Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
Más filtros

Intervalo de año de publicación
1.
J Nematol ; 56(1): 20240014, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38650603

RESUMEN

The reniform nematode, Rotylenchulus reniformis, is a major yield-limiting pest of upland cotton (Gossypium hirsutum) in the United States that has been steadily increasing in incidence in many states. Reniform nematode-resistant cotton cultivars have recently become commercially available for cotton producers; however, few field trials have evaluated their efficacy as a nematode management tool. The aim of this study was to evaluate reniform nematode population development, plant growth, and seed cotton yield of reniform nematode-resistant cotton cultivars in two nematode-infested fields in Louisiana. Replicated small-plot field trials were conducted in St. Joseph, LA (NERS field) and Winnsboro, LA (MRRS field) during the 2022 and 2023 growing seasons. In 2022, cultivars evaluated included: (1) DP 1646 B2XF (susceptible/tolerant), (2) DP 2141NR B3XF (resistant), (3) PHY 332 W3FE (resistant), (4) PHY 411 W3FE (resistant), and (5) PHY 443 W3FE (resistant). In 2023, an additional susceptible cotton cultivar, PHY 340 W3FE, was also included. All nematode-resistant cotton cultivars evaluated provided suppression of reniform nematode population development relative to that of the susceptible cotton cultivars, with suppression of nematode soil population densities at harvest ranging from 49 - 81% relative to DP 1646 B2XF. The resistant cultivar PHY 411 W3FE provided the most consistent suppression of reniform nematode population development, reducing reniform nematode soil population densities at harvest in both field locations and both trial years. In contrast, DP 2141NR B3XF only reduced soil population densities at harvest in the NERS field in 2023. Despite relatively consistent nematode suppression and improvements in plant vigor ratings and canopy coverage associated with the resistant cotton cultivars, a yield increase was only observed with PHY 332 W3FE and PHY 411 W3FE planted at the NERS field in 2023. Despite strong resistance to reniform nematode in the evaluated cotton cultivars, nematode soil population densities still increased during the growing season in plots planted with resistant cotton cultivars, emphasizing the need for additional management tactics to use alongside host resistance. This study indicates that new reniform nematode-resistant cotton cultivars show promising potential to reduce nematode population development during the growing season in Louisiana.

2.
J Nematol ; 55(1): 20230001, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36880012

RESUMEN

Meloidogyne incognita- and Rotylenchulus reniformis-resistant new cotton cultivars have recently become available, giving growers a new option in nematode management. The objectives of this study were: (i) to determine the yield potential of the new cultivars PHY 360 W3FE (M. incognita-resistant) and PHY 332 W3FE (R. reniformis-resistant) in nematode-infested fields and (ii) to evaluate the effects of combining the nematicides Reklemel (fluazaindolizine), Vydate C-LV (oxamyl), and the seed treatment BIOST Nematicide 100 (heat killed Burkholderia rinojenses and its non-living spent fermentation media) with resistant cotton cultivars on nematode population levels and lint yield. Field experiments in 2020 and 2021 indicated M. incognita population levels were 73% lower on PHY 360 W3FE (R) and 80% lower for R. reniformis on the PHY 332 W3FE (R) at 40 days after planting. Nematode eggs per gram of root were further reduced an average of 86% after the addition of Reklemel and Vydate C-LV when averaging both cultivars over the two years. Tests with BIOST Nematicide 100 + Reklemel + Vydate C-LV (0.56 + 2.5 L/ha) in both M. incognita and R. reniformis fields produced higher lint yields. Overall, planting PHY 360 W3FE (R) and PHY 332 W3FE (R) improved yields an average of 364 kg/ha while limiting nematode population increases. The addition of the nematicides further increased yields 152 kg/ha of the nematode-resistant cultivars.

3.
J Nematol ; 55(1): 20230024, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37288386

RESUMEN

A three-year rotation of cotton (Gossypium hirsutum) cultivars either resistant (R) or susceptible (S) to Rotylenchulus reniformis and fallow (F) was examined for effect on cotton yield and nematode density. In year 1, 2, and 3, the resistant cultivar (DP 2143NR B3XF) yielded 78, 77, and 113% higher than the susceptible cultivar (DP 2044 B3XF). Fallow in year 1 followed by S in year 2 (F1S2) improved yield in year 2 by 24% compared with S1S2, but not as much as R1S2 (41% yield increase over S1S2). One year of fallow followed by R (F1R2) had lower yield in year 2 (11% reduction) than R1R2. The highest yield after three years of these rotations occurred with R1R2R3, followed by R1S2R3 (17% less yield) and F1F2S3 (35% less yield). Rotylenchulus reniformis density in soil averaged 57, 65, and 70% lower (year 1, 2, 3, respectively) in R1R2R3 compared with S1S2S3. In years 1 and 2, LOG10 transformed nematode density (LREN) was lower in F1, and F1F2, than for all other combinations. In year 3, the lowest LREN were associated with R1R2R3, F1S2F3, and F1F2S3. The highest LREN were associated with F1R2S3, F1S2S3, S1S2S3, R1R2S3, and R1S2S3. The combination of higher yield and lower nematode density will be a strong incentive for producers to use the R. reniformis resistant cultivars continuously.

4.
J Nematol ; 55(1): 20230061, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38283661

RESUMEN

Reniform nematode (Rotylenchulus reniformis) is a major pest of sweetpotato in many production regions in Southern United States. Applying soil fumigants and non-fumigant nematicides are the primary management strategies available to growers. This study compared the relative efficacy of nematicides (1,3-dichloropropene, fluopyram, oxamyl, fluazaindolizine, aldicarb, Majestene, and fluensulfone) for management of reniform nematode on sweetpotato. Fumigating soil with 1,3-dichloropropene consistently reduced soil population densities of reniform nematode at the time of planting in both trial years (31 - 36% reduction relative to the untreated control); however, the duration of suppression varied greatly by growing season. A similar trend was observed with fluopyram (56 - 67% reduction) and aldicarb (63 - 65% reduction), which provided season-long suppression of reniform nematode population development in 2021 but had no impact in 2022. In 2021, nematicide application had no impact on yield; however, in 2022, oxamyl and aldicarb increased the yield of U.S.#1 grade sweetpotato. Overall, soil fumigation with 1,3-dichloropropene and in-furrow application of fluopyram and aldicarb provided the most consistent suppression of reniform nematode on sweetpotato.

5.
J Nematol ; 55(1): 20230035, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37712053

RESUMEN

Rotylenchulus reniformis (reniform nematode, RN) is an important pathogen in cotton production. Cultural practices such as crop rotation and biofumigation-management of soil pathogens by biocidal compounds from crop residues-may help manage RN. The objective of this study was to evaluate the efficacy of winter crops for RN management through combinations of rotation and crop residue incorporation in a cotton greenhouse experiment. A total of 10 treatments were evaluated in soil inoculated with RN: three winter crops (carinata, oat, or hairy vetch) grown in rotation with no shoot organic matter (OM) incorporated (1-3), fresh shoot OM incorporated (4-6), or dry shoot OM incorporated (7-9), and a fallow control (10). Roots were re-incorporated in all treatments except fallow. Subsequently, cotton was grown. Oat and fallow were better rotation crops to lower soil RN abundances at winter crop termination than hairy vetch and carinata. After the OM incorporation treatments and cotton growth, oat was generally more effective at managing RN in cotton than carinata or hairy vetch. Within each crop, incorporation treatment generally did not affect RN management. Cotton growth was not consistently affected by the treatments.

6.
J Nematol ; 55(1): 20230041, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37868787

RESUMEN

Rotylenchulus reniformis (reniform nematode, RN) is among the most important nematodes affecting cotton. Cultural practices, such as rotation and soil amendment, are established methods for managing RN. Management may be enhanced if crop residue has biofumigant properties against RN. The objective was to evaluate the efficacy of winter crop amendments for managing RN in the greenhouse. Reniform nematode-infested soil was amended with dry or fresh organic matter (OM, 2% w/w) from winter crops - canola, carinata, hairy vetch, oat, or no crop. Cotton was subsequently grown in this soil. Independent of the crop, dry OM amendments were more effective than no amendment at managing RN, while fresh OM amendments were not. Soil and root RN abundances and reproduction factors were generally lower in Trials 1 and 3 for dry OM than fresh OM amendments or control without OM. In Trial 2, none of the OM treatments reduced RN parameters compared with no OM control. In general, when compared to plants without RN or OM, RN did not produce significant changes in growth parameters but did affect physiology (Soil Plant Analysis Development, or SPAD, values). In conclusion, dry OM amendments can help manage RN, crop growth does not always relate to RN abundances, and SPAD values could help indicate RN presence.

7.
J Nematol ; 542022.
Artículo en Inglés | MEDLINE | ID: mdl-35224509

RESUMEN

Plant parasitic nematodes are major pests on upland cotton worldwide and in the United States. The reniform nematode, Rotylenchulus reniformis and the southern root-knot nematode Meloidogyne incognita are some of the most damaging nematodes on cotton in the United States. Current management strategies focus on reducing nematode populations with nematicides. The objective of this research was to integrate additional fertilizer and nematicide combinations into current practices to establish economical nematode management strategies while promoting cotton yield and profit. Microplot and field trials were run to evaluate fertilizer and nematicide combinations applied at the pinhead square (PHS) and first bloom (FB) plant growth stages to reduce nematode population density and promote plant growth and yield. Cost efficiency was evaluated based on profit from lint yields and chemical input costs. Data combined from 2019 and 2020 suggested a nematicide seed treatment (ST) ST + (NH4)2SO4 + Vydate® C-LV + Max-In® Sulfur was the most effective in increasing seed cotton yields in the R. reniformis microplot trials. In R. reniformis field trials, a nematicide ST + (NH4)2SO4 + Vydate® C-LV at PHS supported the largest lint yield and profit per hectare at $1176. In M. incognita field trials, a nematicide ST + 28-0-0-5 + Vydate® C-LV + Max-In® Sulfur at PHS and FB supported the largest lint yields and profit per hectare at $784. These results suggest that combinations utilizing fertilizers and nematicides applied together across the season in addition to current fertility management show potential to promote yield and profit in R. reniformis and M. incognita infested cotton fields.

8.
J Nematol ; 542022.
Artículo en Inglés | MEDLINE | ID: mdl-35224508

RESUMEN

Root-knot (Meloidogyne incognita (Kofoid & White) Chitwood), reniform (Rotylenchulus reniformis Lindford & Oliveira), and lesion nematodes (Pratylenchus penetrans (Cobb) Filipjev & Schuurmans Stekhoven) are plant-parasitic nematodes that feed on soybean (Glycine max (L.) Merr.) roots, limiting seed production. The availability of resistance in soybeans to these nematodes is limited. However, new sources of resistance can be discovered in wild relatives of agronomic crops. Perennial Glycine species, wild relatives to soybean, are a source of valuable genetic resources with the potential to improve disease resistance in soybean. To determine if these perennials have resistance against nematodes, 18 accessions of 10 perennial Glycine species were evaluated for their response to M. incognita and R. reniformis, and eight accessions of six perennial Glycine species were evaluated for their response to P. penetrans. Pot experiments were conducted for M. incognita and R. reniformis in a growth chamber and in vitro experiments were conducted for P. penetrans. We found both shared and distinct interactions along the resistance-susceptible continuum in response to the three plant-parasitic nematode species. Ten and 15 accessions were classified as resistant to M. incognita based on eggs per gram of root and gall index, respectively. Among them, G. tomentella plant introductions (PIs) 446983 and 339655 had a significantly lower gall index than the resistant soybean check cv. Forrest. Of three R. reniformis resistant accessions identified in this study, G. tomentella PI 441001 showed significantly greater resistance to R. reniformis than the resistant check cv. Forrest based on nematodes per gram of root. In contrast, no resistance to P. penetrans was recorded in any perennial Glycine species.

9.
J Nematol ; 532021.
Artículo en Inglés | MEDLINE | ID: mdl-33860266

RESUMEN

Fluopyram (Velum® One) is a synthetic nematicide and azadirachtin (Molt-X®) is a biological nematicide. Both have shown promise against plant-parasitic nematodes on several agriculturally important crops. There is a lack of information on integration of pre-plant sunn hemp (Crotalaria juncea) cover crop with these post-plant nematicides, aiming to improve plant-parasitic nematodes management and mitigate any detrimental effects on free-living nematodes. Three field trials were conducted to investigate the effects of fluopyram alone or in combination with pre-plant sunn hemp cover crop, and azadirachtin combined with pre-plant sunn hemp on Rotylenchulus reniformis and Meloidogyne spp., and free-living nematodes. Zucchini (Cucurbita pepo) and tomato (Solanum lycopersicum) were grown in Trials I and II, and sweet potato (Ipomoea batatas) only was grown in Trial III. In all three trials, early applications of fluopyram at crop planting were effective in suppressing the abundance of Meloidogyne spp. (M. incognita and M. javanica) but it was not effective in reducing R. reniformis in the soil. Combining sunn hemp with fluopyram was suppressive to R. reniformis on short-term zucchini crop, but not on longer term tomato and sweet potato crops. In addition, application of fluopyram at transplanting was the key to successful suppression of Meloidogyne spp. as later fluopyram chemigation (at 2 weeks after planting in Trial II or 1 month after planting in Trial III) had no effect against Meloidogyne spp. On the other hand, planting of sunn hemp followed by monthly post-plant azadirachtin application consistently suppressed R. reniformis, but this treatment did not suppress Meloidogyne spp. Integrating sunn hemp with fluopyram increased zucchini yield by >2.3 folds and that with azadirachtin increased the zucchini yield by >1.7 folds. Although no yield improvement was observed on tomato in Trial II, integrating sunn hemp with azadirachtin and fluopyram increased tomato yield by 0.23 and 1.12 folds, respectively, in Trial I. Marketable yield of sweet potato was increased by 4.5-6.4 folds in all the fluopyram treatments but was only increased 61.5% by sunn hemp plus azadirachtin treatment. While fluopyram alone often reduced the abundance of free-living nematodes, integrating with sunn hemp mitigated the negative impacts of fluopyram on soil health.

10.
Phytopathology ; 110(9): 1511-1521, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32370659

RESUMEN

Reniform nematode (Rotylenchulus reniformis) is a yield-limiting pathogen of soybean (Glycine max) in the southeastern region of the United States. A population of 250 recombinant inbred lines (RIL) (F2:8) developed from a cross between reniform nematode resistant soybean cultivar Forrest and susceptible cultivar Williams 82 was utilized to identify regions associated with host suitability. A genetic linkage map was constructed using single-nucleotide polymorphism markers generated by genotyping-by-sequencing. The phenotype was measured in the RIL population and resistance was characterized using normalized and transformed nematode reproduction indices in an optimal univariate cluster analysis. Quantitative trait loci (QTL) analysis using normalized phenotype scores identified two QTLs on each arm of chromosome 18 (rrn-1 and rrn-2). The same QTL analysis performed with log10(x) transformed phenotype data also identified two QTLs: one on chromosome 18 overlapping the same region in the other analysis (rrn-1), and one on chromosome 11 (rrn-3). While rrn-1 and rrn-3 have been reported associated with reduced reproduction of reniform nematode, this is the first report of the rrn-2 region associated with host suitability to reniform nematode. The resistant parent allele at rrn-2 showed an inverse relationship with the resistance phenotype, correlating with an increase in nematode reproduction or host suitability. Several candidate genes within these regions corresponded with host plant defense systems. Interestingly, a characteristic pathogen resistance gene with a leucine-rich repeat was discovered within rrn-2. These genetic markers can be used by soybean breeders in marker-assisted selection to develop lines with resistance to reniform nematode.


Asunto(s)
Sitios de Carácter Cuantitativo , Tylenchoidea , Animales , Marcadores Genéticos , Enfermedades de las Plantas , Glycine max/genética
11.
J Nematol ; 512019.
Artículo en Inglés | MEDLINE | ID: mdl-34179803

RESUMEN

Three populations, two from Colombia and one from Brazil, of Rotylenchulus reniformis associated with banana and plantain, were characterized using morphological, morphometric, and molecular methods. Morphometric data from these populations were similar to type and reference populations of R. reniformis. Partial sequences of both D2-D3 rDNA and mitochondrial cytochrome oxidase subunit I (COI) regions had a strong affinity (99% similarity) to previously published sequences of R. reniformis. Phylogenetic analyses (maximum likelihood and Bayesian inference) suggested that the Colombian populations of R. reniformis corresponded to the previously described Type A of the species. This is the definitive first report in Colombia of R. reniformis associated with banana and plantain crops.

12.
J Nematol ; 512019.
Artículo en Inglés | MEDLINE | ID: mdl-34179810

RESUMEN

Plant parasitic nematodes (PPN) are microscopic soil herbivores that cause damage to many economic crops. For the last century, it has been proposed that chemotaxis is the primary means by which PPN locate host plant roots. The identities and modes of action of chemoattractants that deliver host-specific messages to PPN, however, are still elusive. In this study, a unique multidimensional agar-based motility assay was developed to assess the impacts of root exudates on the short-range motility and orientation of PPN. Three PPN (Rotylenchulus reniformis, Meloidogyne incognita and Heterodera glycines) and root exudates from their respective host and non-host plants (cotton, soybean, and peanut) were used to validate the assay. As predicted, R. reniformis and M. incognita were attracted to root exudates of cotton and soybean (hosts), but not to the exudates of peanut (non-host). Likewise, H. glycines was attracted to soybean (host) root exudates. These results underpinned the intrinsic roles of root exudates in conveying the host specificity of PPN. In particular, PPN selectively identified and targeted to hydrophilic, but not hydrophobic, fractions of root exudates, indicating that groundwater should be an effective matrix for chemotaxis associated with PPN and their host plant interactions.

13.
J Nematol ; 47(4): 302-9, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26941458

RESUMEN

The reniform nematode (Rotylenchulus reniformis) causes significant cotton (Gossypium hirsutum) losses in the southeastern United States. The research objective was to describe the effects of two resistant G. barbadense lines (cultivar TX 110 and accession GB 713) on development and fecundity of reniform nematode. Nematode development and fecundity were evaluated on the resistant lines and susceptible G. hirsutum cultivar Deltapine 16 in three repeated growth chamber experiments. Nematode development on roots early and late in the infection cycle was measured at set intervals from 1 to 25 d after inoculation (DAI) and genotypes were compared based on the number of nematodes in four developmental stages (vermiform, swelling, reniform, and gravid). At 15, 20, and 25 DAI, egg production by individual females parasitizing each genotype was measured. Unique reniform nematode developmental patterns were noted on each of the cotton genotypes. During the early stages of infection, infection and development occurred 1 d faster on susceptible cotton than on the resistant genotypes. Later, progression to the reniform and gravid stages of development occurred first on the susceptible genotype, followed by G. barbadense cultivar TX 110, and finally G. barbadense accession GB 713. Egg production by individual nematodes infecting the three genotypes was similar. This study corroborates delayed development previously reported on G. barbadense cultivar TX 110 and is the first report of delayed infection and development associated with G. barbadense accession GB 713. The different developmental patterns in the resistant genotypes suggest that unique or additional loci may confer resistance in these two lines.

14.
J Nematol ; 47(2): 159-65, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26170479

RESUMEN

The reniform nematode, Rotylenchulus reniformis, is a sedentary semi-endoparasitic species with a host range that encompasses more than 77 plant families. Nematode effector proteins containing plant-ligand motifs similar to CLAVATA3/ESR (CLE) peptides have been identified in the Heterodera, Globodera, and Meloidogyne genera of sedentary endoparasites. Here, we describe the isolation, sequence analysis, and spatiotemporal expression of three R. reniformis genes encoding putative CLE motifs named Rr-cle-1, Rr-cle-2, and Rr-cle-3. The Rr-cle cDNAs showed >98% identity with each other and the predicted peptides were identical with the exception of a short stretch of residues at the carboxy(C)-terminus of the variable domain (VD). Each RrCLE peptide possessed an amino-terminal signal peptide for secretion and a single C-terminal CLE motif that was most similar to Heterodera CLE motifs. Aligning the Rr-cle cDNAs with their corresponding genomic sequences showed three exons with an intron separating the signal peptide from the VD and a second intron separating the VD from the CLE motif. An alignment of the RrCLE1 peptide with Heterodera glycines and Heterodera schachtii CLE proteins revealed a high level of homology within the VD region associated with regulating in planta trafficking of the processed CLE peptide. Quantitative RT-PCR (qRT-PCR) showed similar expression profiles for each Rr-cle transcript across the R. reniformis life-cycle with the greatest transcript abundance being in sedentary parasitic female nematodes. In situ hybridization showed specific Rr-cle expression within the dorsal esophageal gland cell of sedentary parasitic females.

15.
J Nematol ; 47(4): 316-21, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26941460

RESUMEN

Fluopyram is a succinate dehydrogenase inhibitor (SDHI) fungicide that is being evaluated as a seed treatment and in-furrow spray at planting on row crops for management of fungal diseases and its effect on plant-parasitic nematodes. Currently, there are no data on nematode toxicity, nematode recovery, or effects on nematode infection for Meloidogyne incognita or Rotylenchulus reniformis after exposure to low concentrations of fluopyram. Nematode toxicity and recovery experiments were conducted in aqueous solutions of fluopyram, while root infection assays were conducted on tomato. Nematode paralysis was observed after 2 hr of exposure at 1.0 µg/ml fluopyram for both nematode species. Using an assay of nematode motility, 2-hr EC50 values of 5.18 and 12.99 µg/ml fluopyram were calculated for M. incognita and R. reniformis, respectively. Nematode recovery in motility was greater than 50% for M. incognita and R. reniformis 24 hr after nematodes were rinsed and removed from a 1-hr treatment of 5.18 and 12.99 µg/ml fluopyram, respectively. Nematode infection of tomato roots was reduced and inversely proportional to 1-hr treatments with water solutions of fluopyram at low concentrations, which ranged from 1.3 to 5.2 µg/ml for M. incognita and 3.3 to 13.0 µg/ml for R. reniformis. Though fluopyram is nematistatic, low concentrations of the fungicide were effective at reducing the ability of both nematode species to infect tomato roots.

16.
J Nematol ; 46(1): 1-7, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24643425

RESUMEN

Identification of resistance to reniform nematode (Rotylenchulus reniformis) is the first step in developing resistant soybean (Glycine max) cultivars that will benefit growers in the mid-South region of the United States. This study was conducted to identify soybean (G. max and G. soja) lines with resistance to this pathogen. Sixty-one wild and domestic soybean lines were evaluated in replicated growth chamber tests. Six previously untested soybean lines with useful levels of resistance to reniform nematode were identified in both initial screening and subsequent confirmation tests: released germplasm lines DS4-SCN05 (PI 656647) and DS-880 (PI 659348); accession PI 567516 C; and breeding lines DS97-84-1, 02011-126-1-1-2-1 and 02011-126-1-1-5-1. Eleven previously untested moderately susceptible or susceptible lines were also identified: released germplasm lines D68-0099 (PI 573285) and LG01-5087-5; accessions PI 200538, PI 416937, PI 423941, PI 437697, PI 467312, PI 468916, PI 594692, and PI 603751 A; and cultivar Stafford (PI 508269). Results of previously tested lines evaluated in the current study agreed with published reports 69.6% of the time for resistant lines and 87.5% of the time for susceptible lines. Soybean breeders may benefit from incorporating the newly identified resistant lines into their breeding programs.

17.
J Nematol ; 46(4): 309-20, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25580023

RESUMEN

Variability in edaphic factors such as clay content, organic matter, and nutrient availability within individual fields is a major obstacle confronting cotton producers. Adaptation of geospatial technologies such global positioning systems (GPS), yield monitors, autosteering, and the automated on-and-off technology required for site-specific nematicide application has provided growers with additional tools for managing nematodes. Multiple trials in several states were conducted to evaluate this technology in cotton. In a field infested with Meloidogyne spp., both shallow (0 to 0.3 m) and deep (0 to 0.91 m) apparent electrical conductivity (ECa) readings were highly correlated with sand content. Populations of Meloidogyne spp. were present when shallow and deep EC values were less than 30 and 90 mS/m, respectively. Across three years of trials in production fields in which verification strips (adjacent nematicide treated and untreated rows across all soil zones) were established to evaluate crop response to nematicide application, deep EC values from 27.4-m wide transects of verification strips were more predictive of yield response to application of 1,3-dichloropropene than were shallow EC values in one location and both ECa values equally effective at predicting responses at the second location. In 2006, yields from entire verification strips across three soil zones in four production fields showed that nematicide response was greatest in areas with the lowest EC values indicating highest content of sand. In 2008 in Ashley and Mississippi Counties, AR, nematicide treatment by soil zone resulted in 36% and 42% reductions in the amount of nematicide applied relative to whole-field application. In 2007 in Bamberg County, SC, there was a strong positive correlation between increasing population densities of Meloidogyne incognita and increasing sand content. Trials conducted during 2007 and 2009 in South Carolina against Hoplolaimus columbus showed a stepwise response to increasing rates of aldicarb in zone 1 but not in zones 2 and 3. Site-specific application of nematicides has been shown to be a viable option for producers as a potential management tool against several nematode pathogens of cotton.

18.
Plants (Basel) ; 13(7)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38611488

RESUMEN

Reniform nematode (Rotylenchulus reniformis) is an important microparasite for Upland cotton (Gossypium hirsutum L.) production. Growing resistant cultivars is the most economical management method, but only a few G. barbadense genotypes and some diploid Gossypium species confer high levels of resistance. This study conducted a transcriptome analysis of resistant genotypes to identify genes involved in host plant defense. Seedlings of G. arboreum accessions PI 529728 (A2-100) and PI 615699 (A2-190), and G. barbadense genotypes PI 608139 (GB 713) and PI 163608 (TX 110), were inoculated with the reniform nematode population MSRR04 and root samples were collected on the fifth (D5) and ninth (D9) day after inoculation. Differentially expressed genes (DEGs) were identified by comparing root transcriptomes from inoculated plants with those from non-inoculated plants. Accessions A2-100 and A2-190 showed 52 and 29 DEGs on D5, respectively, with 14 DEGs in common, and 18 DEGs for A2-100 and 11 DEGs for A2-190 on chromosome 5. On D9, four DEGs were found in A2-100 and two DEGs in A2-190. For GB 713, 52 and 43 DEGs were found, and for TX 110, 29 and 117 DEGs were observed on D5 and D9, respectively. Six DEGs were common at the two sampling times for these genotypes. Some DEGs were identified as Meloidogyne-induced cotton (MIC) 3 and 4, resistance gene analogs, or receptor-like proteins. Other DEGs have potential roles in plant defense, such as peroxidases, programmed cell death, pathogenesis related proteins, and systemic acquired resistance. Further research on these DEGs will aid in understanding the mechanisms of resistance to explore new applications for the development of resistant cultivars.

19.
Methods Mol Biol ; 2756: 171-226, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38427295

RESUMEN

This chapter is a continuation of Chap. 3 . Initially, protocols for the screening of several host plants to their major migratory and semi-endoparasitic nematodes are presented. Then the problems related to assessment of tolerance to these nematodes are described, followed by the determination of nematode races. The main plant-nematode interactions considered are annuals and perennials to Pratylenchus spp.; banana to Radopholus similis; potato to Nacobbus aberrans; several crop plants, including onion, alfalfa, clovers, and potato, to Ditylenchus dipsaci; broad bean to D. giga; potato and sweet potato to D. destructor; peanut to D. africanus; rice to D. angustus and Aphelenchoides besseyi; wheat to Anguina tritici; different plants to Rotylenchulus reniformis; and citrus to Tylenchulus semipenetrans. Schemes to identify races or biotypes are only presented for D. dipsaci and T. semipenetrans. The occurrence of pathotypes in other nematode species is also discussed. Finally, comments are made on ectoparasitic nematodes.


Asunto(s)
Tylenchida , Tylenchoidea , Animales , Virulencia , Plantas/parasitología
20.
J Nematol ; 45(2): 87-91, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23833322

RESUMEN

The sedentary semi-endoparasitic nematode Rotylenchulus reniformis, the reniform nematode, is a serious pest of cotton and soybean in the United States. In recent years, interest in the molecular biology of the interaction between R. reniformis and its plant hosts has increased; however, the unusual life cycle of R. reniformis presents a unique set of challenges to researchers who wish to study the developmental expression of a particular nematode gene or evaluate life stage-specific effects of a specific treatment such as RNA-interference or a potential nematicide. In this report, we describe a simple method to collect R. reniformis juvenile and vermiform adult life stages under in vitro conditions and a second method to collect viable parasitic sedentary females from host plant roots. Rotylenchulus reniformis eggs were hatched over a Baermann funnel and the resultant second-stage juveniles incubated in petri plates containing sterile water at 30°C. Nematode development was monitored through the appearance of fourth-stage juveniles and specific time-points at which each developmental stage predominated were determined. Viable parasitic sedentary females were collected from infected roots using a second method that combined blending, sieving, and sucrose flotation. Rotylenchulus reniformis life stages collected with these methods can be used for nucleic acid or protein extraction or other experimental purposes that rely on life stage-specific data.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA