RESUMEN
Mucosal-associated invariant T (MAIT) cells can elicit immune responses against riboflavin-based antigens presented by the evolutionary conserved MHC class I related protein, MR1. While we have an understanding of the structural basis of human MAIT cell receptor (TCR) recognition of human MR1 presenting a variety of ligands, how the semi-invariant mouse MAIT TCR binds mouse MR1-ligand remains unknown. Here, we determine the crystal structures of 2 mouse TRAV1-TRBV13-2+ MAIT TCR-MR1-5-OP-RU ternary complexes, whose TCRs differ only in the composition of their CDR3ß loops. These mouse MAIT TCRs mediate high affinity interactions with mouse MR1-5-OP-RU and cross-recognize human MR1-5-OP-RU. Similarly, a human MAIT TCR could bind mouse MR1-5-OP-RU with high affinity. This cross-species recognition indicates the evolutionary conserved nature of this MAIT TCR-MR1 axis. Comparing crystal structures of the mouse versus human MAIT TCR-MR1-5-OP-RU complexes provides structural insight into the conserved nature of this MAIT TCR-MR1 interaction and conserved specificity for the microbial antigens, whereby key germline-encoded interactions required for MAIT activation are maintained. This is an important consideration for the development of MAIT cell-based therapeutics that will rely on preclinical mouse models of disease.
Asunto(s)
Antígenos de Histocompatibilidad Clase I , Antígenos de Histocompatibilidad Menor , Células T Invariantes Asociadas a Mucosa , Ribitol , Animales , Antígenos de Histocompatibilidad Clase I/metabolismo , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase I/química , Antígenos de Histocompatibilidad Menor/metabolismo , Antígenos de Histocompatibilidad Menor/genética , Antígenos de Histocompatibilidad Menor/inmunología , Antígenos de Histocompatibilidad Menor/química , Ratones , Células T Invariantes Asociadas a Mucosa/inmunología , Células T Invariantes Asociadas a Mucosa/metabolismo , Humanos , Ribitol/análogos & derivados , Ribitol/metabolismo , Ribitol/química , Uracilo/análogos & derivados , Uracilo/metabolismo , Uracilo/química , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores de Antígenos de Linfocitos T/inmunología , Cristalografía por Rayos XRESUMEN
Mucosal-associated invariant T (MAIT) cells are a subset of unconventional T cells that recognize small molecule metabolites presented by major histocompatibility complex class I related protein 1 (MR1), via an αß T cell receptor (TCR). MAIT TCRs feature an essentially invariant TCR α-chain, which is highly conserved between mammals. Similarly, MR1 is the most highly conserved major histocompatibility complex-I-like molecule. This extreme conservation, including the mode of interaction between the MAIT TCR and MR1, has been shown to allow for species-mismatched reactivities unique in T cell biology, thereby allowing the use of selected species-mismatched MR1-antigen (MR1-Ag) tetramers in comparative immunology studies. However, the pattern of cross-reactivity of species-mismatched MR1-Ag tetramers in identifying MAIT cells in diverse species has not been formally assessed. We developed novel cattle and pig MR1-Ag tetramers and utilized these alongside previously developed human, mouse, and pig-tailed macaque MR1-Ag tetramers to characterize cross-species tetramer reactivities. MR1-Ag tetramers from each species identified T cell populations in distantly related species with specificity that was comparable to species-matched MR1-Ag tetramers. However, there were subtle differences in staining characteristics with practical implications for the accurate identification of MAIT cells. Pig MR1 is sufficiently conserved across species that pig MR1-Ag tetramers identified MAIT cells from the other species. However, MAIT cells in pigs were at the limits of phenotypic detection. In the absence of sheep MR1-Ag tetramers, a MAIT cell population in sheep blood was identified phenotypically, utilizing species-mismatched MR1-Ag tetramers. Collectively, our results validate the use and define the limitations of species-mismatched MR1-Ag tetramers in comparative immunology studies.
Asunto(s)
Antígenos de Histocompatibilidad Clase I , Antígenos de Histocompatibilidad Menor , Células T Invariantes Asociadas a Mucosa , Especificidad de la Especie , Animales , Células T Invariantes Asociadas a Mucosa/inmunología , Células T Invariantes Asociadas a Mucosa/metabolismo , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo , Humanos , Ratones , Bovinos , Antígenos de Histocompatibilidad Menor/metabolismo , Antígenos de Histocompatibilidad Menor/genética , Antígenos de Histocompatibilidad Menor/inmunología , Antígenos de Histocompatibilidad Menor/química , Porcinos , Macaca , Receptores de Antígenos de Linfocitos T alfa-beta/inmunología , Receptores de Antígenos de Linfocitos T alfa-beta/metabolismo , Receptores de Antígenos de Linfocitos T alfa-beta/genéticaRESUMEN
The oxygen evolution reaction (OER) performance of ruthenium-based oxides strongly correlates with the electronic structures of Ru. However, the widely adopted monometal doping method unidirectionally regulates only the electronic structures, often failing to balance the activity and stability. Here, we propose an "elastic electron transfer" strategy to achieve bidirectional optimization of the electronic structures of Sr, Cr codoped RuO2 catalysts for acidic OER. The introduction of electron-withdrawing Sr intrinsically activates the Ru sites by increasing the oxidation state of Ru. Simultaneously, Cr acts as an electron buffer, donating electrons to Ru in the presence of Sr in the as-prepared catalysts and absorbing excess electrons from Sr leaching during the OER. Such a bidirectional regulation feature of Cr prevents overoxidation of Ru and maintains its high oxidation state during the OER. The optimal Ru3Cr1Sr0.175 catalyst exhibits a low overpotential (214 mV @ 10 mA cm-2) and excellent stability (over 300 h).
RESUMEN
An advanced materials solution utilizing the concept of "smart catalysts" could be a game changer for today's automotive emission control technology, enabling the efficient use of precious metals via their two-way switching between metallic nanoparticle forms and ionic states in the host perovskite lattice as a result of the cyclical oxidizing/reducing atmospheres. However, direct evidence for such processes remains scarce; therefore, the underlying mechanism has been an unsettled debate. Here, we use advanced scanning transmission electron microscopy to reveal the atomic-scale behaviors for a LaFe0.95Pd0.05O3-supported Ir-Pd-Ru nanocatalyst under fluctuating redox conditions, thereby proving the reversible dissolution/exsolution for Ir and Ru but with a limited occurrence for Pd. Despite such selective dissolution during oxidation, all three elements remain cooperatively alloyed in the subsequent reduction, which is a key factor in preserving the catalytic activity of the ternary nanoalloy while displaying its self-regenerating functionality and control of particle agglomeration.
RESUMEN
Benefiting from similar hydrogen bonding energy to Pt and much lower price compare with Pt, Ru based catalysts are promising candidates for electrocatalytic hydrogen evolution reaction (HER). The catalytic activity of Ru nanoparticles can be enhanced through improving their dispersion by using different supports, and the strong metal supports interaction can further regulate their catalytic performance. In addition, single-atom catalysts (SACs) with almost 100% atomic utilization attract great attention and the coordinative atmosphere of single atoms can be adjusted by supports. Moreover, the syngenetic effects of nanoparticles and single atoms can further improve the catalytic performance of Ru based catalysts. In this review, the progress of Ru based HER electrocatalysts are summarized according to their existing forms, including nanoparticles (NPs), single atoms (SAs) and the combination of both NPs and SAs. The common supports such as carbon materials, metal oxides, metal phosphides and metal sulfides are classified to clarify the metal supports interaction and coordinative atmosphere of Ru active centers. Especially, the possible catalytic mechanisms and the reasons for the improved catalytic performance are discussed from both experimental results and theoretical calculations. Finally, some challenges and opportunities are prospected to facilitate the development of Ru based catalysts for HER.
RESUMEN
Covalent organic frameworks (COFs) with precisely controllable structures and highly ordered porosity possess great potential as electrocatalysts for hydrogen evolution reaction (HER). However, the catalytic performance of pristine COFs is limited by the poor active sites and low electron transfer. Herein, to address these issues, the conductive carbon nanotubes (CNTs) are coated by a defined structure RuBpy(H2 O)(OH)Cl2 in bipyridine-based COF (TpBpy). And this composite with single site Ru incorporated can be used as HER electrocatalyst in alkaline conditions. A series of crucial issues are carefully discussed through experiments and density functional theory (DFT) calculations, such as the coordination structure of the atomically dispersion Ru ions, the catalytic mechanism of the embedded catalytic site, and the effect of COF and CNTs on the electrocatalytic properties. According to DFT calculations, the embedded single sites Ru act as catalytic sites for H2 generation. Benefitting from increasing the catalyst conductivity and the charge transfer, the as-prepared c-CNT-0.68@TpBpy-Ru shows an excellent HER overpotential of 112 mV at 10 mA cm-2 under alkaline conditions as well as an excellent durability up to 12 h, which is superior to that of most of the reported COFs electrocatalysts in alkaline solution.
RESUMEN
γ-valerolactone (GVL) is a key value-added chemical catalytically produced from levulinic acid (LA), an important biomass derivative platform chemical. Here an ultra-efficient 3D Ru catalyst generated by in situ reduction of RuZnOx nanoboxes is reported; the catalyst features a well-defined structure of highly dispersed in situ oxide-derived Ru (IOD-Ru) clusters (≈1 nm in size) spatially confined within the 3D nanocages with rich mesopores, which guarantees a maximized atom utilization with a high exposure of Ru active sites as well as a 3D accessibility for substrate molecules. The IOD-Ru exhibits ultrahigh performance for the hydrogenation of LA into GVL with a record-breaking turnover frequency (TOF) up to 59400 h-1 , 14 times higher than that of the ex situ reduction of RuZnOx nanoboxes catalyst. Structural characterizations and theoretical calculations collectively indicate that the defect-rich and coordination-unsaturated IOD-Ru sites can boost the activation of the carbonyl group in LA with a significantly lowered energy barrier of hydrogenation.
RESUMEN
The urgent development of effective electrocatalysts for hydrogen evolution and hydrogen oxidation reaction (HER/HOR) is needed due to the sluggish alkaline hydrogen electrocatalysis. Here, an unusual face-centered cubic (fcc) Ru nanocrystal with favorable HER/HOR performance is offered. Guided by the lower calculated surface energy of fcc Ru than that of hcp Ru in NH3, the carbon-supported fcc Ru electrocatalyst is facilely synthesized in the NH3 reducing atmosphere. The specific HOR kinetic current density of fcc Ru can reach 23.4 mA cmPGM -2, which is around 20 and 21 times greater than that of hexagonal close-packed (hcp) Ru and Pt/C, respectively. Additionally, the HER specific activity is enhanced more than six times in fcc Ru electrocatalyst when compared to Pt/C. Experimental and theoretical analysis indicate that the phase transition from hcp Ru to fcc Ru can negatively shift the d band center, weaken the interaction between catalysts and key intermediates and therefore enhances the HER/HOR kinetics.
RESUMEN
Electrocatalysts with high activity and durability for acidic oxygen evolution reaction (OER) play a crucial role in achieving cost-effective hydrogen production via proton exchange membrane water electrolysis. A novel electrocatalyst, Te-doped RuO2 (Te-RuO2) nanotubes, synthesized using a template-directed process, which significantly enhances the OER performance in acidic media is reported. The Te-RuO2 nanotubes exhibit remarkable OER activity in acidic media, requiring an overpotential of only 171 mV to achieve an anodic current density of 10 mA cm-2. Furthermore, they maintain stable chronopotentiometric performance under 10 mA cm-2 in acidic media for up to 50 h. Based on the experimental results and density functional calculations, this significant improvement in OER performance to the synergistic effect of large specific surface area and modulated electronic structure resulting from the doping of Te cations is attributed.
RESUMEN
Designing catalysts to proceed with catalytic reactions along the desired reaction pathways, e.g., CO2 methanation, has received much attention but remains a huge challenge. This work reports one Ru1Ni single-atom alloy (SAA) catalyst (Ru1Ni/SiO2) prepared via a galvanic replacement reaction between RuCl3 and Ni nanoparticles (NPs) derived from the reduction of Ni phyllosilicate (Ni-ph). Ru1Ni/SiO2 achieved much improved selectivity toward hydrogenation of CO2 to CH4 and catalytic activity (Turnover frequency (TOF) value: 40.00 × 10-3 s-1), much higher than those of Ni/SiO2 (TOF value: 4.40 × 10-3 s-1) and most reported Ni-based catalysts (TOF value: 1.03 × 10-3-11.00 × 10-3 s-1). Experimental studies verify that Ru single atoms are anchored onto the Ni NPs surface via the Ru1-Ni coordination accompanied by electron transfer from Ru1 to Ni. Both in situ experiments and theoretical calculations confirm that the interface sites of Ru1Ni-SAA are the intrinsic active sites, which promote the direct dissociation of CO2 and lower the energy barrier for the hydrogenation of CO* intermediate, thereby directing and enhancing the CO2 hydrogenation to CH4.
RESUMEN
The traditional tris(bipyridine)ruthenium(II) complex suffers from the notorious aggregation-caused quenching effect, which greatly compromises its electrochemiluminescence (ECL) efficiency, thus hindering further applications in biosensing and clinical diagnosis. Here, the ultrathin tetraphenylethylene-active tris(bipyridine)ruthenium(II) derivative nanosheets (abbreviated as Ru-TPE NSs) are synthesized through a protein-assisted self-assembly strategy for ultrasensitive ECL detection of human telomerase RNA (hTR) for the first time. The synthesized Ru-TPE NSs exhibit the aggregation-induced enhanced ECL behavior and excellent water-dispersion. Surprisingly, up to a 106.5-fold increase in the ECL efficiency of Ru-TPE NSs is demonstrated compared with the dispersed molecules in an organic solution. The restriction of intramolecular motions is confirmed to be responsible for the significant ECL enhancement. Therefore, this proposed ECL biosensor shows high sensitivity and excellent selectivity for hTR based on Ru-TPE NSs as efficient ECL beacons and the catalytic hairpin assembly as signal amplification, whose detection limit is as low as 8.0 fm, which is far superior to the previously reported works. Here, a promising analytical method is provided for early clinical diagnosis and a new type of efficient ECL emitters with great application prospects is represented.
Asunto(s)
Técnicas Biosensibles , Rutenio , Telomerasa , Humanos , Técnicas Electroquímicas/métodos , Mediciones Luminiscentes/métodos , ARN , Técnicas Biosensibles/métodosRESUMEN
Development of advanced electrocatalysts for the green hydrogen production by water electrolysis is an important task to reduce the climate and environmental issues as well as to meet the future energy demands. Herein, Ru/Ni-B-P sphere electrocatalyst is demonstrated by a combination of hydrothermal and soaking approaches, meeting the industrial requirement of low cell voltage with stable high-current operation. The Ru/Ni-B-P sphere catalyst demonstrates low overpotentials of 191 and 350 mV at 300 mA cm-2 with stable high current operation, ranking it as one of the best oxygen evolution reaction (OER) electrocatalysts. The bifunctional 2-E system demonstrates a low cell voltage of 2.49 V at 2000 mA cm-2 in 6 m KOH at 60 °C of harsh industrial operation condition. It also demonstrates outstanding stability with continuous 120 h (5 days) CA operation at 1000 mA cm-2. Further, the hybrid configuration of Ru/Ni-B-P || Pt/C being paired with the conventional benchmark electrode demonstrates a record low 2-E cell voltage of 2.40 V at 2000 mA cm-2 in 6 m KOH and excellent stability at high current of 1500 mA cm-2 under industrial operational condition.
RESUMEN
The development of efficient and durable electrocatalysts for the alkaline hydrogen oxidation/evolution reaction is crucial for anion exchange membrane fuel cells/water electrolyzers. However, designing such electrocatalysts poses a challenge due to the need for optimizing various adsorbates. Herein, highly dispersed Ru nanoparticles catalysts is reported encapsulated and supported by defective anatase phase of titanium dioxide (named as Ru NPs/def-TiO2(A)) for boosting hydrogen-cycle electrocatalysis with robust anti-CO-poisoning in alkaline conditions. The Ru NPs/def-TiO2(A) achieves a high-quality activity of 7.65 A mgRu -1, which is 23.2 and 9.5-fold higher than commercial Ru/C and Pt/C in alkaline HOR. Moreover, this catalyst exhibits an outstanding overpotential of 21 mV at 10 mA cm-2 in alkaline HER. Hydrogen underpotential deposition (Hupd) and CO stripping experiments demonstrate that Ru NPs/def-TiO2(A) has the optimized H*, OH*, and CO* adsorption strength, enabling the Ru NPs/def-TiO2(A) catalyst to display excellent and robust HOR/HER performance under alkaline conditions. Using density functional theory calculations, the enhanced HOR performance mechanism for the Ru NPs/def-TiO2(A) catalyst originates from the TiO2 step face in contact with the Ru nanoparticles, indicating that the kinetics of water formation are considerably more favorable at the Ru NPs/def-TiO2(A) interface.
RESUMEN
The high theoretical energy density (2600 Wh kg-1) and low cost of lithium-sulfur batteries (LSBs) make them an ideal alternative for the next-generation energy storage system. Nevertheless, severe capacity degradation and low sulfur utilization resulting from shuttle effect hinder their commercialization. Herein, Single-atom Ru-doped 1T/2H MoS2 with enriched defects decorates V2C MXene (Ru-MoS2/MXene) produced by a new phase-engineering strategy employed as sulfur host to promote polysulfide adsorption and conversion reaction kinetics. The Ru single atom-doped adjusts the chemical environment of the MoS2/MXene to anchor polysulfide and acts as an efficient center to motivate the redox reaction. In addition, the rich defects of the MoS2 and ternary boundary among 1T/2H MoS2 and V2C accelerate the charge transfer and ion movements for the reaction. As expected, the Ru-MoS2/MXene/S cathode-based cell exhibits a high-rate capability of 684.3 mAh g-1 at 6 C. After 1000 cycles, the Ru-MoS2/MXene/S cell maintains an excellent cycling stability of 696 mAh g-1 at 2 C with a capacity degradation as low as 0.02% per cycle. Despite a high sulfur loading of 9.5 mg cm-2 and a lean electrolyte-to-sulfur ratio of 4.3, the cell achieves a high discharge capacity of 726 mAh g-1.
RESUMEN
Herein, P2-type layered manganese and ruthenium oxide is synthesized as an outstanding intercalation cathode material for high-energy density Na-ion batteries (NIBs). P2-type sodium deficient transition metal oxide structure, Na0.67Mn1-xRuxO2 cathodes where x varied between 0.05 and 0.5 are fabricated. The partially substituted main phase where x = 0.4 exhibits the best electrochemical performance with a discharge capacity of ≈170 mAh g-1. The in situ X-ray Absorption Spectroscopy (XAS) and time-resolved X-ray Diffraction (TR-XRD) measurements are performed to elucidate the neighborhood of the local structure and lattice parameters during cycling. X-ray photoelectron spectroscopy (XPS) revealed the oxygen-rich structure when Ru is introduced. Density of States (DOS) calculations revealed the Fermi-Level bandgap increases when Ru is doped, which enhances the electronic conductivity of the cathode. Furthermore, magnetization calculations revealed the presence of stronger RuâO bonds and the stabilizing effect of Ru-doping on MnO6 octahedra. The results of Time-of-flight secondary-ion mass spectroscopy (TOF-SIMS) revealed that the Ru-doped sample has more sodium and oxygenated-based species on the surface, while the inner layers mainly contain Ru-O and Mn-O species. The full cell study demonstrated the outstanding capacity retention where the cell maintained 70% of its initial capacity at 1 C-rate after 500 cycles.
RESUMEN
Metal-doped ruthenium oxides with low prices have gained widespread attention due to their editable compositions, distorted structures, and diverse morphologies for electrocatalysis. However, the mainstream challenge lies in breaking the so-called seesaw relationship between activity and stability during acidic oxygen evolution reaction (OER). Herein, strain wave-featured Mn-RuO2 nanowires (NWs) with asymmetric Ru-O-Mn bonds are first fabricated by thermally driven rapid solid phase conversion from RuMn alloy nanoparticles (NPs) at moderate temperature (450 °C). In 0.5 M H2SO4, the resultant NWs display a surprisingly ultralow overpotential of 168 mV at 10 mA cm-2 and run at a stable cell voltage (1.67 V) for 150 h at 50 mA cm-2 in PEMWE, far exceeding IrO2||Pt/C assemble. The simultaneous enhancement of both activity and stability stems from the presence of dense strain waves composed of alternating compressive and tensile ones in the distorted NWs, which collaboratively activate the Ru-O-Mn sites for faster OER. More importantly, the atomic strain waves trigger dynamic Ru-O-Mn regeneration via the refilling of oxygen vacancies by oxyanions adsorbed on adjacent Mn and Ru sites, achieving long-term stability. This work opens a door to designing non-precious metal-assisted ruthenium oxides with unique strains for practical application in commercial PEMWE.
RESUMEN
The designing and fabricating highly active hydrogen evolution reaction (HER) electrocatalysts that can superior to Pt/C is extremely desirable but challenging. Herein, the fabrication of Ru/TiO2/N-doped carbon (Ru/TiO2/NC) nanofiber is reported as a novel and highly active HER electrocatalyst through electrospinning and subsequent pyrolysis treatment, in which Ru nanoclusters are dispersed into TiO2/NC hybrid nanofiber. As a novel support, experimental and theoretical calculation results reveal that TiO2/NC can more effectively accelerate water dissociation as well as optimize the adsorption strength of *H than TiO2 and NC, thus leading to a significantly enhanced HER activity, which merely requires an overpotential of 18 mV to reach 10 mA cm-2, outperforming Pt/C in an alkaline solution. The electrolytic cell composed of Ru/TiO2/NC nanofiber and NiFe LDH/NF can generate 500 and 1000 mA cm-2 at voltages of 1.631 and 1.753 V, respectively. Furthermore, the electrolytic cell also exhibits remarkable durability for at least 100 h at 200 mA cm-2 with negligible degradation in activity. The present work affords a deep insight into the influence of support on the activity of electrocatalyst and the strategy proposed in this research can also be extended to fabricate various other types of electrocatalysts for diverse electrocatalytic applications.
RESUMEN
Tungsten carbide (WCx) is a promising alternative to platinum catalysts for hydrogen evolution reaction (HER). However, strong tungsten-hydrogen bond hinders hydrogen desorption while favoring H+ reduction, thus limiting HER kinetics. Inspired by the phenomenon of hydrogen spillover in heterogeneous catalysis, a ruthenium (Ru) doped-driven activated hydrogen migration from WCx surface to Ru is reported. This approach achieved high activity with an ultralow overpotential of 9.0 mV at 10 mA·cm-2 and superior stability at an industrial-grade current density of 1.0 A·cm-2 @ 1.65 V. In situ attenuated total reflectance surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS) and operando electrochemical impedance spectra revealed that this exceptional hydrogen production-which surpasses that of previously reported Pt/C catalysts-is attributable to the outstanding ability of WCx to induce water dissociation and hydrogen spillover from WCx to Ru surface. During the HER process, the rigid interfacial water network negatively affected the HER efficiency under alkaline conditions. The WCx sites disrupted this rigid structure, facilitating the contact between activated hydrogen (H*) and WCx sites. Subsequently, H* migrates to Ru surface, where hydrogen recombination occurs to produce H2. This work paves a new avenue for the construction of coupled catalysts at the atomic scale to facilitate HER electrocatalysis.
RESUMEN
Developing efficient photocatalysts for two-electron water splitting with simultaneous H2O2 and H2 generation shows great promise for practical application. Currently, the efficiency of two-electron water splitting is still restricted by the low utilization of photogenerated charges, especially holes, of which the transfer rate is much slower than that of electrons. Herein, Ru single atoms and RuOx clusters are co-decorated on ZnIn2S4 (RuOx/Ru-ZIS) to employ as multifunctional sites for efficient photocatalytic pure water splitting. Doping of Ru single atoms in the ZIS basal plane enhances holes abstraction from bulk ZIS by regulating the electronic structure, and RuOx clusters offer a strong interfacial electric field to remarkably promote the out-of-plane migration of holes from ZIS. Moreover, Ru single atoms and RuOx clusters also serve as active sites for boosting surface water oxidation. As a result, an excellent H2 and H2O2 evolution rates of 581.9 µmol g-1 h-1 and 464.4 µmol g-1 h-1 is achieved over RuOx/Ru-ZIS under visible light irradiation, respectively, with an apparent quantum efficiency (AQE) of 4.36% at 400 nm. This work paves a new way to increase charge utilization by manipulating photocatalyst using single atom and clusters.
RESUMEN
Developing active, stable, and cost-efficient electrocatalysts to replace platinum for the alkaline hydrogen evolution reaction (HER) is highly desirable yet represents a great challenge. Here, it is reported on a facile one-pot synthesis of RuxNi layered double hydroxides (RuxNi-LDHs) that exhibit remarkable HER activity and stability after an in-situ activation treatment, surpassing most state-of-the-art Ru-based catalysts as well as commercial Ru/C and Pt/C catalysts. The structural and chemical changes triggered by in-situ activation are systematically investigated, and the results clearly show that the pristine, less-active RuxNi-LDHs are transformed into a highly active catalyst characterized by raft-like, defect-rich Ru° particles decorated on the surface of RuxNi-LDHs. Density functional theory (DFT) calculations reveal that the defective Ru sites can effectively optimize the reaction pathway and lower the free energies of the elemental steps involved, leading to enhanced intrinsic activity. This work highlights the importance of the currently understudied strategy of defect engineering in boosting the HER activity of Ru-based catalysts and offers an effective approach involving in-situ electrochemical activation for the development of high-performance alkaline HER catalysts.