Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 167
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Plant Physiol ; 2024 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-39343733

RESUMEN

Aluminum (Al) stress, a prevalent constraint in acidic soils, inhibits plant growth by inhibiting root elongation through restricted cell expansion. The molecular mechanisms of Al-induced root inhibition, however, are not fully understood. This study aimed to elucidate the role of Small Auxin-up RNAs (SlSAURs), which function downstream of the key Al stress-responsive transcription factor SENSITIVE TO PROTON RHIZOTOXICITY 1 (SlSTOP1) and its enhancer STOP1-INTERACTING ZINC-FINGER PROTEIN 1 (SlSZP1), in modulating root elongation under Al stress in tomato (Solanum lycopersicum). Our findings demonstrated that tomato lines with knocked out SlSAURs exhibited shorter root lengths when subjected to Al stress. Further investigation into the underlying mechanisms revealed that SlSAURs interact with Type 2C Protein Phosphatases (SlPP2Cs), specifically D-clade Type 2C Protein Phosphatases (SlPP2C.Ds). This interaction was pivotal as it suppresses the phosphatase activity, leading to the degradation of SlPP2C.D's inhibitory effect on plasma membrane H+-ATPase. Consequently, this promoted cell expansion and root elongation under Al stress. These findings increase our understanding of the molecular mechanisms by which Al ions modulate root elongation. The discovery of the SlSAUR-SlPP2C.D interaction and its impact on H+-ATPase activity also provides a perspective on the adaptive strategies employed by plants to cope with Al toxicity, which may lead to the development of tomato cultivars with enhanced Al stress tolerance, thereby improving crop productivity in acidic soils.

2.
Plant J ; 116(1): 173-186, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37366219

RESUMEN

Plants employ various molecular mechanisms to maintain primary root elongation upon salt stress. Identification of key functional genes, therein, is important for improving crop salt tolerance. Through analyzing natural variation of the primary root length of Arabidopsis natural population under salt stress, we identified NIGT1.4, encoding an MYB transcription factor, as a novel contributor to maintained root growth under salt stress. Using both T-DNA knockout and functional complementation, NIGT1.4 was confirmed to have a role in promoting primary root growth in response to salt stress. The expression of NIGT1.4 in the root was shown induced by NaCl treatments in an ABA-dependent manner. SnRK2.2 and 2.3 were shown to interact with and phosphorylate NIGT1.4 individually. The growth of the primary root of snrk2.2/2.3/2.6 triple mutant was shown sensitive to salt stress, which was similar to nigt1.4 plants. Using DNA affinity purification sequencing, ERF1, a known positive regulator for primary root elongation and salt tolerance, was identified as a target gene for NIGT1.4. The transcriptional induction of ERF1 by salt stress was shown absent in nigt1.4 background. NIGT1.4 was also confirmed to bind to the promoter region of ERF1 by yeast one-hybrid experiment and to induce the expression of ERF1 by dual-luciferase analysis. All data support the notion that salt- and ABA-elicited NIGT1.4 induces the expression of ERF1 to regulate downstream functional genes that contribute to maintained primary root elongation. NIGT1.4-ERF1, therefore, acts as a signaling node linking regulators for stress resilience and root growth, providing new insights for breeding salt-tolerant crops.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Fitomejoramiento , Plantas Modificadas Genéticamente/genética , Tolerancia a la Sal/genética , Estrés Fisiológico/genética
3.
Plant Cell Environ ; 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39254223

RESUMEN

Sulphur limitation 1 (SLIM1), a member of ethylene-insensitive3-like (EIN3/EIL) protein family, is recognised as the pivotal transcription factor regulating sulphur assimilation, essential for maintaining sulphur homoeostasis in Arabidopsis. However, the function of its monocot homologues is largely unknown. In this study, we identified PvEIL3a, a homologous gene of AtSLIM1, from switchgrass (Panicum virgatum L.), a significant perennial bioenergy crop. Our results demonstrated that introducing PvEIL3a into Arabidopsis slim1 mutants significantly increased the expression of genes responsive to sulphur deficiency, and transgenic plants exhibited shortened root length and delayed development. Moreover, PvEIL3a activated the expression of AtAPR1, AtSULTR1;1 and AtBGLU30, which plays an important role in sulphur assimilation and glucosinolate metabolism. Results of transcriptome and metabonomic analysis further indicated a perturbation in the metabolic pathways of tryptophan-dependent indole glucosinolates (IGs), camalexin and auxin. In addition, PvEIL3a conservatively regulated sulphur assimilation and the biosynthesis of tryptophan pathway-derived secondary metabolites, which reduced the biosynthesis of indole-3-acetic acid (IAA) and inhibited the root elongation of transgenic Arabidopsis. In conclusion, this study highlights the functional difference of the ethylene-insensitive 3-like (EIL) family gene in monocot and dicot plants, thereby deepening the understanding of the specific biological roles of EIL3 in monocot plant species.

4.
Ecotoxicol Environ Saf ; 271: 116013, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38281433

RESUMEN

The damage excessive neodymium (Nd) causes to animals and plants should not be underestimated. However, there is little research on the impact of pH and associated ions on the toxicity of Nd. Here, a biotic ligand model (BLM) was expanded to predict the effects of pH and chief anions on the toxic impact of Nd on wheat root elongation in a simulated soil solution. The results suggested that Nd3+ and NdOH2+ were the major ions causing phytotoxicity to wheat roots at pH values of 4.5-7.0. The Nd toxicity decreased as the activities of H+, Ca2+, and Mg2+ increased but not when the activities of K+ and Na+ increased. The results indicated that H+, Ca2+, and Mg2+ competed with Nd for binding sites. An extended BLM was developed to consider the effects of pH, H+, Ca2+, and Mg2+, and the following stability constants were obtained: logKNdBL = 2.51, logKNdOHBL = 3.90, logKHBL = 4.01, logKCaBL = 2.43, and logKMgBL = 2.70. The results demonstrated that the BLM could predict the Nd toxicity well while considering the competition of H+, Ca2+, Mg2+ and the toxic species Nd3+ and NdOH2+ for binding sites.


Asunto(s)
Neodimio , Contaminantes del Suelo , Neodimio/toxicidad , Triticum , Ligandos , Contaminantes del Suelo/toxicidad , Modelos Biológicos , Raíces de Plantas , Iones/farmacología , Concentración de Iones de Hidrógeno
5.
J Integr Plant Biol ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39031490

RESUMEN

Generation of crops with low phytic acid (myo-inositol-1,2,3,4,5,6-hexakisphosphate (InsP6)) is an important breeding direction, but such plants often display less desirable agronomic traits. In this study, through ethyl methanesulfonate-mediated mutagenesis, we found that inositol 1,3,4-trisphosphate 5/6-kinase 4 (ITPK4), which is essential for producing InsP6, is a critical regulator of salt tolerance in Arabidopsis. Loss of function of ITPK4 gene leads to reduced root elongation under salt stress, which is primarily because of decreased root meristem length and reduced meristematic cell number. The itpk4 mutation also results in increased root hair density and increased accumulation of reactive oxygen species during salt exposure. RNA sequencing assay reveals that several auxin-responsive genes are down-regulated in the itpk4-1 mutant compared to the wild-type. Consistently, the itpk4-1 mutant exhibits a reduced auxin level in the root tip and displays compromised gravity response, indicating that ITPK4 is involved in the regulation of the auxin signaling pathway. Through suppressor screening, it was found that mutation of Multidrug Resistance Protein 5 (MRP5)5 gene, which encodes an ATP-binding cassette (ABC) transporter required for transporting InsP6 from the cytoplasm into the vacuole, fully rescues the salt hypersensitivity of the itpk4-1 mutant, but in the itpk4-1 mrp5 double mutant, InsP6 remains at a very low level. These results imply that InsP6 homeostasis rather than its overall amount is beneficial for stress tolerance in plants. Collectively, this study uncovers a pair of gene mutations that confer low InsP6 content without impacting stress tolerance, which offers a new strategy for creating "low-phytate" crops.

6.
Planta ; 258(6): 108, 2023 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-37898971

RESUMEN

MAIN CONCLUSION: The review describes tissue-specific and non-cell autonomous molecular responses regulating the root system architecture and function in plants. Phenotypic plasticity of roots relies on specific molecular and tissue specific responses towards local and microscale heterogeneity in edaphic factors. Unlike gravitropism, hydrotropism in Arabidopsis is regulated by MIZU KUSSIE1 (MIZ1)-dependent asymmetric distribution of cytokinin and activation of Arabidopsis response regulators, ARR16 and ARR17 on the lower water potential side of the root leading to higher cell division and root bending. The cortex specific role of Abscisic acid (ABA)-activated SNF1-related protein kinase 2.2 (SnRK2.2) and MIZ1 in elongation zone is emerging for hydrotropic curvature. Halotropism involves clathrin-mediated internalization of PIN FORMED 2 (PIN2) proteins at the side facing higher salt concentration in the root tip, and ABA-activated SnRK2.6 mediated phosphorylation of cortical microtubule-associated protein Spiral2-like (SP2L) in the root transition zone, which results in anisotropic cell expansion and root bending away from higher salt. In hydropatterning, Indole-3-acetic acid 3 (IAA3) interacts with SUMOylated-ARF7 (Auxin response factor 7) and prevents expression of Lateral organ boundaries-domain 16 (LBD16) in air-side of the root, while on wet side of the root, IAA3 cannot repress the non-SUMOylated-ARF7 thereby leading to LBD16 expression and lateral root development. In root vasculature, ABA induces expression of microRNA165/microRNA166 in endodermis, which moves into the stele to target class III Homeodomain leucine zipper protein (HD-ZIP III) mRNA in non-cell autonomous manner. The bidirectional gradient of microRNA165/6 and HD-ZIP III mRNA regulates xylem patterning under stress. Understanding the tissue specific molecular mechanisms regulating the root responses under heterogeneous and stress environments will help in designing climate-resilient crops.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , MicroARNs , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Raíces de Plantas/metabolismo , Ácido Abscísico/metabolismo , Estrés Fisiológico , ARN Mensajero/metabolismo , MicroARNs/genética , MicroARNs/metabolismo
7.
New Phytol ; 237(1): 78-87, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36226797

RESUMEN

Sulfur (S) is an essential macronutrient for plants and a signaling molecule in abiotic stress responses. It is known that S availability modulates root system architecture; however, the underlying molecular mechanisms are largely unknown. We previously reported an Arabidopsis gain-of-function mutant sulfate utilization efficiency4 (sue4) that could tolerate S deficiency during germination and early seedling growth with faster primary root elongation. Here, we report that SUE4, a novel plasma membrane-localized protein, interacts with the polar auxin transporter PIN1, resulting in reduced PIN1 protein levels and thus decreasing auxin transport to the root tips, which promotes primary root elongation. Moreover, SUE4 is induced by sulfate deficiency, consistent with its role in root elongation. Further analyses showed that the SUE4-PIN1 interaction decreased PIN1 levels, possibly through 26 S proteasome-mediated degradation. Taken together, our finding of SUE4-mediated root elongation is consistent with root adaptation to highly mobile sulfate in soil, thus revealing a novel component in the adaptive response of roots to S deficiency.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Peptidilprolil Isomerasa de Interacción con NIMA/metabolismo , Proteínas de la Membrana/metabolismo , Raíces de Plantas/metabolismo , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Transporte Biológico , Azufre/metabolismo , Sulfatos/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo
8.
Physiol Plant ; 175(6): e14094, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38148185

RESUMEN

As roots grow through the soil to forage for water and nutrients, they encounter mechanical obstacles such as patches of dense soil and stones that locally impede root growth. Here, we investigated hitherto poorly understood systemic responses of roots to localised root impedance. Seedlings of two wheat genotypes were grown in hydroponics and exposed to impenetrable obstacles constraining the vertical growth of the primary or a single seminal root. We deployed high-resolution in vivo imaging to quantify temporal dynamics of root elongation rate, helical root movement, and root growth direction. The two genotypes exhibited distinctly different patterns of systemic responses to localised root impedance, suggesting different strategies to cope with obstacles, namely stress avoidance and stress tolerance. Shallower growth of unconstrained seminal roots and more pronounced helical movement of unconstrained primary and seminal roots upon localised root impedance characterised the avoidance strategy shown by one genotype. Stress tolerance to localised root impedance, as exhibited by the other genotype, was indicated by relatively fast elongation of primary roots and steeper seminal root growth. These different strategies highlight that the effects of mechanical obstacles on spatiotemporal root growth patterns can differ within species, which may have major implications for resource acquisition and whole-plant growth.


Asunto(s)
Raíces de Plantas , Plantones , Genotipo , Plantones/genética , Suelo , Triticum/fisiología
9.
Ecotoxicol Environ Saf ; 252: 114622, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36764069

RESUMEN

Combined pollution of cadmium (Cd) and lead (Pb) occurs frequently in agriculture lands, which has received increasing research attention. However, little is known about the interaction behaviors of Cd and Pb at various concentrations in the mixture. This study evaluated the single and combined effects of Cd and Pb on rice (Oryza sativa L.) root elongation through acute exposure test. The combined pollution was analyzed with the concentration addition (CA) model, independent action (IA) model and mathematical statistical methods. The dose-response results revealed that the interaction could weaken the toxicity of both Pb and Cd, and Cd had a more significant inhibitory effect on Pb toxicity. The predicted values of CA and IA models were consistently lower than the observed values in the relative root elongation range of 0-60%. Further, combining the CA or IA model with mathematical statistical methods, the interaction of Pb and Cd at similar concentrations showed a significant antagonistic effect on rice root elongation. At low Pb concentrations (Cd > 0.0195, Pb < 0.015 mg/L), there was a synergistic effect of the mixture on rice root; at high Pb concentrations (Cd < 0.225, Pb ≥ 1.25 mg/L), Pb dominated the toxicity on rice root. This is the first report of a systematic method for assessing heavy metal interaction at different concentration levels, which may facilitate the formulation of control standards of heavy metal combined pollution in agricultural land.


Asunto(s)
Metales Pesados , Oryza , Contaminantes del Suelo , Cadmio/toxicidad , Cadmio/análisis , Plomo/toxicidad , Plomo/análisis , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/análisis , Metales Pesados/análisis , Suelo
10.
Int J Mol Sci ; 24(22)2023 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-38003665

RESUMEN

Plant roots elongate when cells produced in the apical meristem enter a transient period of rapid expansion. To measure the dynamic process of root cell expansion in the elongation zone, we captured digital images of growing Arabidopsis roots with horizontal microscopes and analyzed them with a custom image analysis program (PatchTrack) designed to track the growth-driven displacement of many closely spaced image patches. Fitting a flexible logistics equation to patch velocities plotted versus position along the root axis produced the length of the elongation zone (mm), peak relative elemental growth rate (% h-1), the axial position of the peak (mm from the tip), and average root elongation rate (mm h-1). For a wild-type root, the average values of these kinematic traits were 0.52 mm, 23.7% h-1, 0.35 mm, and 0.1 mm h-1, respectively. We used the platform to determine the kinematic phenotypes of auxin transport mutants. The results support a model in which the PIN2 auxin transporter creates an area of expansion-suppressing, supraoptimal auxin concentration that ends 0.1 mm from the quiescent center (QC), and that ABCB4 and ABCB19 auxin transporters maintain expansion-limiting suboptimal auxin levels beginning approximately 0.5 mm from the QC. This study shows that PatchTrack can quantify dynamic root phenotypes in kinematic terms.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fenómenos Biomecánicos , Raíces de Plantas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Ácidos Indolacéticos , Programas Informáticos , Regulación de la Expresión Génica de las Plantas
11.
Plant J ; 107(6): 1603-1615, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34216063

RESUMEN

Heterotrimeric G protein is involved in plant growth and development, while the role of rice (Oryza sativa) G protein γ subunit qPE9-1 in response to low-phosphorus (LP) conditions remains unclear. The gene expression of qPE9-1 was significantly induced in rice roots under LP conditions. Rice varieties carrying the qPE9-1 allele showed a stronger primary root response to LP than the varieties carrying the qpe9-1 allele (mutant of the qPE9-1 allele). Transgenic rice plants with the qPE9-1 allele had longer primary roots and higher P concentrations than those with the qpe9-1 allele under LP conditions. The plasma membrane (PM) H+ -ATPase was important for the qPE9-1-mediated response to LP. Furthermore, OsGF14b, a 14-3-3 protein that acts as a key component in activating PM H+ -ATPase for root elongation, is also involved in the qPE9-1 mediation. Moreover, the overexpression of OsGF14b in WYJ8 (carrying the qpe9-1 allele) partially increased primary root length under LP conditions. Experiments using R18 peptide (a 14-3-3 protein inhibitor) showed that qPE9-1 is important for primary root elongation and H+ efflux under LP conditions by involving the 14-3-3 protein. In addition, rhizosheath weight, total P content, and the rhizosheath soil Olsen-P concentration of qPE9-1 lines were higher than those of qpe9-1 lines under soil drying and LP conditions. These results suggest that the G protein γ subunit qPE9-1 in rice plants modulates root elongation for phosphorus uptake by involving the 14-3-3 protein OsGF14b and PM H+ -ATPase, which is required for rice P use.


Asunto(s)
Oryza/fisiología , Fósforo/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/fisiología , ATPasas de Translocación de Protón/metabolismo , Proteínas 14-3-3/metabolismo , Membrana Celular/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/genética , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Regulación de la Expresión Génica de las Plantas , Fósforo/farmacocinética , Proteínas de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Rizosfera , Suelo/química
12.
Planta ; 256(6): 115, 2022 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-36371542

RESUMEN

MAIN CONCLUSION: Heterologous expression of BnNF-YB2, BnNF-YB3, BnNF-YB4, BnNF-YB5, or BnNF-YB6 from rapeseed promotes the floral process and also affects root development in Arabidopsis. The transcriptional regulator NUCLEAR FACTOR-Y (NF-Y) is a heterotrimeric complex composed of NF-YA, NF-YB, and NF-YC proteins and is ubiquitous in yeast, animal, and plant systems. In this study, we found that five NF-YB proteins from rapeseed (Brassica napus), including BnNF-YB2, BnNF-YB3, BnNF-YB4, BnNF-YB5, and BnNF-YB6 (BnNF-YB2/3/4/5/6), all function in photoperiodic flowering and root elongation. Sequence alignment and phylogenetic analysis showed that BnNF-YB2/3 and BnNF-YB4/5/6 were clustered with Arabidopsis AtNF-YB2 and AtNF-YB3, respectively, implying that these NF-YBs are evolutionarily and functionally conserved. In support of this hypothesis, the heterologous expression of individual BnNF-YB2, 3, 4, 5, or 6 in Arabidopsis promoted early flowering under a long-day photoperiod. Further analysis suggested that BnNF-YB 2/3/4/5/6 elevated the expression of key downstream flowering time genes including CO, FT, LFY and SOC1. Promoter-GUS fusion analysis showed that the five BnNF-YBs were expressed in a variety of tissues at various developmental stages and GFP fusion analysis revealed that all BnNF-YBs were localized to the nucleus. In addition, we demonstrated that the heterologous expression of individual BnNF-YB2/3/4/5/6 in Arabidopsis promoted root elongation and increased the number of root tips formed under both normal and treatment with simulators of abiotic stress conditions.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Brassica napus , Brassica rapa , Animales , Arabidopsis/genética , Arabidopsis/metabolismo , Brassica napus/genética , Brassica napus/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Filogenia , Factor de Unión a CCAAT/genética , Factor de Unión a CCAAT/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brassica rapa/metabolismo , Flores
13.
J Exp Bot ; 73(18): 6115-6132, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-35639812

RESUMEN

Small secreted peptides have been described as key contributors to complex signalling networks that control plant development and stress responses. The Brassicaceae-specific PROSCOOP family encodes precursors of Serine riCh endOgenOus Peptides (SCOOPs). In Arabidopsis SCOOP12 has been shown to promote the defence response against pathogens and to be involved in root development. Here, we explore its role as a moderator of Arabidopsis primary root development. We show that the PROSCOOP12 null mutation leads to longer primary roots through the development of longer differentiated cells while PROSCOOP12 overexpression induces dramatic plant growth impairments. In comparison, the exogenous application of synthetic SCOOP12 peptide shortens roots through meristem size and cell length reductions. Moreover, superoxide anion (O2·-) and hydrogen peroxide (H2O2) production in root tips vary according to SCOOP12 abundance. By using reactive oxygen species scavengers that suppress the proscoop12 phenotype, we showed that root growth regulation by SCOOP12 is associated with reactive oxygen species metabolism. Furthermore, our results suggest that peroxidases act as potential SCOOP12 downstream targets to regulate H2O2 production, which in turn triggers cell wall modifications in root. Finally, a massive transcriptional reprogramming, including the induction of genes from numerous other pathways, including ethylene, salicylic acid, and glucosinolates biosynthesis, was observed, emphasizing its dual role in defence and development.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Peróxido de Hidrógeno/metabolismo , Superóxidos/metabolismo , Glucosinolatos/metabolismo , Raíces de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Etilenos/metabolismo , División Celular , Homeostasis , Péptidos/metabolismo , Ácido Salicílico/metabolismo , Peroxidasas/genética , Serina/metabolismo
14.
Ann Bot ; 129(3): 315-330, 2022 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-34850823

RESUMEN

BACKGROUND AND AIMS: Although root penetration of strong soils has been intensively studied at the scale of individual root axes, interactions between soil physical properties and soil foraging by whole plants are less clear. Here we investigate how variation in the penetration ability of distinct root classes and bulk density profiles common to real-world soils interact to affect soil foraging strategies. METHODS: We utilize the functional-structural plant model 'OpenSimRoot' to simulate the growth of maize (Zea mays) root systems with variable penetration ability of axial and lateral roots in soils with (1) uniform bulk density, (2) plow pans and (3) increasing bulk density with depth. We also modify the availability and leaching of nitrate to uncover reciprocal interactions between these factors and the capture of mobile resources. KEY RESULTS: Soils with plow pans and bulk density gradients affected overall size, distribution and carbon costs of the root system. Soils with high bulk density at depth impeded rooting depth and reduced leaching of nitrate, thereby improving the coincidence of nitrogen and root length. While increasing penetration ability of either axial or lateral root classes produced root systems of comparable net length, improved penetration of axial roots increased allocation of root length in deeper soil, thereby amplifying N acquisition and shoot biomass. Although enhanced penetration ability of both root classes was associated with greater root system carbon costs, the benefit to plant fitness from improved soil exploration and resource capture offset these. CONCLUSIONS: While lateral roots comprise the bulk of root length, axial roots function as a scaffold determining the distribution of these laterals. In soils with high soil strength and leaching, root systems with enhanced penetration ability of axial roots have greater distribution of root length at depth, thereby improving capture of mobile resources.


Asunto(s)
Nitratos , Suelo , Nitrógeno , Raíces de Plantas , Suelo/química , Zea mays
15.
Ecotoxicol Environ Saf ; 239: 113633, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35598446

RESUMEN

Excessive arsenic in soil and groundwater will not only seriously affect the growth of plants, but also endanger human health through the food chain. However, there are few studies on the effects of metalloid speciation and anion competition on the toxicity of arsenate [As(Ⅴ)]. To investigate the effects of accompanying anions and pH on the toxicity of As(Ⅴ) on wheat root elongation, wheat roots were exposed to the concentrations of As(Ⅴ) in the solution ranged from 0 to 500 mM and different levels of pH (4.5-8.0) and different accompanying anions (H2PO4-, SO42-, NO3- and Cl-) for five days. The root length of wheat was measured and the biotic ligand model (BLM) was developed to predict the potential toxicity of As(V) speciation to wheat roots. The results illustrated that EC50 of total As(V) (EC50{As(Ⅴ)T}) values increased from 6.88 to 33.9 µM with increasing pH values from 4.5 to 8.0, suggesting that increasing pH alleviated As(Ⅴ) toxicity. The EC50{AsO43-} and EC50{HAsO42-} values increased from 0.001 to 4342 µM and from 0.0214 to 27.4 µM, respectively, while the EC50{H2AsO4-} and EC50{H3AsO4} values sharply decreased from 6.62 to 2.68 µM and from 41.8 µM to 5.34 nm, respectively, when pH increased from 4.5 to 8.0. The toxicity of As(Ⅴ) decreased as the H2PO4- and SO42- activities increased but not when the activities of NO3- and Cl- increased, indicating that SO42- and H2PO4- showed competitive effects with As(Ⅴ) on the binding sites. Based on BLM theory, the stability constants were obtained: [Formula: see text] = 3.70; [Formula: see text] = 4.08; [Formula: see text] = 4.77; [Formula: see text] = 6.50; [Formula: see text] = 2.09 and [Formula: see text] = 1.86, with fAsBL50%= 0.30 and ß = 1.73. Results implied that BLM performed well in As(Ⅴ) toxicity prediction when coupling toxic species AsO43-, HAsO42-, H2AsO4-, and H3AsO4, and the competition of SO42- and H2PO4- for binding sites. The current study provides a useful tool to accurately predict As(V) toxicity to wheat roots.


Asunto(s)
Arseniatos , Triticum , Arseniatos/toxicidad , Humanos , Concentración de Iones de Hidrógeno , Ligandos , Fosfatos/farmacología , Raíces de Plantas , Sulfatos/toxicidad
16.
J Sci Food Agric ; 102(12): 5389-5398, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35332536

RESUMEN

BACKGROUND: Maize plants show great variation in root morphological response to nitrogen (N) deficit, and such alterations often determine N-use efficiency (NUE) plants. This study assessed genotypic variation in root morphology and NUE in selected 20 maize genotypes with contrasting root system size grown in a semi-hydroponic phenotyping system for 38 days under control (4 mmol L-1 NO3 - ) and low N (LN) (40 µmol L-1 ) for 38 days after transplanting. RESULTS: Maize genotypes exhibited different responses to LN stress in each of the 28 measured shoot and root traits. The 20 genotypes were assigned into one of the three groups: N-efficient (eight genotypes), medium (four genotypes), and N-inefficient (eight genotypes), based on shoot dry weight ratio (the ratio of shoot dry weight at LN and control) ± one standard error. In response to LN stress, the N-inefficient genotypes had significant reduction in biomass production by ~58% in shoots and ~64% in roots, while the N-efficient genotypes maintained their biomass. Under LN supply N-efficient genotypes showed a plasticity response that would result in both sparse lateral branching and increased root elongation as a whole or at each growth strata, and N efficiency positively correlated with lateral or axial root elongation and root elongation at different depths. CONCLUTSION: The total lateral root length was the main contributor to the improved N foraging and utilization in maize under LN conditions, followed by axial root length. Total lateral root length can be considered in breeding programs for producing maize cultivars with high NUE at the early seedling stage. © 2022 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Nitrógeno , Zea mays , Genotipo , Fitomejoramiento , Raíces de Plantas , Plantones/genética
17.
Plant J ; 104(4): 1023-1037, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32890411

RESUMEN

High levels of ammonium nutrition reduce plant growth and different plant species have developed distinct strategies to maximize ammonium acquisition while alleviating ammonium toxicity through modulating root growth. To date, the mechanisms underlying plant tolerance or sensitivity towards ammonium remain unclear. Rice (Oryza sativa) uses ammonium as its main N source. Here we show that ammonium supply restricts rice root elongation and induces a helical growth pattern, which is attributed to root acidification resulting from ammonium uptake. Ammonium-induced low pH triggers the asymmetric distribution of auxin in rice root tips through changes in auxin signaling, thereby inducing a helical growth response. Blocking auxin signaling completely inhibited this root response. In contrast, this root response is not activated in ammonium-treated Arabidopsis. Acidification of Arabidopsis roots leads to the protonation of indole-3-acetic acid and dampening of the intracellular auxin signaling levels that are required for maintaining root growth. Our study suggests a different mode of action by ammonium on the root pattern and auxin response machinery in rice versus Arabidopsis, and the rice-specific helical root response towards ammonium is an expression of the ability of rice to moderate auxin signaling and root growth to utilize ammonium while confronting acidic stress.


Asunto(s)
Compuestos de Amonio/metabolismo , Oryza/fisiología , Reguladores del Crecimiento de las Plantas/metabolismo , Transducción de Señal , Arabidopsis/fisiología , Ácidos Indolacéticos/metabolismo , Nitrógeno/metabolismo , Oryza/crecimiento & desarrollo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/fisiología , Estrés Fisiológico
18.
Plant J ; 101(6): 1462-1473, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31686423

RESUMEN

In saline soils, high levels of sodium (Na+ ) and chloride (Cl- ) ions reduce root growth by inhibiting cell division and elongation, thereby impacting on crop yield. Soil salinity can lead to Na+ toxicity of plant cells, influencing the uptake and retention of other important ions [i.e. potassium (K+ )] required for growth. However, measuring and quantifying soluble ions in their native, cellular environment is inherently difficult. Technologies that allow in situ profiling of plant tissues are fundamental for our understanding of abiotic stress responses and the development of tolerant crops. Here, we employ laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) to quantify Na, K and other elements [calcium (Ca), magnesium (Mg), sulphur (S), phosphorus (P), iron (Fe)] at high spatial resolution in the root growth zone of two genotypes of barley (Hordeum vulgare) that differ in salt-tolerance, cv. Clipper (tolerant) and Sahara (sensitive). The data show that Na+ was excluded from the meristem and cell division zone, indicating that Na+ toxicity is not directly reducing cell division in the salt-sensitive genotype, Sahara. Interestingly, in both genotypes, K+ was strongly correlated with Na+ concentration, in response to salt stress. In addition, we also show important genetic differences and salt-specific changes in elemental composition in the root growth zone. These results show that LA-ICP-MS can be used for fine mapping of soluble ions (i.e. Na+ and K+ ) in plant tissues, providing insight into the link between Na+ toxicity and root growth responses to salt stress.


Asunto(s)
Hordeum/fisiología , Raíces de Plantas/fisiología , Plantas Tolerantes a la Sal/fisiología , Calcio/análisis , Hordeum/química , Hierro/análisis , Terapia por Láser/métodos , Magnesio/análisis , Meristema/química , Meristema/fisiología , Fósforo/análisis , Raíces de Plantas/química , Potasio/análisis , Tolerancia a la Sal , Plantas Tolerantes a la Sal/química , Sodio/análisis , Espectrofotometría Atómica , Azufre/análisis
19.
Plant Cell Physiol ; 62(7): 1185-1198, 2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-34018557

RESUMEN

Metabolism, auxin signaling and reactive oxygen species (ROS) all contribute to plant growth, and each is linked to plant mitochondria and the process of respiration. Knockdown of mitochondrial succinate dehydrogenase assembly factor 2 (SDHAF2) in Arabidopsis thaliana lowered succinate dehydrogenase activity and led to pH-inducible root inhibition when the growth medium pH was poised at different points between 7.0 and 5.0, but this phenomenon was not observed in wildtype (WT). Roots of sdhaf2 mutants showed high accumulation of succinate, depletion of citrate and malate and up-regulation of ROS-related and stress-inducible genes at pH 5.5. A change of oxidative status in sdhaf2 roots at low pH was also evidenced by low ROS staining in root tips and altered root sensitivity to H2O2. sdhaf2 had low auxin activity in root tips via DR5-GUS staining but displayed increased indole-3-acetic acid (IAA, auxin) abundance and IAA hypersensitivity, which is most likely caused by the change in ROS levels. On this basis, we conclude that knockdown of SDHAF2 induces pH-related root elongation and auxin hyperaccumulation and hypersensitivity, mediated by altered ROS homeostasis. This observation extends the existing evidence of associations between mitochondrial function and auxin by establishing a cascade of cellular events that link them through ROS formation, metabolism and root growth at different pH values.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas Mitocondriales/metabolismo , Chaperonas Moleculares/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Especies Reactivas de Oxígeno/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Peróxido de Hidrógeno/metabolismo , Concentración de Iones de Hidrógeno , Raíces de Plantas/metabolismo
20.
New Phytol ; 232(6): 2418-2439, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34605021

RESUMEN

Sessile plants constantly experience environmental stresses in nature. They must have evolved effective mechanisms to balance growth with stress response. Here we report the MADS-box transcription factor AGL16 acting as a negative regulator in stress response in Arabidopsis. Loss-of-AGL16 confers resistance to salt stress in seed germination, root elongation and soil-grown plants, while elevated AGL16 expression confers the opposite phenotypes compared with wild-type. However, the sensitivity to abscisic acid (ABA) in seed germination is inversely correlated with AGL16 expression levels. Transcriptomic comparison revealed that the improved salt resistance of agl16 mutants was largely attributed to enhanced expression of stress-responsive transcriptional factors and the genes involved in ABA signalling and ion homeostasis. We further demonstrated that AGL16 directly binds to the CArG motifs in the promoter of HKT1;1, HsfA6a and MYB102 and represses their expression. Genetic analyses with double mutants also support that HsfA6a and MYB102 are target genes of AGL16. Taken together, our results show that AGL16 acts as a negative regulator transcriptionally suppressing key components in the stress response and may play a role in balancing stress response with growth.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Germinación/genética , Plantas Modificadas Genéticamente/metabolismo , Estrés Salino , Plantones/metabolismo , Estrés Fisiológico/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA