiments with Bengal gram and coriander plants showed enhanced growth (62-188% biomass and 90-277% length) and reduced arsenic accumulation (49-54%) in above ground parts of the plants. Therefore, biochar application was found to improve physico-chemical properties of soil, minimize arsenic contamination, and augment crop growth even in drought-stressed soils. The investigation suggests utilisation of cow manure for eco-friendly fabrication of nutrient-rich CEB, which could eventually promote sustainable agriculture and circular economy. With the increasing need for sustainable agricultural practices, the use of biochar could provide a long-term solution to enhance soil quality, mitigate the effects of climate change, and ensure food security for future generations. Future research should focus on optimizing biochar application across various soil types and climatic conditions, as well as assessing its long-term effectiveness.


Asunto(s)
Arsénico , Carbón Orgánico , Sequías , Contaminantes del Suelo , Suelo , Carbón Orgánico/química , Arsénico/análisis , Suelo/química , Contaminantes del Suelo/análisis , Estiércol/análisis , Oryza/crecimiento & desarrollo , Desarrollo de la Planta/efectos de los fármacos , Bovinos
4.
Appl Microbiol Biotechnol ; 108(1): 177, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38277012

RESUMEN

In this study, the effects of inoculum ratio, substrate particle size and aeration rate on humic acid (HA) biosynthesis during aerobic composting of rice straw were investigated, respectively. The contents of total organic carbon, total nitrogen and HA, as well as lignocellulose degradation in the composting were evaluated, respectively. It is found that the maximal HA yield of 356.9 g kg-1 was obtained at an inoculum ratio of 20%, a substrate particle size of 0.83 mm and an aeration rate of 0.3 L·kg-1 DM min-1 in the process of composting. The changes of microbial communities and metabolic functions at different stages of the composting were also analyzed through high-throughput sequencing. The result demonstrates that Proteobacteria, Firmicutes, Bacteroidetes and Actinobacteria were the dominant phyla and their relative abundance significantly varied over time (p < 0.05), and Rhizobium, Phenylobacterium, Pseudoxanthomonas and Paenibacillus were positively related to HA content in the compost. Furthermore, the metabolic function profiles of bacterial community indicate that these functional genes in carbohydrate metabolism and amino acid metabolism were involved in lignocellulose biodegradation and HA biosynthesis. This work may be conducive to explore new regulation strategy to improve bioconversion efficiency of agricultural residues to applicable biofertilizers. KEY POINTS: • Temperature, pH, TOC, TN and C/N caused a great influence on humic acids synthesis • The succession of the microbial community during the composting were evaluated • The metabolisms of carbohydrate and amino acids were involved in HA synthesis.


Asunto(s)
Compostaje , Oryza , Sustancias Húmicas , Oryza/microbiología , Estiércol/microbiología , Bacterias/genética , Suelo
5.
Ecotoxicol Environ Saf ; 271: 115961, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38218106

RESUMEN

Microalgae play a significant impact in the biogeochemical cycle of Mn(II) in the aquatic ecosystem. Meanwhile, the inflow of biochar into the water bodies is bound to impact the aquatic organisms. However, the influence of biochar on the manganese transformation in algae-rich water has not drawn much attention. Thus, we studied the effects of rice straw biochar on manganese enrichment and oxidation by a common type of algae in freshwater (Scenedesmus quadricauda). The results showed that Mn(II) was absorbed intracellularly and adsorbed extracellularly by active algal cells. A significant portion of enriched Mn(II) was oxidized to amorphous precipitates MnO2, MnOOH, and Mn2O3. Moreover, the extracellular bound Mn(II) content in the coexistent system of algae and biochar increased compared with the pure Scenedesmus quadricauda system. Nevertheless, the intracellular Mn content was continually lowered as the biochar dose rose from an initial 0.2 to 2.0 g·L-1, suggesting that Mn assimilation of the cell was suppressed. It was calculated that the total enrichment ability of Scenedesmus quadricauda in the algae-biochar coexistent system was 0.31- 15.32 mg Mn/g biomass, more than that in the pure algae system. More importantly, with biochar in the algae system, the amount of generated MnOx increased, and more Mn(II) was oxidized into highly-charged Mn(IV). This was probably because the biochar could relieve the stress of massive Mn(II) on algae and support the MnOx precipitates. In brief, moderate biochar promoted the Mn(II) accumulation by algal cells and its oxidation activity. This study offers deeper insight into the bioconversion of Mn(II) by algae and the potential impact of biochar application to the aquatic system.


Asunto(s)
Carbón Orgánico , Microalgas , Scenedesmus , Ecosistema , Manganeso/metabolismo , Compuestos de Manganeso , Óxidos , Agua/metabolismo
6.
Luminescence ; 39(9): e4884, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39258707

RESUMEN

In present work, synthesis of a nanohybrid material using Fe and MoS2 has been performed via a cost-effective and environmentally friendly route for sustainable manufacturing innovation. Rice straw extract was prepared and used as a reducing and chelating agent to synthesize the nanohybrid material by mixing it with molybdenum disulfide (MoS2) and ferric nitrate [Fe (NO3)3.9H2O], followed by heating and calcination. The X-ray diffraction (XRD) pattern confirms the formation of a nanohybrid consisting of monoclinic Fe2(MoO4)3, cubic Fe2.957O4, and orthorhombic FeS with 86% consisting of Fe2(MoO4)3. The properties were analyzed through Fourier-transformed infrared spectroscopy (FTIR), atomic force microscopy (AFM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results of the dynamic light scattering (DLS) study revealed a heterogeneous size distribution, with an average particle size of 48.42 nm for 18% of particles and 384.54 nm for 82% of particles. Additionally, the zeta potential was measured to be -18.88 mV, suggesting moderate stability. X-ray photoelectron spectroscopy (XPS) results confirmed the presence of both Fe2+ and Fe3+ oxidation states along with the presence of Molybdenum (Mo), oxygen (O), and Sulphur (S). The prepared nanohybrid material exhibited a band gap of 2.95 eV, and the photoluminescence intensity increased almost twice that of bare MoS2. The present work holds potential applications in photo luminescent nanoplatform for biomedical applications.


Asunto(s)
Disulfuros , Tecnología Química Verde , Molibdeno , Oryza , Tamaño de la Partícula , Molibdeno/química , Disulfuros/química , Oryza/química , Hierro/química , Propiedades de Superficie
7.
Int J Phytoremediation ; 26(11): 1847-1853, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38794784

RESUMEN

This study explored the efficacy of activated carbon derived from rice straw and treated with ZnCl2 (ZnCl2-RS) for the removal of diclofenac sodium (DCF) and paracetamol (PCM) through an adsorption process. The investigation included examining the variations in removal efficiency at different pH levels and ZnCl2-RS doses. The characteristics of the ZnCl2-RS, prepared for the study, were determined through SEM and FTIR analyses, revealing a composition of 49.4% carbon and 8.3% zinc. At pH 5, the adsorption efficiency for DCF and PCM was enhanced, achieving removal rates of 92.2% for DCF and 89.1% for PCM with 0.2 g of ZnCl2-RS. The adsorption of DCF and PCM by ZnCl2-RS followed pseudo-second-order kinetic and adhered to the Langmuir isotherm model. The maximum adsorption capacities were calculated as 26.04 mg/g for DCF and 19.05 mg/g for PCM. In conclusion, the cost-effective production of activated carbon from agricultural waste like rice straw yielded a promising adsorbent material for efficiently removing pharmaceuticals such as diclofenac sodium and paracetamol. This approach not only contributes to waste reduction but also promotes the repurposing of agricultural waste materials.


This study is about the preparation of rice straw, which is produced as agricultural waste, by ZnCl2 activation and the usability of the prepared adsorbent material in the purification of drugs used as analgesics such as diclofenac sodium and paracetamol. Although there are studies on the use of activated carbon produced from rice straw in the removal of pollutants such as dye, studies on drug removal are quite limited.


Asunto(s)
Acetaminofén , Carbón Orgánico , Cloruros , Diclofenaco , Oryza , Contaminantes Químicos del Agua , Compuestos de Zinc , Oryza/química , Adsorción , Carbón Orgánico/química , Biodegradación Ambiental , Cinética , Concentración de Iones de Hidrógeno
8.
Int J Mol Sci ; 25(14)2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39063077

RESUMEN

Rice straw is an agricultural waste, the disposal of which through open burning is an emerging challenge for ecology. Green manufacturing using straw returning provides a more avant-garde technique that is not only an effective management measure to improve soil fertility in agricultural ecosystems but also nurtures environmental stewardship by reducing waste and the carbon footprint. However, fresh straw that is returned to the field cannot be quickly decomposed, and screening microorganisms with the capacity to degrade straw and understanding their mechanism of action is an efficient approach to solve such problems. This study aimed to reveal the potential mechanism of influence exerted by exogenous degradative bacteria (ZJW-6) on the degradation of straw, growth of plants, and soil bacterial community during the process of returning rice straw to the soil. The inoculation with ZJW-6 enhanced the driving force of cellulose degradation. The acceleration of the rate of decomposition of straw releases nutrients that are easily absorbed by rice (Oryza sativa L.), providing favorable conditions for its growth and promoting its growth and development; prolongs the photosynthetic functioning period of leaves; and lays the material foundation for high yields of rice. ZJW-6 not only directly participates in cellulose degradation as degrading bacteria but also induces positive interactions between bacteria and fungi and enriches the microbial taxa that were related to straw degradation, enhancing the rate of rice straw degradation. Taken together, ZJW-6 has important biological potential and should be further studied, which will provide new insights and strategies for the appropriate treatment of rice straw. In the future, this degrading bacteria may provide a better opportunity to manage straw in an ecofriendly manner.


Asunto(s)
Bacterias , Oryza , Microbiología del Suelo , Oryza/microbiología , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Bacterias/metabolismo , Bacterias/crecimiento & desarrollo , Tallos de la Planta/microbiología , Tallos de la Planta/metabolismo , Celulosa/metabolismo , Biodegradación Ambiental , Agricultura/métodos , Suelo/química
9.
J Environ Manage ; 370: 123041, 2024 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-39490013

RESUMEN

This experiment reports an energy-saving, cost-effective and environmental-friendly method to recover energy from high-cellulose waste: anaerobic digestion (AD) by extending hydraulic residence time (HRT) from 50d to 70d with ultra-high organic loading rate (OLR) of 2.28-2.80 g TS·L-1 d-1. The results indicate that biogas yield per VS and methane yield per VS increase with the extended HRT, with a maximum increase of up to 67.9%, while both yields decrease as OLR increases. The volumetric gas production (VGP) and volumetric methane production (VMP) improve by 20.2-37.3% when HRT is extended to 57 days and OLR is 2.80 g TS·L-1 d-1, reaching a peak at this point. As the biogas production capacity of the two-stage anaerobic digestion reaches its peak, the gap between the one-stage system and the two-stage system decreases from 23% to 7% under the same conditions. This demonstrates that optimizing HRT and OLR not only enhance the gas production efficiency of the AD system but also reduce the gas production disparity between single-stage and two-stage systems, thus serving as a cost-effective method for engineering operations. Microbial community analysis of each system reveals that extending HRT increases the abundance and diversity of microbial communities, while changes in HRT and OLR result in significant shifts in the distribution of methanogens. Through reasonable regulation of HRT and OLR, a balance can be found between the full degradation of organic matter and the system load, so as to maximize biogas production and efficiency.

10.
J Environ Manage ; 351: 119932, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38160545

RESUMEN

Due to the ever increasing global population, higher volumes of industrial waste discharges to landfill have caused major problems for the environment. This study investigated the performance of rice straw ash (RSA) as a natural coagulant under different conditions for the treatment of landfill leachates by coagulation-flocculation and microfiltration, with and without addition of FeCl3. The highest performing treatment conditions (RSA = 2.48 g/L, FeCl3 = 4.98 g/L, settling time = 54.75min) were achieved with the combined use of RSA and FeCl3 as coagulant and led to a sludge volume index of 41.65 mL/g, 51.27% COD removal and 76.48% total suspended solid removal. In contrast, FeCl3 alone achieved slightly better COD and total suspended solid removal rates, however it resulted in higher sludge volume index and sludge production. The combined use of RSA and FeCl3 reduced the consumption of these two coagulants by 78.76% and 46.69% respectively. Functional groups and thermal stability of the flocs showed that RSA + FeCl3 synergistically enhance the mechanisms of the coagulation-flocculation process, including adsorption by particle's bridging, charge neutralization and size of flocs. Combining the coagulants resulted in increased van der Waals forces and lower attractive forces of the inter-colloidal energy barrier in the leachate. Additionally, the highest and lowest heavy metals removal rates for treatment by microfiltration were found for Fe (92.15%) and Mg (7.63%), with a total heavy metals removal efficiency in the range of 6.08-90.78%. The findings of this study show that RSA can serve as a natural eco-friendly coagulant both alone and in combination with FeCl3 in the leachate treatment.


Asunto(s)
Cloruros , Metales Pesados , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Aguas del Alcantarillado , Compuestos Férricos , Floculación
11.
J Environ Manage ; 352: 120032, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38184874

RESUMEN

The biogas plant plays a dual role: it directly provides energy and indirectly promotes organic farming through outlet slurry. However, agricultural biomass wastes such as rice straws (RS) and pressmud (PM), which can't be used as fertilizers on their own, were vermicomposted (60 days) with biogas slurry (BS), using earthworm, into four blends: T1(BS, 100%), T2(3:2, BS: RS), T3(3:2, BS: PM), and T4(3:1:1, BS: RS: PM). The characterization, elemental analysis, and toxicological risk assessment of derived vermimanure were carried out using various analytical tools, such as an organic elemental analyzer such as CHNS, FT-IR, FESEM-EDXA, XPS, and ICP-OES. The pH, electrical conductivity, and C/N values were within 7.1-7.8, 3.2-6.0 dSm-1, and 12-15, respectively, for all treatments. The proportions of N (38%), P (70%), K (58%), Mg (67%), Ca (42%), and ash (44%), increased significantly (P < 0.05) over the initial feedstocks. The ecological risks of heavy metals (Zn, Cu, Ni, Pb, Cd, and Cr) in all feedstocks were found to be under WHO-permitted levels. The growth performance of earthworms was also considerably higher (P < 0.05) over the control feedstock group. The analytical methods verified that feedstock T4 (3:1:1, BS: RS: PM) was more porous, containing NH4+, PO43-, K+, and other nutrients. Pellets of all vermimanure groups keep 65-75% of the original volume. As well, when these pellets have been employed for agronomy and dispersed in the field, they will cause less dust than traditional or powdered compost or manure. In comparison to the control group, the synergistic approach of RS, PM, and BS in vermimanure significantly (P < 0.05) enhanced seed germination (83%), vigour index (42.5%), and decreased mean germination time by 27%. Furthermore, pot trials with Abelmoschus esculentus seed indicated that seedlings cultivated with 40% vermimanure of T4 (3:1:1, BS: RS: PM) mixed soil showed high growth in shoot, root, and plant yield.


Asunto(s)
Oligoquetos , Oryza , Animales , Biocombustibles/análisis , Espectroscopía Infrarroja por Transformada de Fourier , Suelo/química , Estiércol/análisis , Medición de Riesgo
12.
Prep Biochem Biotechnol ; 54(7): 967-973, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38327105

RESUMEN

Trichoderma reesei RUT-C30 was cultivated on differentially pretreated rice straw and pure cellulose as a carbon source/inducer for cellulase production, and the enzymes were evaluated for hydrolysis of sequential acid and alkali pretreated rice straw. Growth on pretreated rice straw enhanced protein secretion and cellulase activities compared to pure cellulose as a carbon source. The yield of cellulolytic enzymes was higher for alkali pretreated rice straw (ALP-RS), while H2O2-treated (HP-RS) could not induce cellulases to a larger level compared to pure cellulose. Protein concentration was 3.5-fold higher on ALP-RS as compared to pure cellulose, with a maximum filter-paper cellulase (FPase) activity of 1.76 IU/ml and carboxy-methyl cellulase (CMCase) activity of 40.16 IU/ml (2.18 fold higher). Beta-glucosidase (BGL) activity was more or less the same with the different substrates and supplementation of heterologous BGL could result in a quantum jump in hydrolytic efficiencies, which in the case of ALP-RS induced enzymes was 34% (increased from 69.26% to 92.51%). The use of lignocellulosic biomass (LCB) itself as a substrate for the production of cellulase is advantageous not only in terms of raw material costs but also for obtaining a more suitable enzyme profile for biomass hydrolysis.


Asunto(s)
Celulasa , Hypocreales , Oryza , Oryza/química , Hidrólisis , Celulasa/metabolismo , Celulasa/química , Hypocreales/enzimología , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Celulosa/metabolismo , Celulosa/química , Lignina/metabolismo , Lignina/química , Biomasa , beta-Glucosidasa/metabolismo , beta-Glucosidasa/química
13.
World J Microbiol Biotechnol ; 40(6): 173, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38630379

RESUMEN

Rice straw burning annually (millions of tons) leads to greenhouse gas emissions, and an alternative solution is producing humic acid with high added-value. This study aimed to examine the influence of a microbial consortium and other additives (chicken manure, urea, olive mill waste, zeolite, and biochar) on the composting process of rice straw and the subsequent production of humic acid. Results showed that among the fungal species, Thermoascus aurantiacus exhibited the most prominent impact in expediting maturation and improving compost quality, and Bacillus subtilis was the most abundant bacterial species based on metagenomics analysis. The highest temperature, C/N ratio reduction, and amount of humic acid production (Respectively in lab 61 °C, 54.67%, 298 g kg-1 and in pilot level 65 °C, 72.11%, 310 g kg-1) were related to treatments containing these microorganisms and other additives except urea. Consequently, T. aurantiacus and B. subtilis can be employed on an industrial scale as compost additives to further elevate quality. Functional analysis showed that the bacterial enzymes in the treatments had the highest metabolic activities, including carbohydrate and amino acid metabolism compared to the control. The maximum enzymatic activities were in the thermophilic phase in treatments which were significantly higher than that in the control. The research emphasizes the importance of identifying and incorporating enzymatically active strains that are suitable for temperature conditions, alongside the native strains in decomposing materials. This strategy significantly improves the composting process and yields high-quality humic acid during the thermophilic phase.


Asunto(s)
Oryza , Animales , Sustancias Húmicas , Bacillus subtilis , Pollos , Urea
14.
Trop Anim Health Prod ; 56(3): 122, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38607593

RESUMEN

The present study aimed to use poor quality roughages, such as rice and faba bean straw, treated with or without urea, and their impacts on digestibility, rumen fermentation, some blood parameters, and growth performance of lambs. Twenty crossbred male lambs (1/4 Finland ×¾ Ossimi, 25±1.13kg live body weight) were chosen and divided into four groups. All lambs were fed rations of concentrated feed mixture at 2% of live weight with the following roughages ad libitum: URS (control group, untreated rice straw), TRS (urea-treated rice straw), FBS (faba bean straw), and TRS+FBS (mixture of TRS and FBS, 1:1). Nutrient digestibility and feeding values improved (P<0.05) with TRS+FBS lambs versus FBS, TRS and URS lambs. The highest numerical values of ruminal total volatile fatty acid (VFA) concentration in TRS lambs were recorded 23.9 ml.eq/dl followed by TRS+FBS, URS and FBS. Regarding to the ruminal parameters, there were no differences (P>0.05) among evaluated groups except for NH3-N, the highest concentration (P<0.05) was recorded in TRS lambs at 3 h post-feeding. Lambs of TRS, FBS and TRS+FBS showed faster growth (P<0.05) than those of the control (i.e., URS). Intakes of dry matter, total digestible nutrients, and digestible crude protein were numerically increased for TRS, FBS, and TRS+FBS. Feed conversion, as kg dry matter/kg gain, was improved for TRS, FBS, and TRS+FBS lambs versus URS. Daily gain of lambs increased (P<0.05) with lambs of TRS, FBS, and TRS+FBS but URS lambs showed a decrease (P<0.05) in daily gain. Feed conversion as kg dry matter intake/kg gain was improved (P<0.05) by feeding on TRS, FBS and TRS+FBS rations versus URS. The TRS+FBS lambs tended to have the highest economic efficiency versus URS, TRS and FBS lambs. It was concluded that urea-treated rice straw could be used as sole roughage or mixed with faba bean straw (1:1) in growing lambs' ration to improve their performance and economic efficiency without adversely affecting their health.The present study aimed to use poor quality roughages, such as rice and faba bean straw, treated with or without urea, and their impacts on digestibility, rumen fermentation, some blood parameters, and growth performance of lambs. Twenty crossbred male lambs (1/4 Finland ×¾ Ossimi, 25±1.13kg live body weight) were chosen and divided into four groups. All lambs were fed rations of concentrated feed mixture at 2% of live weight with the following roughages ad libitum: URS (control group, untreated rice straw), TRS (urea-treated rice straw), FBS (faba bean straw), and TRS+FBS (mixture of TRS and FBS, 1:1). Nutrient digestibility and feeding values improved (P<0.05) with TRS+FBS lambs versus FBS, TRS and URS lambs. The highest numerical values of ruminal total volatile fatty acid (VFA) concentration in TRS lambs were recorded 23.9 ml.eq/dl followed by TRS+FBS, URS and FBS. Regarding to the ruminal parameters, there were no differences (P>0.05) among evaluated groups except for NH3-N, the highest concentration (P<0.05) was recorded in TRS lambs at 3 h post-feeding. Lambs of TRS, FBS and TRS+FBS showed faster growth (P<0.05) than those of the control (i.e., URS). Intakes of dry matter, total digestible nutrients, and digestible crude protein were numerically increased for TRS, FBS, and TRS+FBS. Feed conversion, as kg dry matter/kg gain, was improved for TRS, FBS, and TRS+FBS lambs versus URS. Daily gain of lambs increased (P<0.05) with lambs of TRS, FBS, and TRS+FBS but URS lambs showed a decrease (P<0.05) in daily gain. Feed conversion as kg dry matter intake/kg gain was improved (P<0.05) by feeding on TRS, FBS and TRS+FBS rations versus URS. The TRS+FBS lambs tended to have the highest economic efficiency versus URS, TRS and FBS lambs. It was concluded that urea-treated rice straw could be used as sole roughage or mixed with faba bean straw (1:1) in growing lambs' ration to improve their performance and economic efficiency without adversely affecting their health.


Asunto(s)
Oryza , Vicia faba , Masculino , Ovinos , Animales , Oveja Doméstica , Nutrientes , Fibras de la Dieta , Urea , Ácidos Grasos Volátiles , Peso Corporal
15.
Trop Anim Health Prod ; 56(5): 173, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38780716

RESUMEN

This study investigated the effect of co-ensiled rice straw (RS) with whole sugar beet (SB) on lactating cows' performance. Ensiled rice straw (ERS) as control (CGS) was incorporated with immersed corn grains (CG) for 24 h, while the 2nd and 3rd ensiled RS (LSB and HSB) contained SB substituted of 50 and 100% of CG on an energy basis (total digestible nutrients, TDN), respectively. In the experimental diets, D1, D2, and D3, which include CGS, LSB, and HSB provided ad-libitum, respectively, while a concentrated feed mixture (2% of body weight) was offered. The population of lactic acid bacteria was slightly higher with fed HSB, relative to LSB and CGS. The OM, CP, EE, NFC, and TCH contents of CGS were slightly higher than LSB and HSB, while the opposite happened with the aNDFom, and ADFom contents. The digestibility of DM, OM, aNDFom, and ADFom of the D3 group was higher (P < 0.05) than in D1 and D2. The D3 recorded the highest values (P < 0.05) of silage consumption, and palatability. Milk production, fat-corrected milk (FCM), and energy-corrected milk (ECM) were (P < 0.05) higher for cows fed D3 compared with D1 and D2. Fat, protein, lactose, and total solids were trending on the same track. The feed conversion ratio (FCR) of cows fed diet D3 was better than cows fed D1 diet. The level of glucose in the blood increased (P < 0.05) significantly with feeding on HSB than LSB, which was significantly (P < 0.05) higher compared to CGS. In conclusion, co-ensiling of RS with the whole SB plant consider a good method to improve its nutritional value.


Asunto(s)
Beta vulgaris , Dieta , Lactancia , Oryza , Ensilaje , Animales , Bovinos/fisiología , Femenino , Beta vulgaris/química , Lactancia/fisiología , Oryza/química , Ensilaje/análisis , Dieta/veterinaria , Fenómenos Fisiológicos Nutricionales de los Animales , Alimentación Animal/análisis , Leche/química , Leche/metabolismo , Digestión
16.
BMC Biotechnol ; 23(1): 16, 2023 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-37391752

RESUMEN

BACKGROUND: Currently, broad industrial application of laccases is commonly restricted by the high-cost related production. Solid state fermentation (SSF) using agricultural waste is an attractively economic strategy for laccase production, yet its efficiency is low. Pretreatment of cellulosic substrate might be a vital breakpoint to solve the problem in solid state fermentation (SSF). In this study, sodium hydroxide pretreatment was involved to prepare solid substrates from rice straw. Fermentability of solid substrates in terms of carbon resource supply, accessibility and water retention value, and their influence on performance of SSF were analyzed. RESULTS: The results showed that sodium hydroxide pretreatment provided desirable solid substrates with higher enzymatic digestibility and optimal water retention value, which further facilitated the homogeneity of mycelium growth, laccase distribution and nutrition utilization during SSF. The pretreated rice straw (1 h) with diameter less than 0.085 cm gave the maximum laccase production of 2912.34 U/g, which was 7.72 times higher than the control. CONCLUSION: Hence, we proposed that enough balance between nutrition accessibility and structure support was a must for rational design and preparation of solid substrate. Additionally, sodium hydroxide pretreatment of lignocellulosic waste might be an ideal step to enhance the efficiency and lower the production cost in SSF.


Asunto(s)
Oryza , Estudios de Factibilidad , Fermentación , Lacasa , Hidróxido de Sodio , Agua
17.
Arch Microbiol ; 205(4): 146, 2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-36971832

RESUMEN

Rice straw is a suitable alternative to a cheaper carbohydrate source for the production of ethanol. For pretreatment efficiency, different sodium hydroxide concentrations (0.5-2.5% w/v) were tested. When compared to other concentrations, rice straw processed with 2% NaOH (w/v) yielded more sugar (8.17 ± 0.01 mg/ml). An alkali treatment induces effective delignification and swelling of biomass. The pretreatment of rice straw with 2% sodium hydroxide (w/v) is able to achieve 55.34% delignification with 53.30% cellulose enrichment. The current study shows the effectiveness of crude cellulolytic preparation from Aspergillus niger resulting in 80.51 ± 0.4% cellulose hydrolysis. Rice straw hydrolysate was fermented using ethanologenic Saccharomyces cerevisiae (yeast) and Zymomonas mobilis (bacteria). Overall, superior efficiency of sugar conversion to ethanol 70.34 ± 0.3% was obtained with the yeast compared to bacterial strain 39.18 ± 0.5%. The current study showed that pretreatment with sodium hydroxide is an effective method for producing ethanol from rice straw and yeast strain S. cerevisiae having greater fermentative potential for bioethanol production than bacterial strain Z. mobilis.


Asunto(s)
Oryza , Zymomonas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Oryza/microbiología , Hidróxido de Sodio , Zymomonas/genética , Zymomonas/metabolismo , Etanol , Fermentación , Celulosa/metabolismo , Carbohidratos , Azúcares , Hidrólisis
18.
Artículo en Inglés | MEDLINE | ID: mdl-36790416

RESUMEN

A rod-shaped, non-motile, Gram-negative bacterium, strain RS28T, was isolated from rice straw used as material for periphyton growth. Phylogenetic analysis of the 16S rRNA gene sequence revealed that strain RS28T was affiliated with the genus Mucilaginibacter and had the highest sequence similarity to Mucilaginibacter ginkgonis HMF7856T (96.47 %) and Mucilaginibacter polytrichastri DSM 26907T (96.12 %). Strain RS28T was found to grow at pH 5.5-8.0, 17-40 °C and in the presence of 0-1.5 % (w/v) NaCl. Strain RS28T contained summed feature 3 (comprising C16 : 1 ω7c and/or C16 : 1 ω6c), iso-C15 : 0 and iso-C17 : 0 3-OH as the major fatty acids (> 10.0 %). The major polar lipids were phosphatidylethanolamine, two unidentified phospholipids, two unidentified aminophospholipids, three unidentified aminolipids and one unidentified lipid. The respiratory quinone was menaquinone 7. The genomic DNA G+C content was 44.7 mol%. Strain RS28T possessed six putative secondary metabolite gene clusters involved in the synthesis of resorcinol, NRPS-like, terpene, lassopeptide, T3PKS and arylpolyene. On the basis of the phenotypic, chemotaxonomic, and phylogenetic characteristics, strain RS28T represents a novel species of the genus Mucilaginibacter, for which the name Mucilaginibacter straminoryzae sp. nov. is proposed. The type strain is RS28T (=KCTC 92039T=LMG 32424T).


Asunto(s)
Oryza , Perifiton , Ácidos Grasos/química , Filogenia , ARN Ribosómico 16S/genética , Técnicas de Tipificación Bacteriana , Análisis de Secuencia de ADN , ADN Bacteriano/genética , Composición de Base , Fosfolípidos/química , Vitamina K 2/química
19.
Int J Phytoremediation ; : 1-12, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38093655

RESUMEN

High concentration of aluminum (Al) in drinking water is a major intake source of it and can result in serious diseases. Rice straw (RS) as lignocellulosic biomasses has great potential to peak up metal ions from aqueous environment, however, feasibility of Al3+ removal by RS has not been investigated yet. The present study aimed to evaluate the capacity of RS as a novel biosorbent for Al3+ from drinking water. Biosorption characteristics of RS were surveyed through several biological and physiochemical techniques. Additionally, isotherm, kinetic and thermodynamic studies were evaluated using various common models. BET profiles revealed the presence of textural mesoporosity on heterogeneous surface, which leading to improve the biosorption capacity. SEM-EDS analysis confirmed the morphological changes as irregularly particles of Al3+ on external surface via physical mechanism. The results of bioassays and FTIR analysis showed carboxylic and hydroxyl groups in lignin and pectin as the main Al3+ binding site. The batch experimental results showed the maximum biosorption capacity of 283.09 mg/g and removal efficiency of 94.86% for Al3+ at biosorbent dosage of 0.05 g/100 mL, contact time of 50 min, pH 7.5, and temperature of 30 °C. The Freundlich model has the best match and suggests the biosorption process as a multi-layer. According to the results of free activation energy, biosorption process was also physical. As thermodynamic result, the biosorption behavior was found spontaneous and endothermic. Consequently, results showed RS as an economical biosorbent for reducing Al3+ of drinking water. Meanwhile, it can be considered as one of the most appropriate methods for management of rice paddies waste.


This article provides a new interdisciplinary horizon at the border of plant biochemistry, agriculture, water treatment industry, and environmental protection. This study covers different aspects including biosorption, cell wall network as well as the usefulness of agricultural by-products in biosorption of Al-polluted drinking water. Findings of the present study revealed that rice straw cell wall polysaccharides have specific Al3+ binding sites, therefore can be effectively used in water treatment and reduce Al3+ content below the standard permissible limit of WHO (0.2 mg/L). This can be a foundation for future research to evaluate agricultural wastes management in the industry of water as natural biosorbent. This method also effectively converts RS from an unwanted agricultural waste to high-value products.

20.
J Environ Manage ; 336: 117695, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-36907062

RESUMEN

Butyrate production from renewable biomass shows great potential against climate change and over-consumption of fossil fuels. Herein, key operational parameters of a cathodic electro-fermentation (CEF) process were optimized for efficient butyrate production from rice straw by mixed culture. The cathode potential, controlled pH and initial substrate dosage were optimized at -1.0 V (vs Ag/AgCl), 7.0 and 30 g/L, respectively. Under the optimal conditions, 12.50 g/L butyrate with yield of 0.51 g/g-rice straw were obtained in batch-operated CEF system. In fed-batch mode, butyrate production significantly increased to 19.66 g/L with the yield of 0.33 g/g-rice straw, but 45.99% butyrate selectivity still needs to be improved in future. Enriched butyrate producing bacteria (Clostridium cluster XIVa and IV) with proportion of 58.75% on the 21st day of the fed-batch fermentation, contributed to the high-level butyrate production. The study provides a promising approach for efficient butyrate production from lignocellulosic biomass.


Asunto(s)
Butiratos , Oryza , Fermentación , Biomasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA