Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 568
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Sens Actuators B Chem ; 381: 133364, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36684645

RESUMEN

Since December 2019, the rapid and sensitive detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a priority for public health. Although the lateral flow assay (LFA) sensor has emerged as a rapid and on-site SARS-CoV-2 detection technique, the conventional approach of using gold nanoparticles for the signaling probe had limitations in increasing the sensitivity of the sensor. Herein, our newly suggested methodology to improve the performance of the LFA system could amplify the sensor signal with a facile fabrication method by concentrating fluorescent organic molecules. A large Stokes shift fluorophore (single benzene) was encapsulated into polystyrene nanobeads to enhance the fluorescence intensity of the probe for LFA sensor, which was detected on the test line with a longpass filter under ultraviolet light irradiation. This approach provides comparatively high sensitivity with the limit of detection of 1 ng mL-1 for the SARS-CoV-2 spike protein and a fast detection process, which takes less than 20 min. Furthermore, our sensor showed higher performance than gold nanoparticle-based commercial rapid diagnostics test kits in clinical tests, proving that this approach is more suitable and reliable for the sensitive and rapid detection of viruses, bacteria, and other hazardous materials.

2.
Sens Actuators A Phys ; 349: 114052, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36447950

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been garnered increasing for its rapid worldwide spread. Each country had implemented city-wide lockdowns and immigration regulations to prevent the spread of the infection, resulting in severe economic consequences. Materials and technologies that monitor environmental conditions and wirelessly communicate such information to people are thus gaining considerable attention as a countermeasure. This study investigated the dynamic characteristics of batteryless magnetostrictive alloys for energy harvesting to detect human coronavirus 229E (HCoV-229E). Light and thin magnetostrictive Fe-Co/Ni clad plate with rectification, direct current (DC) voltage storage capacitor, and wireless information transmission circuits were developed for this purpose. The power consumption was reduced by improving the energy storage circuit, and the magnetostrictive clad plate under bending vibration stored a DC voltage of 1.9 V and wirelessly transmitted a signal to a personal computer once every 5 min and 10 s under bias magnetic fields of 0 and 10 mT, respectively. Then, on the clad plate surface, a novel CD13 biorecognition layer was immobilized using a self-assembled monolayer of -COOH groups, thus forming an amide bond with -NH2 groups for the detection of HCoV-229E. A bending vibration test demonstrated the resonance frequency changes because of HCoV-229E binding. The fluorescence signal demonstrated that HCoV-229E could be successfully detected. Thus, because HCoV-229E changed the dynamic characteristics of this plate, the CD13-modified magnetostrictive clad plate could detect HCoV-229E from the interval of wireless communication time. Therefore, a monitoring system that transmits/detects the presence of human coronavirus without batteries will be realized soon.

3.
J Mol Struct ; 1271: 133992, 2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36034527

RESUMEN

Besides its use against HIV infection the marketed anti-retroviral drug dolutegravir attracted attention as a potential agent against COVID-19 in multiple AI (artificial intelligence) based studies. Due to our interest in accessing the impurities of this drug we report the synthesis and characterization of three impurities of dolutegravir one of which is new. The synthesis of O-methyl ent-dolutegravir was accomplished in three-steps the first one involved the construction of fused 1,3-oxazinane ring. The cleavage of -OEt ether moiety followed by methylation afforded the target compound. The second impurity i.e. N-(2,4-difluorobenzyl)-4-methoxy-3-oxobutanamide was synthesized via a multi-step method involving sequentially the keto group protection, ester hydrolysis, acid chloride formation followed by the reaction with amine and finally keto group deprotection. The synthesis of new or dimer impurity was carried out via another multi-step method similar to the previous one starting from ethyl 4-chloro acetoacetate. The methodology involved preparation of ether derivative, keto group protection, ester hydrolysis, preparation of amide derivative via acid chloride formation in situ and then keto group deprotection for a longer duration. The last step afforded the target compound for which a plausible reaction mechanism has been proposed. All three impurities were prepared in gram scale (minimum 2 g and maximum 8 g). The in silico evaluation of three selected synthesized intermediates e.g. 7, 8 and 9 (structurally similar to dolutegravir) against SARS CoV-2 O-ribose methyltransferase (OMTase) (PDB: 3R24) indicated that compound 7 could be of interest as a possible inhibitor of this protein.

4.
J Mol Struct ; 1275: 134642, 2023 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-36467615

RESUMEN

COVID-19 is the most devastating disease in recent times affecting most people globally. The higher rate of transmissibility and mutations of SARS-CoV-2 along with the lack of potential therapeutics has made it a global crisis. Potential molecules from natural sources could be a fruitful remedy to combat COVID-19. This systematic review highlights the detailed therapeutic implication of naturally occurring glycyrrhizin and its related derivatives against COVID-19. Glycyrrhizin has already been established for blocking different biomolecular targets related to the SARS-CoV-2 replication cycle. In this article, several experimental and theoretical evidences of glycyrrhizin and related derivatives have been discussed in detail to evaluate their potential as a promising therapeutic strategy against COVID-19. Moreover, the implication of glycyrrhizin in traditional Chinese medicines for alleviating the symptoms of COVID-19 has been reviewed. The potential role of glycyrrhizin and related compounds in affecting various stages of the SARS-CoV-2 life cycle has also been discussed in detail. Derivatization of glycyrrhizin for designing potential lead compounds along with combination therapy with other anti-SARS-CoV-2 agents followed by extensive evaluation may assist in the formulation of novel anti-coronaviral therapy for better treatment to combat COVID-19.

5.
Ind Crops Prod ; 191: 115944, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36405420

RESUMEN

Due to the pandemics of COVID-19, herbal medicine has recently been explored for possible antiviral treatment and prevention via novel platform of microbial fuel cells. It was revealed that Coffea arabica leaves was very appropriate for anti-COVID-19 drug development. Antioxidant and anti-inflammatory tests exhibited the most promising activities for C. arabica ethanol extracts and drying approaches were implemented on the leaf samples prior to ethanol extraction. Ethanol extracts of C. arabica leaves were applied to bioenergy evaluation via DC-MFCs, clearly revealing that air-dried leaves (CA-A-EtOH) exhibited the highest bioenergy-stimulating capabilities (ca. 2.72 fold of power amplification to the blank). Furthermore, molecular docking analysis was implemented to decipher the potential of C. arabica leaves metabolites. Chlorogenic acid (-6.5 kcal/mol) owned the highest binding affinity with RdRp of SARS-CoV-2, showing a much lower average RMSF value than an apoprotein. This study suggested C. arabica leaves as an encouraging medicinal herb against SARS-CoV-2.

6.
Build Environ ; 227: 109800, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36407015

RESUMEN

We developed a high-speed filterless airflow multistage photocatalytic elbow aerosol removal system for the treatment of bioaerosols such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Human-generated bioaerosols that diffuse into indoor spaces are 1-10 µm in size, and their selective and rapid treatment can reduce the risk of SARS-CoV-2 infection. A high-speed airflow is necessary to treat large volumes of indoor air over a short period. The proposed system can be used to eliminate viruses in aerosols by forcibly depositing aerosols in a high-speed airflow onto a photocatalyst placed inside the system through inertial force and turbulent diffusion. Because the main component of the deposited bioaerosol is water, it evaporates after colliding with the photocatalyst, and the nonvolatile virus remains on the photocatalytic channel wall. The residual virus on the photocatalytic channel wall is mineralized via photocatalytic oxidation with UVA-LED irradiation in the channel. When this system was operated in a 4.5 m3 aerosol chamber, over 99.8% aerosols in the size range of 1-10 µm were removed within 15 min. The system continued delivering such performance with the continuous introduction of aerosols. Because this system exhibits excellent aerosol removal ability at a flow velocity of 5 m/s or higher, it is more suitable than other reactive air purification systems for treating large-volume spaces.

7.
J Mol Liq ; 374: 121253, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36694691

RESUMEN

Combination drugs have been used for several diseases for many years since they produce better therapeutic effects. However, it is still a challenge to discover candidates to form a combination drug. This study aimed to investigate whether using a comprehensive in silico approach to identify novel combination drugs from a Chinese herbal formula is an appropriate and creative strategy. We, therefore, used Toujie Quwen Granules for the main protease (Mpro) of SARS-CoV-2 as an example. We first used molecular docking to identify molecular components of the formula which may inhibit Mpro. Baicalein (HQA004) is the most favorable inhibitory ligand. We also identified a ligand from the other component, cubebin (CHA008), which may act to support the proposed HQA004 inhibitor. Molecular dynamics simulations were then performed to further elucidate the possible mechanism of inhibition by HQA004 and synergistic bioactivity conferred by CHA008. HQA004 bound strongly at the active site and that CHA008 enhanced the contacts between HQA004 and Mpro. However, CHA008 also dynamically interacted at multiple sites, and continued to enhance the stability of HQA004 despite diffusion to a distant site. We proposed that HQA004 acted as a possible inhibitor, and CHA008 served to enhance its effects via allosteric effects at two sites. Additionally, our novel wavelet analysis showed that as a result of CHA008 binding, the dynamics and structure of Mpro were observed to have more subtle changes, demonstrating that the inter-residue contacts within Mpro were disrupted by the synergistic ligand. This work highlighted the molecular mechanism of synergistic effects between different herbs as a result of allosteric crosstalk between two ligands at a protein target, as well as revealed that using the multi-ligand molecular docking, simulation, free energy calculations and wavelet analysis to discover novel combination drugs from a Chinese herbal remedy is an innovative pathway.

8.
Med Intensiva ; 47(3): 131-139, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36855737

RESUMEN

Objective: Few studies have reported the implications and adverse events of performing endotracheal intubation for critically ill COVID-19 patients admitted to intensive care units. The aim of the present study was to determine the adverse events related to tracheal intubation in COVID-19 patients, defined as the onset of hemodynamic instability, severe hypoxemia, and cardiac arrest. Setting: Tertiary care medical hospitals, dual-centre study performed in Northern Italy from November 2020 to May 2021. Patients: Adult patients with positive SARS-CoV-2 PCR test, admitted for respiratory failure and need of advanced invasive airways management. Interventions: Endotracheal Intubation Adverse Events. Main variables of interests: The primary endpoint was to determine the occurrence of at least 1 of the following events within 30 minutes from the start of the intubation procedure and to describe the types of major adverse peri-intubation events: severe hypoxemia defined as an oxygen saturation as measured by pulse-oximetry <80%; hemodynamic instability defined as a SBP 65 mmHg recoded at least once or SBP < 90 mmHg for 30 minutes, a new requirement or increase of vasopressors, fluid bolus >15 mL/kg to maintain the target blood pressure; cardiac arrest. Results: Among 142 patients, 73.94% experienced at least one major adverse peri-intubation event. The predominant event was cardiovascular instability, observed in 65.49% of all patients undergoing emergency intubation, followed by severe hypoxemia (43.54%). 2.82% of the patients had a cardiac arrest. Conclusion: In this study of intubation practices in critically ill patients with COVID-19, major adverse peri-intubation events were frequent. Clinical Trial registration: www.clinicaltrials.gov identifier: NCT04909476.


Objetivo: Pocos estudios han informado las implicaciones y los eventos adversos de realizar una intubación endotraqueal para pacientes críticos con COVID-19 ingresados ​​en unidades de cuidados intensivos. El objetivo del presente estudio fue determinar los eventos adversos relacionados con la intubación traqueal en pacientes con COVID-19, definidos como la aparición de inestabilidad hemodinámica, hipoxemia severa y paro cardíaco. Ámbito: Hospitales médicos de atención terciaria, estudio de doble centro realizado en el norte de Italia desde noviembre de 2020 hasta mayo de 2021. Pacientes: Pacientes adultos con prueba PCR SARS-CoV-2 positiva, ingresados por insuficiencia respiratoria y necesidad de manejo avanzado de vías aéreas invasivas. Intervenciones: Eventos adversos de la intubación endotraqueal. Principales variables de interés: El punto final primario fue determinar la ocurrencia de al menos 1 de los siguientes eventos dentro de los 30 minutos posteriores al inicio del procedimiento de intubación y describir los tipos de eventos adversos periintubación mayores. : hipoxemia severa definida como una saturación de oxígeno medida por pulsioximetría <80%; inestabilidad hemodinámica definida como PAS 65 mmHg registrada al menos una vez o PAS < 90 mmHg durante 30 minutos, nuevo requerimiento o aumento de vasopresores, bolo de líquidos > 15 mL/kg para mantener la presión arterial objetivo; paro cardiaco. Resultados: Entre 142 pacientes, el 73,94% experimentó al menos un evento periintubación adverso importante. El evento predominante fue la inestabilidad cardiovascular, observada en el 65,49% de todos los pacientes sometidos a intubación de urgencia, seguido de la hipoxemia severa (43,54%). El 2,82% de los pacientes tuvo un paro cardíaco. Conclusión: En este estudio de prácticas de intubación en pacientes críticos con COVID-19, los eventos adversos periintubación mayores fueron frecuentes. Registro de ensayos clínicos: www.clinicaltrials.gov identificador: NCT04909476.

9.
Qatar Med J ; 2023(3): 19, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38089672

RESUMEN

BACKGROUND: SARS-CoV-2 in children with cystic fibrosis (CF) has been reported to cause mild illness without pre-existing severe lung disease. This review described the clinical presentation and course of COVID-19 infection in children with CF in Qatar. METHODS: The pediatric CF registry of 51 patients in Qatar was reviewed for COVID-19 cases from February 2020 to February 2022. Demographics, vaccination status, symptoms, and course were reviewed. Data were expressed as median, range, frequencies, and percentages. RESULTS: The study included eight patients with CF below 18 years of age infected with COVID-19. The incidence of COVID-19 in children with CF was 15.7%. The median age was 11 (2-18) years. Half of the cohort were males. Seven patients were pancreatic sufficient (I1234V mutation), and one was pancreatic insufficient (3129del4 mutation). The median baseline FEV1 was 91 (78-107%) predicted. None had received CFTR modulators or undergone a lung transplant. Three patients were vaccinated before their infections. Two of them were asymptomatic. Six patients (75%) had a cough and flu-like symptoms. Three patients had a fever. Two patients were hospitalized due to pulmonary exacerbation; both had mild CF-lung disease. None required respiratory support. CONCLUSION: We report a favorable outcome of COVID-19 infection in children with CF, similar to published international studies. Our findings are attributable to the community-dominant milder CFTR mutation, precautionary measures, and causative COVID-19 strain. More longitudinal data are needed to study these factors as potential protective mechanisms.

10.
Sens Actuators B Chem ; 362: 131765, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35370361

RESUMEN

SARS-CoV-2 is one of the greatest threats to global human health. Point-of-care diagnostic tools for SARS-CoV-2 could facilitate rapid therapeutic intervention and mitigate transmission. In this work, we report CRISPR-Cas13a cascade-based viral RNA (Cas13C) assay for label-free and isothermal determination of SARS-CoV-2 and its mutations in clinical samples. Cas13a/crRNA was utilized to directly recognize the target of SARS-CoV-2 RNA, and the recognition events sequentially initiate the transcription amplification to produce light-up RNA aptamers for output fluorescence signal. The recognition of viral RNA via Cas13a-guide RNA ensures a high specificity to distinguish SARS-CoV-2 from MERS-CoV and SARS-CoV, as well as viral mutations. A post transcription amplification strategy was triggered after CRISPR-Cas13a recognition contributes to an amplification cascade that achieves high sensitivity for detecting SARS-CoV-2 RNA, with a limit of detection of 0.216 fM. In addition, the Cas13C assay could be able to discriminate single-nucleotide mutation, which was proven with N501Y in SARS-Cov-2 variant. This method was validated by a 100% agreement with RT-qPCR results from 12 clinical throat swab specimens. The Cas13C assay has the potential to be used as a routine nucleic acid test of SARS-CoV-2 virus in resource-limited regions.

11.
Endocr J ; 69(6): 649-658, 2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-34987144

RESUMEN

Although coronavirus disease 2019 (COVID-19) mainly involves the lungs, it also affects many systems. The hypothalamic/pituitary axis is vulnerable to hypoxia, hypercoagulation, endothelial dysfunction and autoimmune changes induced by COVID-19 infection. Given that there is no extensive investigation on this issue, we investigated the pituitary functions three to seven months after acute COVID-19 infection. Forty-three patients after diagnosis of COVID-19 infection and 11 healthy volunteers were included in the study. In addition to the basal pituitary hormone levels, growth hormone (GH) and hypothalamo-pituitary adrenal (HPA) axes were evaluated by glucagon stimulation test (GST) and low-dose adrenocorticotropic hormone (ACTH) stimulation test, respectively. The peak cortisol responses to low-dose ACTH test were insufficient in seven (16.2%) patients. Twenty (46.5%) and four (9.3%) patients had inadequate GH and cortisol responses to GST, respectively. Serum insulin-like growth factor-1 (IGF-1) values were also lower than age and sex-matched references in four (9.3%) patients. The peak GH responses to GST were lower in the patient group when compared to the control group. Other abnormalities were mild thyroid-stimulating hormone elevation in four (9.3%) patients, mild prolactin elevation in two (4.6%) patients and central hypogonadism in four (9.3%) patients. Mean total testosterone values were lower in male patients when compared to male controls; however, the difference was not significant. These findings suggest that COVID-19 infection may affect pituitary functions, particularly the HPA and GH axes. These insufficiencies should be kept in mind in post-COVID follow-up. Long-term data are needed to determine whether these deficiencies are permanent or not.


Asunto(s)
COVID-19 , Enfermedades de la Hipófisis , Hipófisis , Hormona Adrenocorticotrópica , COVID-19/complicaciones , Hormona del Crecimiento , Hormona de Crecimiento Humana , Humanos , Hidrocortisona , Sistema Hipotálamo-Hipofisario , Masculino , Enfermedades de la Hipófisis/diagnóstico , Hipófisis/fisiopatología , Sistema Hipófiso-Suprarrenal
12.
Chem Eng J ; 442: 136143, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35382003

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has led to a pandemic of acute respiratory disease, namely coronavirus disease (COVID-19). This disease threatens human health and public safety. Early diagnosis, isolation, and prevention are important to suppress the outbreak of COVID 19 given the lack of specific antiviral drugs to treat this disease and the emergence of various variants of the virus that cause breakthrough infections even after vaccine administration. Simple and prompt testing is paramount to preventing further spread of the virus. However, current testing methods, namely RT-PCR, is time-consuming. Binding of the SARS-CoV-2 spike (S) glycoprotein to human angiotensin-converting enzyme 2 (hACE2) receptor plays a pivotal role in host cell entry. In the present study, we developed a hACE2 mimic peptide beacon (COVID19-PEB) for simple detection of SARS-CoV-2 using a fluorescence resonance energy transfer system. COVID19-PEB exhibits minimal fluorescence in its ''closed'' hairpin structure; however, in the presence of SARS-CoV-2, the specific recognition of the S protein receptor-binding domain by COVID19-PEB causes the beacon to assume an ''open'' structure that emits strong fluorescence. COVID19-PEB can detect SARS-CoV-2 within 3 h or even 50 min and exhibits strong fluorescence even at low viral concentrations, with a detection limit of 4 × 103 plaque-forming unit/test. Furthermore, in SARS-CoV-2-infected patient samples confirmed using polymerase chain reaction, COVID19-PEB accurately detected the virus. COVID19-PEB could be developed as a rapid and accurate diagnostic tool for COVID-19.

13.
Chaos Solitons Fractals ; 156: 111844, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35125676

RESUMEN

In response to the ongoing pandemic of COVID-19, several companies across the world have proposed a wide variety of vaccines of different mechanisms of action. As a consequence, a new scenario of multiple imperfect vaccines against the SARS-CoV-2 arose. Mathematical modeling needs to consider this complex situation with different vaccines, some of them with two required doses. Using compartmental models we can simplify, simulate and most importantly, answer questions related to the development of the outbreak and the vaccination campaign. We present a model that addresses the current situation of COVID-19 and vaccination. Two important questions were considered in this paper: are more vaccines useful to reduce the spread of the coronavirus? How can we know if the vaccination campaign is sufficient? Two sensitivity criteria are helpful to answer these questions. The first criterion is the Multiple Vaccination Theorem, which indicates whether a vaccine is giving a positive or negative impact on the reproduction number. The second result (Insufficiency Theorem) provides a condition to answer the second question. Finally, we fitted the parameters with data and discussed the empirical results of six countries: Israel, Germany, the Czech Republic, Portugal, Italy, and Lithuania.

14.
Chem Eng Sci ; 251: 117430, 2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35043022

RESUMEN

Loop-mediated isothermal amplification (LAMP) is widely used in detection of pathogenic microorganisms including SARS-CoV-2. However, the performance of LAMP assay needs further exploration in the emerging SARS-CoV-2 variants test. Here, we design serials of primers and select an optimal set for LAMP-based on SARS-CoV-2 N gene for a robust and visual assay in SARS-CoV-2 diagnosis. The limit of detectable template reaches 10 copies of N gene per 25 µL reaction at isothermal 58℃ within 40 min. Importantly, the primers for LAMP assay locate at 12 to 213 nt of N gene, a highly conservative region, which serves as a compatible test in emerging SARS-CoV-2 variants. Comparison to a commercial qPCR assay, this LAMP assay exerts the high viability in diagnosis of 41 clinical samples. Our study optimizes an advantageous LAMP assay for colorimetric detection of SARS-CoV-2 and emerging variants, which is hopeful to be a promising test in COVID-19 surveillance.

15.
Radiat Phys Chem Oxf Engl 1993 ; 198: 110265, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35663798

RESUMEN

The world is still suffering from the SARS-CoV-2 pandemic, and the number of infected people is still growing in many countries in 2022. Although great strides have been made to produce effective vaccines, efforts in this field should be accelerated, particularly due to the emergence of new variants. Using inactivated viruses is a conventional method of vaccine production. High levels of ionizing radiation can effectively inactivate viruses. Recently, studies on SARS-CoV-2 irradiation using low-LET radiations (e.g., gamma rays) have been performed. However, there are insufficient studies on the impact of charged particles on the inactivation of this virus. In this study, a realistic structure of SARS-CoV-2 is simulated by using Geant4 Monte Carlo toolkit, and the effect of electrons, protons, alphas, C-12, and Fe-56 ions on the inactivation of SARS-CoV-2 is investigated. The simulation results indicated that densely ionizing (high-LET) particles have the advantage of minimum number of damaged spike proteins per single RNA break. The RNA breaks induced by hydroxyl radicals produced in the surrounding water medium were significant only for electron beam radiation. Hence, indirect RNA breaks induced by densely ionizing particles is negligible. From a simulation standpoint, alpha particles (with energies up to 30 MeV) as well as C-12 ions (with energies up to 80 MeV/n), and Fe-56 ions (with any energy) can be introduced as particles of choice for effective SARS-CoV-2 inactivation.

16.
Energy (Oxf) ; 244: 122709, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-34840405

RESUMEN

The spread of the coronavirus SARS-CoV-2 affects the health of people and the economy worldwide. As air transmits the virus, heating, ventilation and air-conditioning (HVAC) systems in buildings, enclosed spaces and public transport play a significant role in limiting the transmission of airborne pathogens at the expenses of increased energy consumption and possibly reduced thermal comfort. On the other hand, liquid desiccant technology could be adopted as an air scrubber to increase indoor air quality and inactivate pathogens through temperature and humidity control, making them less favourable to the growth, proliferation and infectivity of microorganisms. The objectives of this study are to review the role of HVAC in airborne viral transmission, estimate its energy penalty associated with the adoption of HVAC for transmission reduction and understand the potential of liquid desiccant technology. Factors affecting the inactivation of pathogens by liquid desiccant solutions and possible modifications to increase their heat and mass transfer and sanitising characteristics are also described, followed by an economic evaluation. It is concluded that the liquid desiccant technology could be beneficial in buildings (requiring humidity control or moisture removal in particular when viruses are likely to present) or in high-footfall enclosed spaces (during virus outbreaks).

17.
Food Qual Prefer ; 97: 104482, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34848929

RESUMEN

Sudden loss of smell and/or taste has been identified as an early symptom of SARS-CoV-2 2019 (COVID-19) infection, and presents an effective target for prompt self-isolation and reducing community spread. The current study sought to develop and test a novel, rapid, self-administered test to objectively measure smell and taste losses associated with COVID-19, and administered self-report questionnaires to characterise symptoms associated with COVID-19 in Singapore. Participants (N = 99) completed questionnaires to record recent changes in smell and taste ability. This was followed by the 'Singapore Smell and Taste Test' (SSTT), a personal, objective testing kit for daily self-assessment of smell and taste function at their place of residence. Seventy-two recruited participants were confirmed as COVID-19 positive at baseline, of which 58 completed the SSTT at home. Of these, 36.2% had objectively measured smell and/or taste loss. The SSTT measures of smell and taste function were positively associated with participants' self-reported smell and taste acuity, and rated smell intensity of 6 common household items. This study presents the first application of the SSTT as a rapid, cost-effective, objective tool to self-monitor smell and taste function in a residential setting, and ensures comparability across individuals through the use of standardised stimuli. The SSTT has potential for future application in populations with limited access to formal COVID-19 testing as a self-administered objective method to monitor sudden changes in smell and taste, and to prompt early self-isolation, in order to reduce community transmission of COVID-19.

18.
Int J Mol Sci ; 23(21)2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36362045

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces immune-mediated type 1 interferon (IFN-1) production, the pathophysiology of which involves sterile alpha motif and histidine-aspartate domain-containing protein 1 (SAMHD1) tetramerization and the cytosolic DNA sensor cyclic-GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway. As a result, type I interferonopathies are exacerbated. Aspirin inhibits cGAS-mediated signaling through cGAS acetylation. Acetylation contributes to cGAS activity control and activates IFN-1 production and nuclear factor-κB (NF-κB) signaling via STING. Aspirin and dapsone inhibit the activation of both IFN-1 and NF-κB by targeting cGAS. We define these as anticatalytic mechanisms. It is necessary to alleviate the pathologic course and take the lag time of the odds of achieving viral clearance by day 7 to coordinate innate or adaptive immune cell reactions.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Interferón Tipo I , Humanos , Acetilación , FN-kappa B/metabolismo , Reposicionamiento de Medicamentos , Proteínas de la Membrana/metabolismo , SARS-CoV-2 , Nucleotidiltransferasas/metabolismo , Interferón Tipo I/metabolismo , Aspirina , Inmunidad Innata/genética
19.
Energy Build ; 257: 111783, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34934266

RESUMEN

Exceptional pandemic lockdown measures enabled singular experiments such as analysing the energy consumption of vacant buildings. This paper assesses the impact of the COVID-19 lockdown on the energy use of academic buildings. For this purpose, weather-adjusted energy use was compared before and during the lockdown, including different levels of lockdown restrictions. Results obtained for the 83 academic buildings of Universitat Politècnica de Catalunya - Barcelona Tech (UPC) reveal that the avoided energy consumption amounted to over 4.3 GWh during the post-pandemic year. However, the results indicate that academic buildings were still using approximately 46.9% of their typical energy consumption during strict lockdown. This revelation emphasizes the high environmental burden of buildings, regardless of whether they are occupied.

20.
S Afr J Bot ; 146: 735-739, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34955582

RESUMEN

Plant-based compounds with antiviral properties against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been identified in Aframomum melegueta through computational models. The seed extract have been traditionally used to treat different illnesses. In this study, ethanolic extracts were prepared for six commercial samples of A. melegueta seeds. Antiviral activity was tested using the XTT cytotoxicity assay and cell-based SARS-CoV-1 and 2 pseudoviral models. The presence of gingerols and other non-volatile components in the seed extracts was determined using an Agilent 1290 UPLC/DAD in tandem with an Agilent 6546 QTOF-MS. Our results showed selective antiviral activity with TI values as high as 13.1. Fifteen gingerols were identified by chromatographic analysis, with 6-gingerol being the dominant component in each seed extract. A combination of 6-gingerol with techtochrysin, previously identified in computational models as a potential active ingredient against SARS-CoV-2, demonstrated additive antiviral activity with CI values between 0.8715 and 0.9426. We confirmed the antiviral activity of A. melegueta predicted through computational models and identified a different compound, 6-gingerol, as a potential active ingredient.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA