Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
J Cell Physiol ; 236(3): 1564-1578, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33410533

RESUMEN

Known as a variety of sphingolipid metabolites capable of performing various biological activities, sphingosine 1-phosphate (S1P) is commonly found in platelets, red blood cells, neutrophils, lymph fluid, and blood, as well as other cells and body fluids. S1P comprises five receptors, namely, S1P1-S1P5, with the distribution of S1P receptors exhibiting tissue selectivity to some degree. S1P1, S1P2, and S1P3 are extensively expressed in a wide variety of different tissues. The expression of S1P4 is restricted to lymphoid and hematopoietic tissues, while S1P5 is primarily expressed in the nervous system. S1P3 plays an essential role in the pathophysiological processes related to inflammation, cell proliferation, cell migration, tumor invasion and metastasis, ischemia-reperfusion, tissue fibrosis, and vascular tone. In this paper, the relevant mechanism in the role of S1P3 is summarized.


Asunto(s)
Receptores de Esfingosina-1-Fosfato/metabolismo , Animales , Movimiento Celular , Fibrosis , Humanos , Inflamación/metabolismo , Inflamación/patología , Modelos Biológicos , Neoplasias/metabolismo , Neoplasias/patología
2.
Int J Mol Sci ; 22(16)2021 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-34445567

RESUMEN

S1P is the final product of sphingolipid metabolism, which interacts with five widely expressed GPCRs (S1P1-5). Increasing numbers of studies have indicated the importance of S1P3 in various pathophysiological processes. Recently, we have identified a pepducin (compound KRX-725-II) acting as an S1P3 receptor antagonist. Here, aiming to optimize the activity and selectivity profile of the described compound, we have synthesized a series of derivatives in which Tyr, in position 4, has been substituted with several natural aromatic and unnatural aromatic and non-aromatic amino acids. All the compounds were evaluated for their ability to inhibit vascular relaxation induced by KRX-725 (as S1P3 selective pepducin agonist) and KRX-722 (an S1P1-selective pepducin agonist). Those selective towards S1P3 (compounds V and VII) were also evaluated for their ability to inhibit skeletal muscle fibrosis. Finally, molecular dynamics simulations were performed to derive information on the preferred conformations of selective and unselective antagonists.


Asunto(s)
Péptidos de Penetración Celular/farmacología , Fibrosis/tratamiento farmacológico , Músculo Esquelético/efectos de los fármacos , Enfermedades Musculares/tratamiento farmacológico , Mioblastos/efectos de los fármacos , Fragmentos de Péptidos/farmacología , Receptores de Esfingosina-1-Fosfato/antagonistas & inhibidores , Animales , Fibrosis/metabolismo , Fibrosis/patología , Masculino , Ratones , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Enfermedades Musculares/metabolismo , Enfermedades Musculares/patología , Mioblastos/metabolismo , Mioblastos/patología , Receptores de Lisoesfingolípidos
3.
Heart Vessels ; 34(6): 1052-1063, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30604190

RESUMEN

It has been demonstrated that S1P receptors affect heart ischaemia-reperfusion (IR) induced injury. However, whether S1P receptors affect IR-induced cardiac death has not been investigated. The aim of this paper is to demonstrate the role of S1P receptors in IR-induced cardiac death. Healthy adult male Sprague-Dawley rats were assigned to the following groups: non-operation control group, sham operation group, IR group, IR group pretreated with DMSO, IR group pretreated with S1P3 agonist, IR group pretreated with an antagonist of S1P3, IR group pretreated with S1P2 and S1P3 antagonists, IR group pretreated with heptanol and antagonists of S1P2/3, and IR group pretreated with Gap26 and antagonists of S1P2/3 (heptanol acts as a Cx43 uncoupler and the mimic peptide Gap26 as Cx43 blocker). The groups with S1P2 or S1P3 agonist application before reperfusion were used to assess whether these can be used for therapy of IR. The haemodynamics, electrocardiograms (ECG), infarction area, and mortality rates were recorded. Immunohistological connexin 43 (Cx43) expression in the heart was detected in each group. Blocking S1P2/3 receptors with specific antagonists resulted in an increment of IR-induced mortality, increased infarction size, redistribution of Cx43 expression, as well as affecting the heart function. The infarction size, heart function, and mortality were totally or partially restored in the S1P2, S1P3 agonist-pretreated IR group, and the heptanol/Gap26-treated S1P2/3-blocked IR group. The S1P receptor S1P2/3 and Cx43 are involved in the IR-induced cardiac death.


Asunto(s)
Muerte Súbita Cardíaca/prevención & control , Isquemia Miocárdica/patología , Daño por Reperfusión Miocárdica/patología , Péptidos/farmacología , Receptores de Lisoesfingolípidos/metabolismo , Animales , Conexina 43/antagonistas & inhibidores , Conexina 43/metabolismo , Muerte Súbita Cardíaca/etiología , Heptanol/farmacología , Masculino , Ratas , Ratas Sprague-Dawley , Receptores de Lisoesfingolípidos/agonistas , Receptores de Lisoesfingolípidos/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Receptores de Esfingosina-1-Fosfato
4.
J Neuroinflammation ; 15(1): 284, 2018 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-30305119

RESUMEN

BACKGROUND: The pathogenic roles of receptor-mediated sphingosine 1-phosphate (S1P) signaling in cerebral ischemia have been evidenced mainly through the efficacy of FTY720 that binds non-selectively to four of the five S1P receptors (S1P1,3,4,5). Recently, S1P1 and S1P2 were identified as specific receptor subtypes that contribute to brain injury in cerebral ischemia; however, the possible involvement of other S1P receptors remains unknown. S1P3 can be the candidate because of its upregulation in the ischemic brain, which was addressed in this study, along with underlying pathogenic mechanisms. METHODS: We used transient middle cerebral artery occlusion/reperfusion (tMCAO), a mouse model of transient focal cerebral ischemia. To identify S1P3 as a pathogenic factor in cerebral ischemia, we employed a specific S1P3 antagonist, CAY10444. Brain damages were assessed by brain infarction, neurological score, and neurodegeneration. Histological assessment was carried out to determine microglial activation, morphological transformation, and proliferation. M1/M2 polarization and relevant signaling pathways were determined by biochemical and immunohistochemical analysis. RESULTS: Inhibiting S1P3 immediately after reperfusion with CAY10444 significantly reduced tMCAO-induced brain infarction, neurological deficit, and neurodegeneration. When S1P3 activity was inhibited, the number of activated microglia was markedly decreased in both the periischemic and ischemic core regions in the ischemic brain 1 and 3 days following tMCAO. Moreover, inhibiting S1P3 significantly restored the microglial shape from amoeboid to ramified microglia in the ischemic core region 3 days after tMCAO, and it attenuated microglial proliferation in the ischemic brain. In addition to these changes, S1P3 signaling influenced the proinflammatory M1 polarization, but not M2. The S1P3-dependent regulation of M1 polarization was clearly shown in activated microglia, which was affirmed by determining the in vivo activation of microglial NF-κB signaling that is responsible for M1 and in vitro expression levels of proinflammatory cytokines in activated microglia. As downstream effector pathways in an ischemic brain, S1P3 influenced phosphorylation of ERK1/2, p38 MAPK, and Akt. CONCLUSIONS: This study identified S1P3 as a pathogenic mediator in an ischemic brain along with underlying mechanisms, involving its modulation of microglial activation and M1 polarization, further suggesting that S1P3 can be a therapeutic target for cerebral ischemia.


Asunto(s)
Lesiones Encefálicas/etiología , Lesiones Encefálicas/patología , Polaridad Celular/fisiología , Infarto de la Arteria Cerebral Media/complicaciones , Microglía/metabolismo , Receptores de Lisoesfingolípidos/metabolismo , Animales , Lesiones Encefálicas/tratamiento farmacológico , Lesiones Encefálicas/metabolismo , Proteínas de Unión al Calcio/metabolismo , Polaridad Celular/efectos de los fármacos , Células Cultivadas , Modelos Animales de Enfermedad , Fluoresceínas/metabolismo , Proteína Ácida Fibrilar de la Glía/metabolismo , Lipopolisacáridos/farmacología , Activación de Macrófagos , Masculino , Ratones , Ratones Endogámicos ICR , Proteínas de Microfilamentos/metabolismo , FN-kappa B/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Receptores de Lisoesfingolípidos/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Receptores de Esfingosina-1-Fosfato , Tiazolidinas/uso terapéutico
5.
Stem Cells ; 35(4): 1040-1052, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28026131

RESUMEN

Hematopoietic stem and progenitor cells (HSPCs) egress from bone marrow (BM) during homeostasis and at increased rates during stress; however, the mechanisms regulating their trafficking remain incompletely understood. Here we describe a novel role for lipid receptor, sphingosine-1-phosphate receptor 3 (S1PR3), in HSPC residence within the BM niche. HSPCs expressed increased levels of S1PR3 compared to differentiated BM cells. Pharmacological antagonism or knockout (KO) of S1PR3 mobilized HSPCs into blood circulation, suggesting that S1PR3 influences niche localization. S1PR3 antagonism suppressed BM and plasma SDF-1, enabling HSPCs to migrate toward S1P-rich plasma. Mobilization synergized with AMD3100-mediated antagonism of CXCR4, which tethers HSPCs in the niche, and recovered homing deficits of AMD3100-treated grafts. S1PR3 antagonism combined with AMD3100 improved re-engraftment and survival in lethally irradiated recipients. Our studies indicate that S1PR3 and CXCR4 signaling cooperate to maintain HSPCs within the niche under homeostasis. These results highlight an important role for S1PR3 in HSPC niche occupancy and trafficking that can be harnessed for both rapid clinical stem cell mobilization and re-engraftment strategies, as well as the opportunity to design novel therapeutics for control of recruitment, homing, and localization through bioactive lipid signaling. Stem Cells 2017;35:1040-1052.


Asunto(s)
Células Madre Hematopoyéticas/metabolismo , Receptores de Lisoesfingolípidos/metabolismo , Animales , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/metabolismo , Adhesión Celular/efectos de los fármacos , Microambiente Celular/efectos de los fármacos , Quimiotaxis/efectos de los fármacos , Movilización de Célula Madre Hematopoyética , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/efectos de los fármacos , Ligandos , Lisofosfolípidos/farmacología , Masculino , Ratones Endogámicos C57BL , Radiación Ionizante , Esfingosina/análogos & derivados , Esfingosina/farmacología , Nicho de Células Madre/efectos de los fármacos
6.
J Neurosci ; 36(16): 4624-34, 2016 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-27098703

RESUMEN

Growing evidence indicates that sphingosine-1-P (S1P) upregulates glutamate secretion in hippocampal neurons. However, the molecular mechanisms through which S1P enhances excitatory activity remain largely undefined. The aim of this study was to identify presynaptic targets of S1P action controlling exocytosis. Confocal analysis of rat hippocampal neurons showed that S1P applied at nanomolar concentration alters the distribution of Synapsin I (SynI), a presynaptic phosphoprotein that controls the availability of synaptic vesicles for exocytosis. S1P induced SynI relocation to extrasynaptic regions of mature neurons, as well as SynI dispersion from synaptic vesicle clusters present at axonal growth cones of developing neurons. S1P-induced SynI relocation occurred in a Ca(2+)-independent but ERK-dependent manner, likely through the activation of S1P3 receptors, as it was prevented by the S1P3 receptor selective antagonist CAY1044 and in neurons in which S1P3 receptor was silenced. Our recent evidence indicates that microvesicles (MVs) released by microglia enhance the metabolism of endogenous sphingolipids in neurons and stimulate excitatory transmission. We therefore investigated whether MVs affect SynI distribution and whether endogenous S1P could be involved in the process. Analysis of SynI immunoreactivity showed that exposure to microglial MVs induces SynI mobilization at presynaptic sites and growth cones, whereas the use of inhibitors of sphingolipid cascade identified S1P as the sphingolipid mediating SynI redistribution. Our data represent the first demonstration that S1P induces SynI mobilization from synapses, thereby indicating the phosphoprotein as a novel target through which S1P controls exocytosis. SIGNIFICANCE STATEMENT: Growing evidence indicates that the bioactive lipid sphingosine and its metabolite sphingosine-1-P (S1P) stimulate excitatory transmission. While it has been recently clarified that sphingosine influences directly the exocytotic machinery by activating the synaptic vesicle protein VAMP2 to form SNARE fusion complexes, the molecular mechanism by which S1P promotes neurotransmission remained largely undefined. In this study, we identify Synapsin I, a presynaptic phosphoprotein involved in the control of availability of synaptic vesicles for exocytosis, as the key target of S1P action. In addition, we provide evidence that S1P can be produced at mature axon terminals as well as at immature growth cones in response to microglia-derived signals, which may be important to stabilize nascent synapses and to restore or potentiate transmission.


Asunto(s)
Lisofosfolípidos/fisiología , Terminales Presinápticos/metabolismo , Esfingosina/análogos & derivados , Sinapsis/metabolismo , Sinapsinas/biosíntesis , Animales , Células Cultivadas , Femenino , Hipocampo/química , Hipocampo/citología , Hipocampo/metabolismo , Lisofosfolípidos/análisis , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Terminales Presinápticos/química , Ratas , Ratas Sprague-Dawley , Esfingosina/análisis , Esfingosina/fisiología , Sinapsis/química , Sinapsinas/análisis
7.
Am J Physiol Cell Physiol ; 313(1): C54-C67, 2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-28446426

RESUMEN

We investigated the effects of S1P3 deficiency on the age-related atrophy, decline in force, and regenerative capacity of soleus muscle from 23-mo-old male (old) mice. Compared with muscle from 5-mo-old (adult) mice, soleus mass and muscle fiber cross-sectional area (CSA) in old wild-type mice were reduced by ~26% and 24%, respectively. By contrast, the mass and fiber CSA of soleus muscle in old S1P3-null mice were comparable to those of adult muscle. Moreover, in soleus muscle of wild-type mice, twitch and tetanic tensions diminished from adulthood to old age. A slowing of contractile properties was also observed in soleus from old wild-type mice. In S1P3-null mice, neither force nor the contractile properties of soleus changed during aging. We also evaluated the regenerative capacity of soleus in old S1P3-null mice by stimulating muscle regeneration through myotoxic injury. After 10 days of regeneration, the mean fiber CSA of soleus in old wild-type mice was significantly smaller (-28%) compared with that of regenerated muscle in adult mice. On the contrary, the mean fiber CSA of regenerated soleus in old S1P3-null mice was similar to that of muscle in adult mice. We conclude that in the absence of S1P3, soleus muscle is protected from the decrease in muscle mass and force, and the attenuation of regenerative capacity, all of which are typical characteristics of aging.


Asunto(s)
Envejecimiento/genética , Músculo Esquelético/metabolismo , Receptores de Lisoesfingolípidos/genética , Sarcopenia/genética , Envejecimiento/metabolismo , Animales , Expresión Génica , Masculino , Ratones , Ratones Noqueados , Contracción Muscular/fisiología , Fibras Musculares de Contracción Lenta/metabolismo , Fibras Musculares de Contracción Lenta/patología , Fuerza Muscular/fisiología , Músculo Esquelético/fisiopatología , Receptores de Lisoesfingolípidos/deficiencia , Regeneración/fisiología , Sarcopenia/metabolismo , Sarcopenia/fisiopatología , Receptores de Esfingosina-1-Fosfato
8.
J Neuroinflammation ; 14(1): 111, 2017 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-28577576

RESUMEN

BACKGROUND: Sphingosine 1-phosphate (S1P) signals through G protein-coupled receptors to elicit a wide range of cellular responses. In CNS injury and disease, the blood-brain barrier is compromised, causing leakage of S1P from blood into the brain. S1P can also be locally generated through the enzyme sphingosine kinase-1 (Sphk1). Our previous studies demonstrated that S1P activates inflammation in murine astrocytes. The S1P1 receptor subtype has been most associated with CNS disease, particularly multiple sclerosis. S1P3 is most highly expressed and upregulated on astrocytes, however, thus we explored the involvement of this receptor in inflammatory astrocytic responses. METHODS: Astrocytes isolated from wild-type (WT) or S1P3 knockout (KO) mice were treated with S1P3 selective drugs or transfected with short interfering RNA to determine which receptor subtypes mediate S1P-stimulated inflammatory responses. Interleukin-6 (IL-6), and vascular endothelial growth factor A (VEGFa) messenger RNA (mRNA) and cyclooxygenase-2 (COX-2) mRNA and protein were assessed by q-PCR and Western blotting. Activation of RhoA was measured using SRE.L luciferase and RhoA implicated in S1P signaling by knockdown of Gα12/13 proteins or by inhibiting RhoA activation with C3 exoenzyme. Inflammation was simulated by in vitro scratch injury of cultured astrocytes. RESULTS: S1P3 was highly expressed in astrocytes and further upregulated in response to simulated inflammation. Studies using S1P3 knockdown and S1P3 KO astrocytes demonstrated that S1P3 mediates activation of RhoA and induction of COX-2, IL-6, and VEGFa mRNA, with some contribution from S1P2. S1P induces expression of all of these genes through coupling to the Gα12/13 proteins which activate RhoA. Studies using S1P3 selective agonists/antagonists as well as Fingolimod (FTY720) confirmed that stimulation of S1P3 induces COX-2 expression in astrocytes. Simulated inflammation increased expression of Sphk1 and consequently activated S1P3, demonstrating an autocrine pathway through which S1P is formed and released from astrocytes to regulate COX-2 expression. CONCLUSIONS: S1P3, through its ability to activate RhoA and its upregulation in astrocytes, plays a unique role in inducing inflammatory responses and should be considered as a potentially important therapeutic target for CNS disease progression.


Asunto(s)
Astrocitos/metabolismo , Expresión Génica/fisiología , Receptores de Lisoesfingolípidos/metabolismo , Transducción de Señal/fisiología , Proteína de Unión al GTP rhoA/metabolismo , Animales , Animales Recién Nacidos , Astrocitos/efectos de los fármacos , Células Cultivadas , Ciclooxigenasa 2/metabolismo , Citocinas/genética , Citocinas/metabolismo , Expresión Génica/efectos de los fármacos , Inflamación/etiología , Inflamación/metabolismo , Inflamación/patología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Receptores de Lisoesfingolípidos/genética , Renilla , Transducción de Señal/efectos de los fármacos , Transfección , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Proteína de Unión al GTP rhoA/genética
9.
Biochim Biophys Acta ; 1851(2): 194-202, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25457224

RESUMEN

The matricellular protein connective tissue growth factor (CTGF/CCN2) is recognized as key player in the onset of fibrosis in various tissues, including skeletal muscle. In many circumstances, CTGF has been shown to be induced by transforming growth factor beta (TGFß) and accounting, at least in part, for its biological action. In this study it was verified that in cultured myoblasts CTGF/CCN2 causes their transdifferentiation into myofibroblasts by up-regulating the expression of fibrosis marker proteins α-smooth muscle actin and transgelin. Interestingly, it was also found that the profibrotic effect exerted by CTGF/CCN2 was mediated by the sphingosine kinase (SK)-1/S1P3 signaling axis specifically induced by the treatment with the profibrotic cue. Following CTGF/CCN2-induced up-regulation, S1P3 became the S1P receptor subtype expressed at the highest degree, at least at mRNA level, and was thus capable of readdressing the sphingosine 1-phosphate signaling towards fibrosis rather than myogenic differentiation. Another interesting finding is that CTGF/CCN2 silencing prevented the TGFß-dependent up-regulation of SK1/S1P3 signaling axis and strongly reduced the profibrotic effect exerted by TGFß, pointing at a crucial role of endogenous CTGF/CCN2 generated following TGFß challenge in the transmission of at least part of its profibrotic effect. These results provide new insights into the molecular mechanism by which CTGF/CCN2 drives its biological action and strengthen the concept that SK1/S1P3 axis plays a critical role in the onset of fibrotic cell phenotype.


Asunto(s)
Transdiferenciación Celular , Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Mioblastos Esqueléticos/enzimología , Miofibroblastos/enzimología , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Receptores de Lisoesfingolípidos/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Línea Celular , Factor de Crecimiento del Tejido Conjuntivo/genética , Factor de Crecimiento del Tejido Conjuntivo/farmacología , Relación Dosis-Respuesta a Droga , Fibrosis , Ratones , Mioblastos Esqueléticos/efectos de los fármacos , Mioblastos Esqueléticos/patología , Miofibroblastos/efectos de los fármacos , Miofibroblastos/patología , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Interferencia de ARN , ARN Mensajero/metabolismo , Receptores de Lisoesfingolípidos/efectos de los fármacos , Receptores de Lisoesfingolípidos/genética , Proteínas Recombinantes/farmacología , Receptores de Esfingosina-1-Fosfato , Factores de Tiempo , Transfección , Factor de Crecimiento Transformador beta1/farmacología , Regulación hacia Arriba
10.
Bioorg Med Chem Lett ; 26(2): 466-471, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26687487

RESUMEN

Poor solubility and cationic amphiphilic drug-likeness were liabilities identified for a lead series of S1P3-sparing, S1P1 agonists originally developed from a high-throughput screening campaign. This work describes the subsequent optimization of these leads by balancing potency, selectivity, solubility and overall molecular charge. Focused SAR studies revealed favorable structural modifications that, when combined, produced compounds with overall balanced profiles. The low brain exposure observed in rat suggests that these compounds would be best suited for the potential treatment of peripheral autoimmune disorders.


Asunto(s)
Oxadiazoles/farmacología , Receptores de Lisoesfingolípidos/agonistas , Tiadiazoles/farmacología , Animales , Encéfalo/metabolismo , Ácido Glutámico/metabolismo , Células Hep G2 , Humanos , Enlace de Hidrógeno , Cinética , Oxadiazoles/sangre , Oxadiazoles/síntesis química , Ratas , Solubilidad , Relación Estructura-Actividad , Tiadiazoles/sangre , Tiadiazoles/síntesis química
11.
Exp Cell Res ; 336(1): 150-7, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-26116468

RESUMEN

Lymphangiogenesis, the formation of new lymph vessels, plays a significant role in the development and metastasis of various cancers. We and others have demonstrated that low molecular weight hyaluronan (LMW-HA) promotes lymphangiogenesis. However, the underlying mechanisms are poorly defined. In this study, using immunofluorescence and co-immunoprecipitation, we found that LMW-HA increased the colocalization of lymphatic vessel endothelial HA receptor (LYVE-1) and sphingosine 1-phosphate receptor (S1P3) at the cell surface. Silencing of either LYVE-1 or S1P3 decreased LMW-HA-mediated tube formation in lymphatic endothelial cells (LECs). Furthermore, silencing of either LYVE-1 or S1P3 significantly inhibited LMW-HA-induced tyrosine phosphorylation of Src kinase and extracellular signal-regulated kinase (ERK1/2). In summary, these results suggest that S1P3 and LYVE-1 may cooperate to play a role in LMW-HA-mediated lymphangiogenesis. This interaction may provide a useful target for the intervention of lymphangiogenesis-associated tumor progression.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Endotelio Linfático/metabolismo , Glicoproteínas/metabolismo , Ácido Hialurónico/farmacología , Linfangiogénesis/efectos de los fármacos , Receptores de Lisoesfingolípidos/metabolismo , Animales , Apoptosis/efectos de los fármacos , Western Blotting , Células Cultivadas , Endotelio Linfático/efectos de los fármacos , Endotelio Linfático/patología , Técnica del Anticuerpo Fluorescente , Inmunoprecipitación , Proteínas de Transporte de Membrana , Ratones , Peso Molecular , Fosforilación/efectos de los fármacos , Receptores de Esfingosina-1-Fosfato
12.
Bioorg Med Chem Lett ; 24(20): 4807-11, 2014 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-25241927

RESUMEN

The discovery of a new series of selective S1P1 agonists is described. This series of piperazinyl-oxadiazole derivatives was rapidly optimized starting from high-throughput screening hit 1 to afford potent and selective lead compound 10d. Further SAR studies showed that 10d was converted to the active phosphate metabolite 29 in vivo. Oral administration of compound 10d to rats was shown to induce lymphopenia at 3 mg/kg.


Asunto(s)
Oxadiazoles/farmacología , Piperazinas/farmacología , Receptores de Lisoesfingolípidos/agonistas , Administración Oral , Animales , Relación Dosis-Respuesta a Droga , Femenino , Linfopenia/inducido químicamente , Linfopenia/patología , Estructura Molecular , Oxadiazoles/administración & dosificación , Oxadiazoles/química , Piperazinas/administración & dosificación , Piperazinas/química , Ratas , Ratas Endogámicas Lew , Receptores de Esfingosina-1-Fosfato , Relación Estructura-Actividad
13.
Bioorg Med Chem Lett ; 23(23): 6346-9, 2013 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-24135724

RESUMEN

Potent and selective S1P3 receptor (S1P3-R) agonists may represent important proof-of-principle tools used to clarify the receptor biological function and assess the therapeutic potential of the S1P3-R in cardiovascular, inflammatory and pulmonary diseases. N,N-Dicyclohexyl-5-propylisoxazole-3-carboxamide was identified by a high-throughput screening of MLSMR library as a promising S1P3-R agonist. Rational chemical modifications of the hit allowed the identification of N,N-dicyclohexyl-5-cyclopropylisoxazole-3-carboxamide, a S1P3-R agonist endowed with submicromolar activity and exquisite selectivity over the remaining S1P1,2,4,5-R family members. A combination of ligand competition, site-directed mutagenesis and molecular modeling studies showed that the N,N-dicyclohexyl-5-cyclopropylisoxazole-3-carboxamide is an allosteric agonist and binds to the S1P3-R in a manner that does not disrupt the S1P3-R-S1P binding. The lead molecule herein disclosed constitutes a valuable pharmacological tool to explore the molecular basis of the receptor function, and provides the bases for further rational design of more potent and drug-like S1P3-R allosteric agonists.


Asunto(s)
Inmunosupresores/farmacología , Receptores de Lisoesfingolípidos/agonistas , Amidas/farmacología , Animales , Azoles/farmacología , Ensayos Analíticos de Alto Rendimiento , Humanos , Ligandos , Ratones , Modelos Moleculares , Unión Proteica , Receptores de Lisoesfingolípidos/biosíntesis , Relación Estructura-Actividad
14.
J Pept Sci ; 19(11): 717-24, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24133031

RESUMEN

Sphingosine-1-phosphate (S1P) is a bioactive lipid with key functions in the immune, inflammatory, and cardiovascular systems. S1P exerts its action through the interaction with a family of five known G protein-coupled receptors, named S1P(1-5). Among them, S1P(3) has been implicated in the pathological processes of a number of diseases, including sepsis and cancer. KRX-725 (compound 1) is a pepducin that mimics the effects of S1P by triggering specifically S1P(3). Here, aiming to identify novel S1P(3) antagonists, we carried out an alanine scanning analysis to address the contribution of the side chains of each amino acid residue to the peptide function. Then, deleted peptides from both the C- and N-terminus were prepared in order to determine the minimal sequence for activity and to identify the structural requirements for agonistic and, possibly, antagonistic behaviors. The pharmacological results of the Ala-scan derived compounds (2-10) suggested a high tolerance of the pepducin 1 to amino acid substitutions. Importantly, the deleted peptide 16 has the ability to inhibit, in a dose-dependent manner, both pepducin 1-induced vasorelaxation and fibroblast proliferation. Finally, a computational analysis was performed on the prepared compounds, showing that the supposed antagonists 16 and 17 appeared to be aligned with each other but not with the others. These results suggested a correlation between specific conformations and activities.


Asunto(s)
Péptidos de Penetración Celular/farmacología , Fragmentos de Péptidos/farmacología , Receptores de Lisoesfingolípidos/antagonistas & inhibidores , Vasodilatadores/farmacología , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Aorta Torácica/efectos de los fármacos , Aorta Torácica/fisiología , Proliferación Celular/efectos de los fármacos , Péptidos de Penetración Celular/química , Células Cultivadas , Técnicas In Vitro , Masculino , Ratones , Modelos Moleculares , Contracción Muscular/efectos de los fármacos , Fragmentos de Péptidos/química , Receptores de Lisoesfingolípidos/química , Receptores de Lisoesfingolípidos/metabolismo , Receptores de Esfingosina-1-Fosfato , Vasodilatadores/química
15.
J Labelled Comp Radiopharm ; 56(8): 385-91, 2013 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-24285478

RESUMEN

(19)F/(18)F isotope exchange is a useful method to label drug molecules containing (19)F-fluorine with (18)F without modifying the drug molecule itself. Sphingosine-1-phosphate (S1P) is an important cellular mediator that functions by signaling through cell surface receptors. S1P is involved in several cell responses and may be related to many central nervous system disorders, including neural malfunction in Alzheimer's disease. In this study, [(18)F]1-benzyl-N-(3,4-difluorobenzyl)-2-isopropyl-6-(2-methoxyethoxy)-1H-indole-3-carboxamide, a novel (18)F-labeled positron emission tomography tracer for the S1P3 receptor, was successfully synthesized using the (19)F/(18)F isotope exchange reaction. Parameters of the reaction kinetics were studied, and correlations between the initial (18)F-activity, the amount of precursor, radiochemical yield and specific activity (SA) were determined. Contrary to expectations, high initial (18)F-activity decreased the radiochemical yield, and only a minor increase of SA occurred. This is most probably due to the complexity of the molecule and the subsequent susceptibility to radiolytic bond disruption. On the basis of the present results, a convenient condition for the (19)F/(18)F exchange reaction is the use of 2 µmol precursor with 20 GBq of (18)F-activity. This afforded a radiochemical yield of ~10% with an SA of 0.3 GBq/µmol. Results from this study are of interest for new tracer development where high initial (18)F-activity and (19)F/(18)F isotope exchange is used.


Asunto(s)
Radioisótopos de Flúor/química , Lisofosfolípidos/síntesis química , Radiofármacos/síntesis química , Esfingosina/análogos & derivados , Marcaje Isotópico , Receptores de Lisoesfingolípidos/metabolismo , Esfingosina/síntesis química
16.
Biomol Ther (Seoul) ; 27(4): 373-380, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-30917625

RESUMEN

Sphingosine kinase 1 and its product, sphingosine 1-phosphate (S1P), as well as their receptors, have been implicated in inflammatory responses. The functions of receptors S1P1 and S1P2 on cell motility have been investigated. However, the function of S1P3 has been poorly investigated. In this study, the roles of S1P3 on inflammatory response were investigated in primary peritoneal macrophages. S1P3 receptor was induced along with sphingosine kinase 1 by stimulation of lipopolysaccharide (LPS). LPS treatment induced inflammatory genes, such iNOS, COX-2, IL-1ß, IL-6 and TNF-α. TY52156, an antagonist of S1P3 suppressed the induction of inflammatory genes in a concentration dependent manner. Suppression of iNOS and COX-2 induction was further confirmed by western blotting and NO measurement. Suppression of IL-1ß induction was also confirmed by western blotting and ELISA. Caspase 1, which is responsible for IL-1ß production, was similarly induced by LPS and suppressed by TY52156. Therefore, we have shown S1P3 induction in the inflammatory conditions and its pro-inflammatory roles. Targeting S1P3 might be a strategy for regulating inflammatory diseases.

17.
Anticancer Res ; 37(10): 5469-5475, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28982858

RESUMEN

BACKGROUND/AIM: In this study, sphingosine-1-phosphate receptor-1 (S1P1) and S1P3 receptors were silenced to evaluate proliferation, adhesion, viability and lateral motility in estrogen receptor-negative MCF-7 and estrogen receptor-positive MDA-MB-231 breast cancer cells. MATERIALS AND METHODS: Groups of MCF-7 and MDA-MB-231 cells with: no small interfering RNA (siRNA); siRNA with no target; S1P1-silencing siRNA; S1P3-silencing siRNA; and siRNAs silencing both S1P1, and S1P3 were examined for this purpose at 24, 48 and 72 h after intervention. RESULTS: Viability of cells was reduced due to suppression of S1P1/S1P3. While no change was observed in the proliferation of MCF-7 cells, the proliferation of S1P1/S1P3-suppressed MDA-MB-231 cells was reduced. S1P1/S1P3 suppression resulted in reduction of adhesion of MCF-7 cells, but to an increase of MDA-MB-231 cells. Lateral motility was reduced in all S1P1/S1P3-suppressed groups. CONCLUSION: Silencing the receptors simultaneously rather than separately was more effective. Additionally, the different characteristics of cancer cells affected the proliferation and adhesion of cells differently. This difference may be associated with the estrogen receptors in the cells.


Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias Hormono-Dependientes/metabolismo , Receptores de Estrógenos/metabolismo , Receptores de Lisoesfingolípidos/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Adhesión Celular , Movimiento Celular , Proliferación Celular , Supervivencia Celular , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Células MCF-7 , Invasividad Neoplásica , Neoplasias Hormono-Dependientes/genética , Neoplasias Hormono-Dependientes/patología , Interferencia de ARN , Receptores de Lisoesfingolípidos/genética , Transducción de Señal , Receptores de Esfingosina-1-Fosfato , Factores de Tiempo , Transfección
18.
Front Mol Neurosci ; 10: 317, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29066950

RESUMEN

The bioactive lipid sphingosine-1-phosphate (S1P) is an important regulator in the nervous system. Here, we explored the role of S1P and its receptors in vitro and in preclinical models of peripheral nerve regeneration. Adult sensory neurons and motor neuron-like cells were exposed to S1P in an in vitro assay, and virtually all neurons responded with a rapid retraction of neurites and growth cone collapse which were associated with RhoA and ROCK activation. The S1P1 receptor agonist SEW2871 neither activated RhoA or neurite retraction, nor was S1P-induced neurite retraction mitigated in S1P1-deficient neurons. Depletion of S1P3 receptors however resulted in a dramatic inhibition of S1P-induced neurite retraction and was on the contrary associated with a significant elongation of neuronal processes in response to S1P. Opposing responses to S1P could be observed in the same neuron population, where S1P could activate S1P1 receptors to stimulate elongation or S1P3 receptors and retraction. S1P was, for the first time in sensory neurons, linked to the phosphorylation of collapsin response-mediated protein-2 (CRMP2), which was inhibited by ROCK inhibition. The improved sensory recovery after crush injury further supported the relevance of a critical role for S1P and receptors in fine-tuning axonal outgrowth in peripheral neurons.

19.
ACS Med Chem Lett ; 7(3): 283-8, 2016 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-26985316

RESUMEN

Clinical validation of S1P receptor modulation therapy was achieved with the approval of fingolimod (Gilenya, 1) as the first oral therapy for relapsing remitting multiple sclerosis. However, 1 causes a dose-dependent reduction in the heart rate (bradycardia), which occurs within hours after first dose. We disclose the identification of clinical compound BMS-986104 (3d), a novel S1P1 receptor modulator, which demonstrates ligand-biased signaling and differentiates from 1 in terms of cardiovascular and pulmonary safety based on preclinical pharmacology while showing equivalent efficacy in a T-cell transfer colitis model.

20.
J Pharm Pharmacol ; 66(6): 802-10, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24450400

RESUMEN

OBJECTIVE: We investigated the effect of sphingosine 1-phosphate (S1P) on intracellular Ca(2+) dynamics in rat vascular smooth muscle cells (VSMCs). METHODS: Intracellular Ca(2+) concentration ([Ca(2+) ]i) was determined using a fluorescence dye fura-2/AM. Small interfering RNAs (siRNA) were transfected into VSMCs to deplete the expression of S1P2 and S1P3 receptors. KEY FINDINGS: S1P induced a rapid and transient elevation in [Ca(2+) ]i, which was maximal 1 min after the stimulation, followed by a sustained increase. When extracellular Ca(2+) was removed, a decrease in resting level and a small and transient increase in [Ca(2+) ]i by S1P stimulation were observed. siRNA targeted for the S1P3 receptor almost completely inhibited the S1P-induced increase in [Ca(2+) ]i. The rapid and transient increase in [Ca(2+) ]i was significantly inhibited by diltiazem at a high concentration. Pertussis toxin and a phospholipase C (PLC) inhibitor inhibited the S1P-induced increase in [Ca(2+) ]i regardless of the presence of extracellular Ca(2+) . Furthermore, S1P activated store-operated and receptor-operated Ca(2+) entry. CONCLUSIONS: These results suggest that S1P increases [Ca(2+) ]i via the S1P3 receptor by inducing an influx of extracellular Ca(2+) partially through the voltage-dependent Ca(2+) channels, as well as by mobilizing Ca(2+) from its intracellular stores. S1P3 receptor-coupled Gi/o protein and PLC activation mediate the mechanisms.


Asunto(s)
Calcio/metabolismo , Lisofosfolípidos/farmacología , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Receptores de Lisoesfingolípidos/fisiología , Esfingosina/análogos & derivados , Animales , Canales de Calcio Tipo L/fisiología , Células Cultivadas , Clorhidrato de Fingolimod , Músculo Liso Vascular/citología , Glicoles de Propileno/farmacología , Ratas , Ratas Wistar , Esfingosina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA