Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Bioorg Med Chem Lett ; 102: 129679, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38423371

RESUMEN

Seven furanochromene-quinoline derivatives containing a hydrazone linker were synthesized by condensing a furanochromene hydrazide with quinoline 2-, 3-, 4-, 5-, 6-, and 8-carbaldehydes, including 8-hydroxyquinoline-2-carbaldehye. Structure-activity correlations were investigated to determine the influence of the location of the hydrazone linker on the quinoline unit on SARS-CoV-2 Mpro enzyme inhibition. The 3-, 5-, 6- and 8-substituted derivatives showed moderate inhibition of SARS-CoV-2 Mpro with IC50 values ranging from 16 to 44 µM. Additionally, all of the derivatives showed strong interaction with the SARS-CoV-2 Mpro substrate binding pocket, with docking energy scores ranging from -8.0 to -8.5 kcal/mol. These values are comparable to that of N3 peptide (-8.1 kcal/mol) and more favorable than GC-373 (-7.6 kcal/mol) and ML-188 (-7.5 kcal/mol), all of which are known SARS-CoV-2 Mpro inhibitors. Furthermore, in silico absorption, distribution, metabolism, and excretion (ADME) profiles indicate that the derivatives have good drug-likeness properties. Overall, this study highlights the potential of the furanochromene-quinoline hydrazone scaffold as a SARS-CoV-2 Mpro inhibitor.


Asunto(s)
COVID-19 , Proteasas 3C de Coronavirus , Quinolinas , Humanos , Hidrazonas/farmacología , Simulación del Acoplamiento Molecular , SARS-CoV-2 , Quinolinas/farmacología , Inhibidores de Proteasas/farmacología , Simulación de Dinámica Molecular
2.
Bioorg Chem ; 147: 107315, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38604017

RESUMEN

Seven new meroterpenoids, paraphaeones A-G (1-7), and two new polyketides, paraphaeones H-I (8-9), along with eight known compounds (10-17), were isolated from the endophytic fungus Paraphaeosphaeria sp. C-XB-J-1. The structures of 1-9 were identified through the analysis of 1H, 13C, and 2D NMR spectra, assisted by HR-ESI-MS data. Compounds 1 and 7 exhibited a dose-dependent decrease in lactate dehydrogenase levels, with IC50 values of 1.78 µM and 1.54 µM, respectively. Moreover, they inhibited the secretion of IL-1ß and CASP-1, resulting in a reduction in the activity levels of NLRP3 inflammasomes. Fluorescence microscopy results indicated that compound 7 concentration-dependently attenuated cell pyroptosis. Additionally, compounds 4 and 7 showed potential inhibitory effects on the severe acute respiratory syndrome coronavirus-2 main protease (SARS-CoV-2 Mpro), with IC50 values of 10.8 ± 0.9 µM and 12.9 ± 0.7 µM, respectively.


Asunto(s)
Ascomicetos , Proteasas 3C de Coronavirus , Policétidos , SARS-CoV-2 , Terpenos , Policétidos/química , Policétidos/farmacología , Policétidos/aislamiento & purificación , Ascomicetos/química , Humanos , Terpenos/química , Terpenos/farmacología , Terpenos/aislamiento & purificación , SARS-CoV-2/efectos de los fármacos , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/metabolismo , Proteasas 3C de Coronavirus/química , Estructura Molecular , Antivirales/farmacología , Antivirales/química , Antivirales/aislamiento & purificación , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/química , Antiinflamatorios/aislamiento & purificación , Relación Dosis-Respuesta a Droga , Relación Estructura-Actividad , Tratamiento Farmacológico de COVID-19 , Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/aislamiento & purificación
3.
Saudi Pharm J ; 32(5): 102023, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38550333

RESUMEN

The escalation of many coronavirus variants accompanied by the lack of an effective cure has motivated the hunt for effective antiviral medicines. In this regard, 18 Saudi Arabian medicinal plants were evaluated for SARS CoV-2 main protease (Mpro) inhibition activity. Among them, Terminalia brownii and Acacia asak alcoholic extracts exhibited significant Mpro inhibition, with inhibition rates of 95.3 % and 95.2 %, respectively, at a concentration of 100 µg/mL. Bioassay-guided phytochemical study for the most active n-butanol fraction of T. brownii led to identification of eleven compounds, including two phenolic acids (1, and 2), seven hydrolysable tannins (3-10), and one flavonoid (11) as well as four flavonoids from A. asak (12-15). The structures of the isolated compounds were established using various spectroscopic techniques and comparison with known compounds. To investigate the chemical interactions between the identified compounds and the target Mpro protein, molecular docking was performed using AutoDock 4.2. The findings identified compounds 4, 5, 10, and 14 as the most potential inhibitors of Mpro with binding energies of -9.3, -8.5, -8.1, and -7.8 kcal mol-1, respectively. In order to assess the stability of the protein-ligand complexes, molecular dynamics simulations were conducted for a duration of 100 ns, and various parameters such as RMSD, RMSF, Rg, and SASA were evaluated. All selected compounds 4, 5, 10, and 14 showed considerable Mpro inhibiting activity in vitro, with compound 4 being the most powerful with an IC50 value of 1.2 µg/mL. MM-GBSA free energy calculations also revealed compound 4 as the most powerful Mpro inhibitor. None of the compounds (4, 5, 10, and 14) display any significant cytotoxic activity against A549 and HUVEC cell lines.

4.
Proteins ; 91(11): 1496-1509, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37408369

RESUMEN

The Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2) is the virus responsible for the COVID-19 pandemic. COVID-19 continues to cause millions of deaths globally in part due to immune-evading mutations. SARS-CoV-2 main protease (Mpro) is an important enzyme for viral replication and potentially an effective drug target. Mutations affect the dynamics of enzymes and thereby their activity and ability to bind ligands. Here, we use kinematic flexibility analysis (KFA) to identify how mutations and ligand binding changes the conformational flexibility of Mpro. KFA decomposes macromolecules into regions of different flexibility near-instantly from a static structure, allowing conformational dynamics analysis at scale. Altogether, we analyzed 47 mutation sites across 69 Mpro-ligand complexes resulting in more than 3300 different structures which includes 69 mutated structures with all 47 sites mutated simultaneously and 3243 single residue mutated structures. We found that mutations generally increased the conformational flexibility of the protein. Understanding the impact of mutations on the flexibility of Mpro is essential for identifying potential drug targets in the treatment of SARS-CoV-2. Further studies in this area can offer valuable insights into the mechanisms of molecular recognition.

5.
J Comput Chem ; 44(26): 2086-2095, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37357616

RESUMEN

The main protease (Mpro) of SARS-CoV-2 plays an essential role in the virus life cycle and is considered a key target for therapeutic development. This study explores the inhibition mechanism of SARS-CoV-2 Mpro by ebselen, an organoselenium drug that shows potent inhibitory activity. By using a combination of multiple computational methods including molecular docking, molecular dynamics simulations, and density functional theory calculations, the complete covalent inhibition process of ebselen is simulated for the first time. Two possible pathways with different bound conformations of ebselen are identified. The hydrolysis of the enzyme-ebselen adduct is found to be the rate-determining step. The simulation results show that the behavior of water molecules at the hydrolysis site is crucial to distinguish the two paths energetically. Our simulations, which are in agreement with existing experimental results, provide a theoretical basis for the rational design and mechanism exploration of ebselen-based inhibitors.


Asunto(s)
COVID-19 , Simulación de Dinámica Molecular , Humanos , Simulación del Acoplamiento Molecular , SARS-CoV-2
6.
J Med Virol ; 95(11): e29208, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37947293

RESUMEN

The main proteases (Mpro ) are highly conserved cysteine-rich proteins that can be covalently modified by numerous natural and synthetic compounds. Herein, we constructed an integrative approach to efficiently discover covalent inhibitors of Mpro from complex herbal matrices. This work begins with biological screening of 60 clinically used antiviral herbal medicines, among which Lonicera japonica Flos (LJF) demonstrated the strongest anti-Mpro effect (IC50 = 37.82 µg/mL). Mass spectrometry (MS)-based chemical analysis and chemoproteomic profiling revealed that LJF extract contains at least 50 constituents, of which 22 exhibited the capability to covalently modify Mpro . We subsequently verified the anti-Mpro effects of these covalent binders. Gallic acid and quercetin were found to potently inhibit severe acute respiratory syndrome coronavirus 2 Mpro in dose- and time- dependent manners, with the IC50 values below 10 µM. The inactivation kinetics, binding affinity and binding mode of gallic acid and quercetin were further characterized by fluorescence resonance energy transfer, surface plasmon resonance, and covalent docking simulations. Overall, this study established a practical approach for efficiently discovering the covalent inhibitors of Mpro from herbal medicines by integrating target-based high-throughput screening and MS-based assays, which would greatly facilitate the discovery of key antiviral constituents from medicinal plants.


Asunto(s)
COVID-19 , Plantas Medicinales , Humanos , SARS-CoV-2 , Ensayos Analíticos de Alto Rendimiento , Quercetina/farmacología , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/química , Extractos Vegetales/farmacología , Antivirales/farmacología , Antivirales/química , Ácido Gálico/farmacología , Simulación del Acoplamiento Molecular
7.
Bioorg Chem ; 130: 106255, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36403336

RESUMEN

COVID-19 and associated substantial inflammations continue to threaten humankind triggering death worldwide. So, the development of new effective antiviral and anti-inflammatory medications is a major scientific goal. Pyranopyrazoles have occupied a crucial position in medicinal chemistry because of their biological importance. Here, we report the design and synthesis of a series of sixteen pyranopyrazole derivatives substituted with two aryl groups at N-1 and C-4. The designed compounds are suggested to show dual activity to combat the emerging Coronaviruses and associated substantial inflammations. All compounds were evaluated for their in vitro antiviral activity and cytotoxicity against SARS-CoV infected Vero cells. As well, the in vitro assay of all derivatives against the SARS-CoV Mpro target was performed. Results revealed the potential of three pyranopyrazoles (22, 27, and 31) to potently inhibit the viral main protease with IC50 values of 2.01, 1.83, and 4.60 µM respectively compared with 12.85 and 82.17 µM for GC-376 and lopinavir. Additionally, in vivo anti-inflammatory testing for the most active compound 27 proved its ability to reduce levels of two cytokines (TNF-α and IL-6). Molecular docking and dynamics simulation revealed consistent results with the in vitro enzymatic assay and indicated the stability of the putative complex of 27 with SARS-CoV-2 Mpro. The assessment of metabolic stability and physicochemical properties of 27 have also been conducted. This investigation identified a set of metabolically stable pyranopyrazoles as effective anti-SARS-CoV-2 Mpro and suppressors of host cell cytokine release. We believe that the new compounds deserve further chemical optimization and evaluation for COVID-19 treatment.


Asunto(s)
Antivirales , Tratamiento Farmacológico de COVID-19 , Chlorocebus aethiops , Animales , Humanos , Antivirales/farmacología , Antivirales/química , SARS-CoV-2 , Células Vero , Simulación del Acoplamiento Molecular , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Inflamación
8.
Biotechnol Appl Biochem ; 70(1): 439-457, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35642754

RESUMEN

The main protease (Mpro) of SARS-COV-2 plays a vital role in the viral life cycle and pathogenicity. Due to its specific attributes, this 3-chymotrypsin like protease can be a reliable target for the drug design to combat COVID-19. Since the advent of COVID-19, Mpro has undergone many mutations. Here, the impact of 10 mutations based on their frequency and five more based on their proximity to the active site was investigated. For comparison purposes, the docking process was also performed against the Mpros of SARS-COV and MERS-COV. Four inhibitors with the highest docking score (11b, α-ketoamide 13b, Nelfinavir, and PF-07321332) were selected for the structure-based ligand design via fragment replacement, and around 2000 new compounds were thus obtained. After the screening of these new compounds, the pharmacokinetic properties of the best ones were predicted. In the last step, comparative molecular dynamics (MD) simulations, molecular mechanics Poisson-Boltzmann surface area calculations (MM/PBSA), and density functional theory calculations were performed. Among the 2000 newly designed compounds, three of them (NE1, NE2, and NE3), which were obtained by modifications of Nelfinavir, showed the highest affinity against all the Mpro targets. Together, NE1 compound is the best candidate for follow-up Mpro inhibition and drug development studies.


Asunto(s)
COVID-19 , Simulación de Dinámica Molecular , Humanos , Simulación del Acoplamiento Molecular , Teoría Funcional de la Densidad , Nelfinavir/farmacología , SARS-CoV-2 , Diseño de Fármacos , Inhibidores de Proteasas
9.
Mol Divers ; 2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36823394

RESUMEN

To date, the COVID-19 pandemic has still been infectious around the world, continuously causing social and economic damage on a global scale. One of the most important therapeutic targets for the treatment of COVID-19 is the main protease (Mpro) of SARS-CoV-2. In this study, we combined machine-learning (ML) model with atomistic simulations to computationally search for highly promising SARS-CoV-2 Mpro inhibitors from the representative natural compounds of the National Cancer Institute (NCI) Database. First, the trained ML model was used to scan the library quickly and reliably for possible Mpro inhibitors. The ML output was then confirmed using atomistic simulations integrating molecular docking and molecular dynamic simulations with the linear interaction energy scheme. The results turned out to show that there was evidently good agreement between ML and atomistic simulations. Ten substances were proposed to be able to inhibit SARS-CoV-2 Mpro. Seven of them have high-nanomolar affinity and are very potential inhibitors. The strategy has been proven to be reliable and appropriate for fast prediction of SARS-CoV-2 Mpro inhibitors, benefiting for new emerging SARS-CoV-2 variants in the future accordingly.

10.
Chem Phys ; 564: 111709, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36188488

RESUMEN

Inhibiting the biological activity of SARS-CoV-2 Mpro can prevent viral replication. In this context, a hybrid approach using knowledge- and physics-based methods was proposed to characterize potential inhibitors for SARS-CoV-2 Mpro. Initially, supervised machine learning (ML) models were trained to predict a ligand-binding affinity of ca. 2 million compounds with the correlation on a test set of R = 0.748 ± 0.044 . Atomistic simulations were then used to refine the outcome of the ML model. Using LIE/FEP calculations, nine compounds from the top 100 ML inhibitors were suggested to bind well to the protease with the domination of van der Waals interactions. Furthermore, the binding affinity of these compounds is also higher than that of nirmatrelvir, which was recently approved by the US FDA to treat COVID-19. In addition, the ligands altered the catalytic triad Cys145 - His41 - Asp187, possibly disturbing the biological activity of SARS-CoV-2.

11.
Chem Biodivers ; 20(3): e202201151, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36740573

RESUMEN

SARS-CoV-2 main protease (Mpro ) plays an essential role in proteolysis cleavage that promotes coronavirus replication. Thus, attenuating the activity of this enzyme represents a strategy to develop antiviral agents. We report inhibitory effects against Mpro of 40 synthetic chalcones, and cytotoxicity activities, hemolysis, and in silico interactions of active compounds. Seven of them bearing a (E)-3-(furan-2-yl)-1-arylprop-2-en-1-one skeleton (10, 28, and 35-39) showed enzyme inhibition with IC50 ranging from 13.76 and 36.13 µM. Except for 35 and 36, other active compounds were not cytotoxic up to 150 µM against THP-1 and Vero cell lines. Compounds 10, and 35-39 showed no hemolysis while 28 was weakly hemotoxic at 150 µM. Moreover, molecular docking showed interactions between compound 10 and Mpro (PDBID 5RG2 and 5RG3) with proximity to cys145 and His41, suggesting a covalent binding. Products of the reaction between chalcones and cyclohexanethiol indicated that this binding could be a Michael addition type.


Asunto(s)
COVID-19 , Chalconas , Humanos , SARS-CoV-2 , Simulación del Acoplamiento Molecular , Chalconas/farmacología , Chalconas/química , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/química , Antivirales/farmacología , Antivirales/química , Simulación de Dinámica Molecular
12.
Chem Biodivers ; 20(4): e202300267, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36971209

RESUMEN

In the present study, a new polyoxygenated cembranoid named sarcomililatol H (1) as well as six known terpenes 2-7 with different skeletons were isolated from South China Sea soft coral Sarcophyton mililatensis. Based on the comprehensive analyses of 1D and 2D NMR spectroscopic data, the structure of the new compound 1 was established. This new cembranoid was characterized by the presence of the rarely encountered tetrahydropyran ring with the ether linkage across C-2 and C-12. By applying the time-dependent density functional theory electronic circular dichroism (TDDFT ECD) approach, the absolute configuration of sarcomililatol H (1) was determined. All of the isolates were subjected to the anti-inflammatory and anti-tumor bioassays. However, none of them was active in these evaluations. Additionally, the preliminary virtual screening of inhibitory against SARS-CoV-2 by molecular docking showed that diterpene 1 could be regarded as a SARS-CoV-2 main protease (Mpro ) inhibitor (binding energy: -7.63 kcal/mol). The discovery of these terpenes has expanded the chemical diversity and complexity of terpenes from the species S. mililatensis.


Asunto(s)
Antozoos , COVID-19 , Diterpenos , Animales , Terpenos/química , Antozoos/química , Simulación del Acoplamiento Molecular , SARS-CoV-2 , Diterpenos/química , Estructura Molecular
13.
Arch Pharm (Weinheim) ; 356(8): e2300207, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37255416

RESUMEN

COVID-19 has caused many deaths since the first outbreak in 2019. The burden on healthcare systems around the world has been reduced by the success of vaccines. However, population adherence and the occurrence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants are still challenging tasks to be affronted. In addition, the newly approved drug presents some limitations in terms of side effects and drug interference, highlighting the importance of searching for new antiviral agents against SARS-CoV-2. The SARS-CoV-2 main protease (Mpr o ) represents a versatile target to search for new drug candidates due to its essential role in proteolytic activities responsible for the virus replication. In this work, a series of 190 compounds, composed of 27 natural ones and 163 synthetic compounds, were screened in vitro for their inhibitory effects against SARS-CoV-2 Mpro . Twenty-five compounds inhibited Mpro with inhibitory constant values (Ki ) between 23.2 and 241 µM. Among them, a thiosemicarbazone derivative was the most active compound. Molecular docking studies using Protein Data Bank ID 5RG1, 5RG2, and 5RG3 crystal structures of Mpro revealed important interactions identified as hydrophobic, hydrogen bonding and steric interactions with amino acid residues in the active site cavity. Overall, our findings indicate the described thiosemicarbazones as good candidates to be further explored to develop antiviral leads against SARS-CoV-2. Moreover, the studies showed the importance of careful evaluation of test results to detect and exclude false-positive findings.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Simulación del Acoplamiento Molecular , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/química , Relación Estructura-Actividad , Antivirales/farmacología , Antivirales/química , Simulación de Dinámica Molecular
14.
Nano Lett ; 22(22): 8932-8940, 2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36346642

RESUMEN

Plasmonic coupling via nanoparticle assembly is a popular signal-generation method in bioanalytical sensors. Here, we customized an all-peptide-based ligand that carries an anchoring group, polyproline spacer, biomolecular recognition, and zwitterionic domains for functionalizing gold nanoparticles (AuNPs) as a colorimetric enzyme sensor. Our results underscore the importance of the polyproline module, which enables the SARS-CoV-2 main protease (Mpro) to recognize the peptidic ligand on nanosurfaces for subsequent plasmonic coupling via Coulombic interactions. AuNP aggregation is favored by the lowered surface potential due to enzymatic unveiling of the zwitterionic module. Therefore, this system provides a naked-eye measure for Mpro. No proteolysis occurs on AuNPs modified with a control ligand lacking a spacer domain. Overall, this all-peptide-based ligand does not require complex molecular conjugations and hence offers a simple and promising route for plasmonic sensing other proteases.


Asunto(s)
COVID-19 , Nanopartículas del Metal , Humanos , Oro , Resonancia por Plasmón de Superficie/métodos , Ligandos , SARS-CoV-2 , Péptidos
15.
Int J Mol Sci ; 24(4)2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36835648

RESUMEN

The indispensable role of the SARS-CoV-2 main protease (Mpro) in the viral replication cycle and its dissimilarity to human proteases make Mpro a promising drug target. In order to identify the non-covalent Mpro inhibitors, we performed a comprehensive study using a combined computational strategy. We first screened the ZINC purchasable compound database using the pharmacophore model generated from the reference crystal structure of Mpro complexed with the inhibitor ML188. The hit compounds were then filtered by molecular docking and predicted parameters of drug-likeness and pharmacokinetics. The final molecular dynamics (MD) simulations identified three effective candidate inhibitors (ECIs) capable of maintaining binding within the substrate-binding cavity of Mpro. We further performed comparative analyses of the reference and effective complexes in terms of dynamics, thermodynamics, binding free energy (BFE), and interaction energies and modes. The results reveal that, when compared to the inter-molecular electrostatic forces/interactions, the inter-molecular van der Waals (vdW) forces/interactions are far more important in maintaining the association and determining the high affinity. Given the un-favorable effects of the inter-molecular electrostatic interactions-association destabilization by the competitive hydrogen bond (HB) interactions and the reduced binding affinity arising from the un-compensable increase in the electrostatic desolvation penalty-we suggest that enhancing the inter-molecular vdW interactions while avoiding introducing the deeply buried HBs may be a promising strategy in future inhibitor optimization.


Asunto(s)
Proteasas 3C de Coronavirus , Inhibidores de Proteasas , SARS-CoV-2 , Humanos , COVID-19 , Simulación del Acoplamiento Molecular , SARS-CoV-2/efectos de los fármacos , Proteasas 3C de Coronavirus/antagonistas & inhibidores
16.
Int J Mol Sci ; 24(9)2023 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-37176082

RESUMEN

The viral main protease is one of the most attractive targets among all key enzymes involved in the life cycle of SARS-CoV-2. Considering its mechanism of action, both the catalytic and dimerization regions could represent crucial sites for modulating its activity. Dual-binding the SARS-CoV-2 main protease inhibitors could arrest the replication process of the virus by simultaneously preventing dimerization and proteolytic activity. To this aim, in the present work, we identified two series' of small molecules with a significant affinity for SARS-CoV-2 MPRO, by a hybrid virtual screening protocol, combining ligand- and structure-based approaches with multivariate statistical analysis. The Biotarget Predictor Tool was used to filter a large in-house structural database and select a set of benzo[b]thiophene and benzo[b]furan derivatives. ADME properties were investigated, and induced fit docking studies were performed to confirm the DRUDIT prediction. Principal component analysis and docking protocol at the SARS-CoV-2 MPRO dimerization site enable the identification of compounds 1b,c,i,l and 2i,l as promising drug molecules, showing favorable dual binding site affinity on SARS-CoV-2 MPRO.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Antivirales/química , Ligandos , Inhibidores de Proteasas/química , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular
17.
Molecules ; 28(2)2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36677572

RESUMEN

SARS-CoV-2 Mpro is a chymotrypsin-like cysteine protease playing a relevant role during the replication and infectivity of SARS-CoV-2, the coronavirus responsible for COVID-19. The binding site of Mpro is characterized by the presence of a catalytic Cys145 which carries out the hydrolytic activity of the enzyme. As a consequence, several Mpro inhibitors have been proposed to date in order to fight the COVID-19 pandemic. In our work, we designed, synthesized and biologically evaluated MPD112, a novel inhibitor of SARS-CoV-2 Mpro bearing a trifluoromethyl diazirine moiety. MPD112 displayed in vitro inhibition activity against SARS-CoV-2 Mpro at a low micromolar level (IC50 = 4.1 µM) in a FRET-based assay. Moreover, an inhibition assay against PLpro revealed lack of inhibition, assuring the selectivity of the compound for the Mpro. Furthermore, the target compound MPD112 was docked within the binding site of the enzyme to predict the established intermolecular interactions in silico. MPD112 was subsequently tested on the HCT-8 cell line to evaluate its effect on human cells' viability, displaying good tolerability, demonstrating the promising biological compatibility and activity of a trifluoromethyl diazirine moiety in the design and development of SARS-CoV-2 Mpro binders.


Asunto(s)
Antivirales , Diazometano , Inhibidores de Proteasas , SARS-CoV-2 , Antivirales/farmacología , Antivirales/química , Diazometano/química , Diazometano/farmacología , Simulación del Acoplamiento Molecular , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología , SARS-CoV-2/efectos de los fármacos
18.
Curr Issues Mol Biol ; 44(10): 4540-4556, 2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36286026

RESUMEN

A novel series of bis-[1,3,4]thiadiazolimines, and bis-thiazolimines, with alkyl linker, were synthesized through general routes from cyclization of 1,1'-(hexane-1,6-diyl)bis(3-phenylthiourea) and hydrazonoyl halides or α-haloketones, respectively. Docking studies were applied to test the binding affinity of the synthesized products against the Mpro of SARS-CoV-2. The best compound, 5h, has average binding energy (-7.50 ± 0.58 kcal/mol) better than that of the positive controls O6K and N3 (-7.36 ± 0.34 and -6.36 ± 0.31 kcal/mol). Additionally, the docking poses (H-bonds and hydrophobic contacts) of the tested compounds against the Mpro using the PLIP web server were analyzed.

19.
Mol Divers ; 26(3): 1645-1661, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34480682

RESUMEN

COVID-19 is a viral pandemic caused by SARS-CoV-2. Due to its highly contagious nature, millions of people are getting affected worldwide knocking down the delicate global socio-economic equilibrium. According to the World Health Organization, COVID-19 has affected over 186 million people with a mortality of around 4 million as of July 09, 2021. Currently, there are few therapeutic options available for COVID-19 control. The rapid mutations in SARS-CoV-2 genome and development of new virulent strains with increased infection and mortality among COVID-19 patients, there is a great need to discover more potential drugs for SARS-CoV-2 on a priority basis. One of the key viral enzymes responsible for the replication and maturation of SARS-CoV-2 is Mpro protein. In the current study, structure-based virtual screening was used to identify four potential ligands against SARS-CoV-2 Mpro from a set of 8,722 ASINEX library compounds. These four compounds were evaluated using ADME filter to check their ADME profile and druggability, and all the four compounds were found to be within the current pharmacological acceptable range. They were individually docked to SARS-CoV-2 Mpro protein to assess their molecular interactions. Further, molecular dynamics (MD) simulations was carried out on protein-ligand complex using Desmond at 100 ns to explore their binding conformational stability. Based on RMSD, RMSF and hydrogen bond interactions, it was found that the stability of protein-ligand complex was maintained throughout the entire 100 ns simulations for all the four compounds. Some of the key ligand amino acid residues participated in stabilizing the protein-ligand interactions includes GLN 189, SER 10, GLU 166, ASN 142 with PHE 66 and TRP 132 of SARS-CoV-2 Mpro. Further optimization of these compounds could lead to promising drug candidates for SARS-CoV-2 Mpro target.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Antivirales/química , Proteasas 3C de Coronavirus , Cisteína Endopeptidasas/química , Cisteína Endopeptidasas/metabolismo , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Inhibidores de Proteasas/química , Proteínas no Estructurales Virales
20.
J Enzyme Inhib Med Chem ; 37(1): 2112-2132, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35912578

RESUMEN

The global outbreak of the COVID-19 pandemic provokes scientists to make a prompt development of new effective therapeutic interventions for the battle against SARS-CoV-2. A new series of N-(5-nitrothiazol-2-yl)-carboxamido derivatives were designed and synthesised based on the structural optimisation principle of the SARS-CoV Mpro co-crystallized WR1 inhibitor. Notably, compound 3b achieved the most promising anti-SARS-CoV-2 activity with an IC50 value of 174.7 µg/mL. On the other hand, compounds 3a, 3b, and 3c showed very promising SARS-CoV-2 Mpro inhibitory effects with IC50 values of 4.67, 5.12, and 11.90 µg/mL, respectively. Compound 3b docking score was very promising (-6.94 kcal/mol) and its binding mode was nearly similar to that of WR1. Besides, the molecular dynamics (MD) simulations of compound 3b showed its great stability inside the binding pocket until around 40 ns. Finally, a very promising SAR was concluded to help to design more powerful SARS-CoV-2 Mpro inhibitors shortly.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Pandemias , Proteasas 3C de Coronavirus , Cisteína Endopeptidasas/metabolismo , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología , SARS-CoV-2 , Proteínas no Estructurales Virales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA