Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 305
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(11): 2955-2972.e25, 2021 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-34019795

RESUMEN

Natural antibodies (Abs) can target host glycans on the surface of pathogens. We studied the evolution of glycan-reactive B cells of rhesus macaques and humans using glycosylated HIV-1 envelope (Env) as a model antigen. 2G12 is a broadly neutralizing Ab (bnAb) that targets a conserved glycan patch on Env of geographically diverse HIV-1 strains using a unique heavy-chain (VH) domain-swapped architecture that results in fragment antigen-binding (Fab) dimerization. Here, we describe HIV-1 Env Fab-dimerized glycan (FDG)-reactive bnAbs without VH-swapped domains from simian-human immunodeficiency virus (SHIV)-infected macaques. FDG Abs also recognized cell-surface glycans on diverse pathogens, including yeast and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike. FDG precursors were expanded by glycan-bearing immunogens in macaques and were abundant in HIV-1-naive humans. Moreover, FDG precursors were predominately mutated IgM+IgD+CD27+, thus suggesting that they originated from a pool of antigen-experienced IgM+ or marginal zone B cells.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , VIH-1/inmunología , Fragmentos Fab de Inmunoglobulinas/inmunología , Polisacáridos/inmunología , SARS-CoV-2/inmunología , Virus de la Inmunodeficiencia de los Simios/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Animales , Linfocitos B/inmunología , Anticuerpos ampliamente neutralizantes/inmunología , COVID-19/inmunología , Dimerización , Epítopos/inmunología , Glicosilación , Anticuerpos Anti-VIH/inmunología , Infecciones por VIH/inmunología , Humanos , Fragmentos Fab de Inmunoglobulinas/química , Macaca mulatta , Polisacáridos/química , Receptores de Antígenos de Linfocitos B/química , Virus de la Inmunodeficiencia de los Simios/genética , Vacunas/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/química , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética
2.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34930824

RESUMEN

The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has resulted in tremendous loss worldwide. Although viral spike (S) protein binding of angiotensin-converting enzyme 2 (ACE2) has been established, the functional consequences of the initial receptor binding and the stepwise fusion process are not clear. By utilizing a cell-cell fusion system, in complement with a pseudoviral infection model, we found that the spike engagement of ACE2 primed the generation of S2' fragments in target cells, a key proteolytic event coupled with spike-mediated membrane fusion. Mutagenesis of an S2' cleavage site at the arginine (R) 815, but not an S2 cleavage site at arginine 685, was sufficient to prevent subsequent syncytia formation and infection in a variety of cell lines and primary cells isolated from human ACE2 knock-in mice. The requirement for S2' cleavage at the R815 site was also broadly shared by other SARS-CoV-2 spike variants, such as the Alpha, Beta, and Delta variants of concern. Thus, our study highlights an essential role for host receptor engagement and the key residue of spike for proteolytic activation, and uncovers a targetable mechanism for host cell infection by SARS-CoV-2.


Asunto(s)
Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/metabolismo , Fusión de Membrana , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismo , Animales , COVID-19/virología , Células HEK293 , Interacciones Huésped-Patógeno , Humanos , Ratones , Unión Proteica , Proteolisis , Internalización del Virus
3.
J Infect Dis ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38838218

RESUMEN

BACKGROUND: The kinetics and durability of T-cell responses to SARS-CoV-2 in children are not well-characterized. We studied a cohort of children aged 6 months to 20 years with COVID-19 in whom peripheral blood mononuclear cells (PBMC) and sera were archived at approximately 1, 6, and 12 months post-symptom onset. METHODS: We compared antibody (N = 85) and T-cell responses (N = 26) to nucleocapsid (N) and spike (S) glycoprotein over time across four age strata: 6 months to 5 years, 5-9, 10-14, and 15-20 years. RESULTS: N-specific antibody responses declined over time, becoming undetectable in 26/32 (81%) children by approximately one year post-infection. Functional breadth of anti-N CD4+ T-cell responses also declined over time and were positively correlated with N-antibody responses (Pearson's r = 0.31, p = 0.008). CD4+ T-cell responses to S displayed greater functional breadth than N in unvaccinated children, and, along with neutralization titers, were stable over time and similar across age strata. Functional profiles of CD4+ T-cell responses against S were not significantly modulated by vaccination. CONCLUSIONS: Our data reveal durable, age-independent T-cell immunity to SARS-CoV-2 structural proteins in children over time following COVID-19 infection as well as S-Ab responses overall, in comparison to declining antibody responses to N.

4.
J Intern Med ; 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39073192

RESUMEN

BACKGROUND: Currently, pathophysiological mechanisms of post-acute sequelae of coronavirus disease-19-cardiovascular syndrome (PASC-CVS) remain unknown. METHODS AND RESULTS: Patients with PASC-CVS exhibited significantly higher circulating levels of severe acute respiratory syndrome-coronavirus-2 spike protein S1 than the non-PASC-CVS patients and healthy controls. Moreover, individuals with high plasma spike protein S1 concentrations exhibited elevated heart rates and normalized low frequency, suggesting cardiac ß-adrenergic receptor (ß-AR) hyperactivity. Microscale thermophoresis (MST) assay revealed that the spike protein bound to ß1- and ß2-AR, but not to D1-dopamine receptor. These interactions were blocked by ß1- and ß2-AR blockers. Molecular docking and MST assay of ß-AR mutants revealed that the spike protein interacted with the extracellular loop 2 of both ß-ARs. In cardiomyocytes, spike protein dose-dependently increased the cyclic adenosine monophosphate production with or without epinephrine, indicating its allosteric effects on ß-ARs. CONCLUSION: Severe acute respiratory syndrome-coronavirus-2 spike proteins act as an allosteric ß-AR agonist, leading to cardiac ß-AR hyperactivity, thus contributing to PASC-CVS.

5.
J Mol Recognit ; 37(4): e3091, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38773782

RESUMEN

The development of effective therapeutics against COVID-19 requires a thorough understanding of the receptor recognition mechanism of the SARS-CoV-2 spike (S) protein. Here the multidomain collective dynamics on the trimer of the spike protein has been analyzed using normal mode analysis (NMA). A common nanomechanical profile was identified in the spike proteins of SARS-CoV-2 and its variants. The profile involves collective vibrations of the receptor-binding domain (RBD) and the N-terminal domain (NTD), which may mediate the physical interaction process. Quantitative analysis of the collective modes suggests a nanomechanical property involving large-scale conformational changes, which explains the difference in receptor binding affinity among different variants. These results support the use of intrinsic global dynamics as a valuable perspective for studying the allosteric and functional mechanisms of the S protein. This approach also provides a low-cost theoretical toolkit for screening potential pathogenic mutations and drug targets.


Asunto(s)
Unión Proteica , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Vibración , Glicoproteína de la Espiga del Coronavirus/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , SARS-CoV-2/metabolismo , Humanos , COVID-19/virología , COVID-19/metabolismo , Simulación de Dinámica Molecular , Dominios Proteicos , Conformación Proteica
6.
Int Immunol ; 35(5): 213-220, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-36566501

RESUMEN

Vaccination for the prevention of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection is considered the most promising approach to control the pandemic of coronavirus disease 2019 (COVID-19). Although various COVID-19 vaccines have been developed worldwide using several modalities, the vaccines that have shown the highest efficacy to date are mRNA vaccines. Despite their extensive usage, the mechanisms that stimulate the immune responses associated with their immunogenicity and reactogenicity remain largely unknown. In this review, we summarize and discuss current knowledge on immune responses to COVID-19 mRNA vaccines, including potential immune responses and correlating factors underlying the immunogenicity and reactogenicity of mRNA vaccines. We also describe recent trends in the optimization of lipid nanoparticles and vaccination routes. Further understanding of vaccine-elicited immune responses will guide the development of more effective and safe vaccines.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , Vacunas contra la COVID-19/efectos adversos , COVID-19/prevención & control , SARS-CoV-2 , ARN Mensajero/genética , Vacunas de ARNm , Anticuerpos Antivirales
7.
Virol J ; 21(1): 58, 2024 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-38448991

RESUMEN

BACKGROUND: The novel coronavirus disease of 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Data from the COVID-19 clinical control case studies showed that this disease could also manifest in patients with underlying microbial infections such as aspergillosis. The current study aimed to determine if the Aspergillus (A.) fumigatus culture media (i.e., supernatant) possessed protease activity that was sufficient to activate the SARS-CoV-2 spike protein. METHODS: The supernatant was first analysed for protease activity. Thereafter, it was assessed to determine if it possessed proteolytic activity to cleave a fluorogenic mimetic peptide of the SARS-CoV-2 spike protein that contained the S1/S2 site and a full-length spike protein contained in a SARS-CoV-2 pseudovirion. To complement this, a computer-based tool, HADDOCK, was used to predict if A. fumigatus alkaline protease 1 could bind to the SARS-CoV-2 spike protein. RESULTS: We show that the supernatant possessed proteolytic activity, and analyses of the molecular docking parameters revealed that A. fumigatus alkaline protease 1 could bind to the spike protein. To confirm the in silico data, it was imperative to provide experimental evidence for enzymatic activity. Here, it was noted that the A. fumigatus supernatant cleaved the mimetic peptide as well as transduced the HEK-293T cells with SARS-CoV-2 pseudovirions. CONCLUSION: These results suggest that A. fumigatus secretes a protease(s) that activates the SARS-CoV-2 spike protein. Importantly, should these two infectious agents co-occur, there is the potential for A. fumigatus to activate the SARS-CoV-2 spike protein, thus aggravating COVID-19 development.


Asunto(s)
COVID-19 , Péptido Hidrolasas , Humanos , Glicoproteína de la Espiga del Coronavirus , Aspergillus fumigatus , SARS-CoV-2 , Células HEK293 , Simulación del Acoplamiento Molecular , Péptidos
8.
BMC Infect Dis ; 24(1): 96, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38233756

RESUMEN

BACKGROUND: Whether human T-lymphotropic virus type 1 (HTLV-1) carriers can develop sufficient humoral immunity after coronavirus disease 2019 (COVID-19) vaccination is unknown. METHODS: To investigate humoral immunity after COVID-19 vaccination in HTLV-1 carriers, a multicenter, prospective observational cohort study was conducted at five institutions in southwestern Japan, an endemic area for HTLV-1. HTLV-1 carriers and HTLV-1-negative controls were enrolled for this study from January to December 2022. During this period, the third dose of the COVID-19 vaccine was actively administered. HTLV-1 carriers were enrolled during outpatient visits, while HTLV-1-negative controls included health care workers and patients treated by participating institutions for diabetes, hypertension, or dyslipidemia. The main outcome was the effect of HTLV-1 infection on the plasma anti-COVID-19 spike IgG (IgG-S) titers after the third dose, assessed by multivariate linear regression with other clinical factors. RESULTS: We analyzed 181 cases (90 HTLV-1 carriers, 91 HTLV-1-negative controls) after receiving the third dose. HTLV-1 carriers were older (median age 67.0 vs. 45.0 years, p < 0.001) and more frequently had diabetes, hypertension, or dyslipidemia than did HTLV-1-negative controls (60.0% vs. 27.5%, p < 0.001). After the third dose, the IgG-S titers decreased over time in both carriers and controls. Multivariate linear regression in the entire cohort showed that time since the third dose, age, and HTLV-1 infection negatively influenced IgG-S titers. After adjusting for confounders such as age, or presence of diabetes, hypertension, or dyslipidemia between carriers and controls using the overlap weighting propensity score method, and performing weighted regression analysis in the entire cohort, both time since the third dose and HTLV-1 infection negatively influenced IgG-S titers. CONCLUSIONS: The humoral immunity after the third vaccination dose is impaired in HTLV-1 carriers; thus, customized vaccination schedules may be necessary for them.


Asunto(s)
COVID-19 , Diabetes Mellitus , Dislipidemias , Infecciones por HTLV-I , Virus Linfotrópico T Tipo 1 Humano , Hipertensión , Humanos , Anciano , COVID-19/prevención & control , Vacunas contra la COVID-19 , Inmunidad Humoral , Estudios Prospectivos , Vacunación , Inmunoglobulina G , Anticuerpos Antivirales
9.
Mol Biol Rep ; 51(1): 289, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38329653

RESUMEN

BACKGROUND: The accurate and expeditious detection of SARS-CoV-2 mutations is critical for monitoring viral evolution, assessing its impact on transmission, virulence, and vaccine efficacy, and formulating public health interventions. In this study, a detection system utilizing micro temperature gradient gel electrophoresis (µTGGE) was developed for the identification of the D614 and G614 variants of the SARS-CoV-2 spike protein. METHODS: The in vitro synthesized D614 and G614 gene fragments of the SARS-CoV-2 spike protein were amplified via polymerase chain reaction and subjected to µTGGE analysis. RESULTS: The migration patterns exhibited by the D614 and G614 variants on the polyacrylamide gel were distinctly dissimilar and readily discernible by µTGGE. In particular, the mid-melting pattern of D614 was shorter than that of G614. CONCLUSIONS: Our results demonstrate the capability of µTGGE for the rapid, precise, and cost-effective detection of SARS-CoV-2 spike protein D614 and G614 variants without the need for sequencing. Therefore, this approach holds considerable potential for use in point-of-care mutation assays for SARS-CoV-2 and other pathogens.


Asunto(s)
SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Electroforesis en Gel de Gradiente Desnaturalizante , Mutación , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética
10.
Nano Lett ; 23(2): 619-628, 2023 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-36641798

RESUMEN

Anti-spike neutralizing antibodies (S NAbs) have been developed for prevention and treatment against COVID-19. The nanoscopic characterization of the dynamic interaction between spike proteins and S NAbs remains difficult. By using high-speed atomic force microscopy (HS-AFM), we elucidate the molecular property of an S NAb and its interaction with spike proteins. The S NAb appeared as monomers with a Y conformation at low density and formed hexameric oligomers at high density. The dynamic S NAb-spike protein interaction at RBD induces neither RBD opening nor S1 subunit shedding. Furthermore, the interaction was stable at endosomal pH. These findings indicated that the S NAb could have a negligible risk of antibody-dependent enhancement. Dynamic movement of spike proteins on small extracellular vesicles (S sEV) resembled that on SARS-CoV-2. The sensitivity of variant S sEVs to S NAb could be evaluated using HS-AFM. Altogether, we demonstrate a nanoscopic assessment platform for evaluating the binding property of S NAbs.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Anticuerpos Antivirales , Anticuerpos Neutralizantes
11.
Int J Mol Sci ; 25(4)2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38396723

RESUMEN

The water and ethanol extracts of huangqin, the roots of Scutellaria baicalensis Georgi. with potential antiviral properties and antioxidant activities, were investigated for their chemical profiles and their abilities to interfere with the interaction between SARS-CoV-2 spike protein and ACE2, inhibiting ACE2 activity and scavenging free radicals. A total of 76 compounds were tentatively identified from the extracts. The water extract showed a greater inhibition on the interaction between SARS-CoV-2 spike protein and ACE2, but less inhibition on ACE2 activity than that of the ethanol extract on a per botanical weight concentration basis. The total phenolic content was 65.27 mg gallic acid equivalent (GAE)/g dry botanical and the scavenging capacities against HO●, DPPH●, and ABTS●+ were 1369.39, 334.37, and 533.66 µmol trolox equivalent (TE)/g dry botanical for the water extract, respectively. These values were greater than those of the ethanol extract, with a TPC of 20.34 mg GAE/g, and 217.17, 10.93, and 50.21 µmol TE/g against HO●, DPPH●, and ABTS●+, respectively. The results suggested the potential use of huangqin as a functional food ingredient in preventing COVID-19.


Asunto(s)
Benzotiazoles , COVID-19 , Scutellaria baicalensis , Ácidos Sulfónicos , Humanos , Scutellaria baicalensis/química , Glicoproteína de la Espiga del Coronavirus , Enzima Convertidora de Angiotensina 2 , SARS-CoV-2 , Extractos Vegetales/farmacología , Extractos Vegetales/química , Radicales Libres , Etanol , Agua
12.
Int J Mol Sci ; 25(8)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38673865

RESUMEN

In this study, we performed a computational study of binding mechanisms for the SARS-CoV-2 spike Omicron XBB lineages with the host cell receptor ACE2 and a panel of diverse class one antibodies. The central objective of this investigation was to examine the molecular factors underlying epistatic couplings among convergent evolution hotspots that enable optimal balancing of ACE2 binding and antibody evasion for Omicron variants BA.1, BA2, BA.3, BA.4/BA.5, BQ.1.1, XBB.1, XBB.1.5, and XBB.1.5 + L455F/F456L. By combining evolutionary analysis, molecular dynamics simulations, and ensemble-based mutational scanning of spike protein residues in complexes with ACE2, we identified structural stability and binding affinity hotspots that are consistent with the results of biochemical studies. In agreement with the results of deep mutational scanning experiments, our quantitative analysis correctly reproduced strong and variant-specific epistatic effects in the XBB.1.5 and BA.2 variants. It was shown that Y453W and F456L mutations can enhance ACE2 binding when coupled with Q493 in XBB.1.5, while these mutations become destabilized when coupled with the R493 position in the BA.2 variant. The results provided a molecular rationale of the epistatic mechanism in Omicron variants, showing a central role of the Q493/R493 hotspot in modulating epistatic couplings between convergent mutational sites L455F and F456L in XBB lineages. The results of mutational scanning and binding analysis of the Omicron XBB spike variants with ACE2 receptors and a panel of class one antibodies provide a quantitative rationale for the experimental evidence that epistatic interactions of the physically proximal binding hotspots Y501, R498, Q493, L455F, and F456L can determine strong ACE2 binding, while convergent mutational sites F456L and F486P are instrumental in mediating broad antibody resistance. The study supports a mechanism in which the impact on ACE2 binding affinity is mediated through a small group of universal binding hotspots, while the effect of immune evasion could be more variant-dependent and modulated by convergent mutational sites in the conformationally adaptable spike regions.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Evasión Inmune , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Humanos , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/química , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/metabolismo , Sitios de Unión , COVID-19/virología , COVID-19/genética , COVID-19/inmunología , Epistasis Genética , Evolución Molecular , Evasión Inmune/genética , Simulación de Dinámica Molecular , Mutación , Unión Proteica , SARS-CoV-2/genética , SARS-CoV-2/inmunología , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Glicoproteína de la Espiga del Coronavirus/química
13.
Int J Mol Sci ; 25(9)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38732174

RESUMEN

Understanding mechanisms of allosteric regulation remains elusive for the SARS-CoV-2 spike protein, despite the increasing interest and effort in discovering allosteric inhibitors of the viral activity and interactions with the host receptor ACE2. The challenges of discovering allosteric modulators of the SARS-CoV-2 spike proteins are associated with the diversity of cryptic allosteric sites and complex molecular mechanisms that can be employed by allosteric ligands, including the alteration of the conformational equilibrium of spike protein and preferential stabilization of specific functional states. In the current study, we combine conformational dynamics analysis of distinct forms of the full-length spike protein trimers and machine-learning-based binding pocket detection with the ensemble-based ligand docking and binding free energy analysis to characterize the potential allosteric binding sites and determine structural and energetic determinants of allosteric inhibition for a series of experimentally validated allosteric molecules. The results demonstrate a good agreement between computational and experimental binding affinities, providing support to the predicted binding modes and suggesting key interactions formed by the allosteric ligands to elicit the experimentally observed inhibition. We establish structural and energetic determinants of allosteric binding for the experimentally known allosteric molecules, indicating a potential mechanism of allosteric modulation by targeting the hinges of the inter-protomer movements and blocking conformational changes between the closed and open spike trimer forms. The results of this study demonstrate that combining ensemble-based ligand docking with conformational states of spike protein and rigorous binding energy analysis enables robust characterization of the ligand binding modes, the identification of allosteric binding hotspots, and the prediction of binding affinities for validated allosteric modulators, which is consistent with the experimental data. This study suggested that the conformational adaptability of the protein allosteric sites and the diversity of ligand bound conformations are both in play to enable efficient targeting of allosteric binding sites and interfere with the conformational changes.


Asunto(s)
Sitio Alostérico , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Unión Proteica , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismo , Glicoproteína de la Espiga del Coronavirus/antagonistas & inhibidores , Regulación Alostérica , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/metabolismo , Ligandos , Humanos , Sitios de Unión , Conformación Proteica , Antivirales/química , Antivirales/farmacología , Antivirales/metabolismo , Multimerización de Proteína , Aprendizaje Automático
14.
Int J Mol Sci ; 25(8)2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38674024

RESUMEN

The COVID-19 pandemic prompted rapid research on SARS-CoV-2 pathogenicity. Consequently, new data can be used to advance the molecular understanding of SARS-CoV-2 infection. The present bioinformatics study discusses the "spikeopathy" at the molecular level and focuses on the possible post-transcriptional regulation of the SARS-CoV-2 spike protein S1 subunit in the host cell/tissue. A theoretical protein-RNA recognition code was used to check the compatibility of the SARS-CoV-2 spike protein S1 subunit with mRNAs in the human transcriptome (1-L transcription). The principle for this method is elucidated on the defined RNA binding protein GEMIN5 (gem nuclear organelle-associated protein 5) and RNU2-1 (U2 spliceosomal RNA). Using the method described here, it was shown that 45% of the genes/proteins identified by 1-L transcription of the SARS-CoV-2 spike protein S1 subunit are directly linked to COVID-19, 39% are indirectly linked to COVID-19, and 16% cannot currently be associated with COVID-19. The identified genes/proteins are associated with stroke, diabetes, and cardiac injury.


Asunto(s)
COVID-19 , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , COVID-19/virología , COVID-19/metabolismo , COVID-19/genética , Transcripción Genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Biología Computacional/métodos , Transcriptoma
15.
Chem Zvesti ; 78(6): 3431-3441, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38685970

RESUMEN

Chemical prototypes with broad-spectrum antiviral activity are important toward developing new therapies that can act on both existing and emerging viruses. Binding of the SARS-CoV-2 spike protein to the host angiotensin-converting enzyme 2 (ACE2) receptor is required for cellular entry of SARS-CoV-2. Toward identifying new chemical leads that can disrupt this interaction, including in the presence of SARS-CoV-2 adaptive mutations found in variants like omicron that can circumvent vaccine, immune, and therapeutic antibody responses, we synthesized 5-chloro-3-(2-(2,4-dinitrophenyl)hydrazono)indolin-2-one (H2L) from the condensation reaction of 5-chloroisatin and 2,4-dinitrophenylhydrazine in good yield. H2L was characterised by elemental and spectral (IR, electronic, Mass) analyses. The NMR spectrum of H2L indicated a keto-enol tautomerism, with the keto form being more abundant in solution. H2L was found to selectively interfere with binding of the SARS-CoV-2 spike receptor-binding domain (RBD) to the host angiotensin-converting enzyme 2 receptor with a 50% inhibitory concentration (IC50) of 0.26 µM, compared to an unrelated PD-1/PD-L1 ligand-receptor-binding pair with an IC50 of 2.06 µM in vitro (Selectivity index = 7.9). Molecular docking studies revealed that the synthesized ligand preferentially binds within the ACE2 receptor-binding site in a region distinct from where spike mutations in SARS-CoV-2 variants occur. Consistent with these models, H2L was able to disrupt ACE2 interactions with the RBDs from beta, delta, lambda, and omicron variants with similar activities. These studies indicate that H2L-derived compounds are potential inhibitors of multiple SARS-CoV-2 variants, including those capable of circumventing vaccine and immune responses. Supplementary Information: The online version contains supplementary material available at 10.1007/s11696-023-03274-5.

16.
J Med Virol ; 95(10): e29163, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37842796

RESUMEN

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) enters the host cell by binding to angiotensin-converting enzyme 2 (ACE2). While evolutionarily conserved, ACE2 receptors differ across various species and differential interactions with Spike (S) glycoproteins of SARS-CoV-2 viruses impact species specificity. Reverse zoonoses led to SARS-CoV-2 outbreaks on multiple American mink (Mustela vison) farms during the pandemic and gave rise to mink-associated S substitutions known for transmissibility between mink and zoonotic transmission to humans. In this study, we used bio-layer interferometry (BLI) to discern the differences in binding affinity between multiple human and mink-derived S glycoproteins of SARS-CoV-2 and their respective ACE2 receptors. Further, we conducted a structural analysis of a mink variant S glycoprotein and American mink ACE2 (mvACE2) using cryo-electron microscopy (cryo-EM), revealing four distinct conformations. We discovered a novel intermediary conformation where the mvACE2 receptor is bound to the receptor-binding domain (RBD) of the S glycoprotein in a "down" position, approximately 34° lower than previously reported "up" RBD. Finally, we compared residue interactions in the S-ACE2 complex interface of S glycoprotein conformations with varying RBD orientations. These findings provide valuable insights into the molecular mechanisms of SARS-CoV-2 entry.


Asunto(s)
Visón , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Animales , Humanos , Enzima Convertidora de Angiotensina 2/metabolismo , Proteínas Portadoras/metabolismo , COVID-19/veterinaria , Microscopía por Crioelectrón , Glicoproteínas , Unión Proteica , Receptores Virales/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo
17.
J Med Virol ; 95(2): e28419, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36546401

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission in India in 2020-2022 was driven predominantly by Wild (Wuhan-Hu-1 and D614G), Delta, and Omicron variants. The aim of this study was to examine the effect of infections on the humoral immune response and cross-reactivity to spike proteins of Wuhan-Hu-1, Delta, C.1.2., and Omicron. Residual archival sera (N = 81) received between January 2020 and March 2022 were included. Infection status was inferred by a positive SARS-CoV-2 RT-PCR and/or serology (anti-N and anti-S antibodies) and sequencing of contemporaneous samples (N = 18) to infer lineage. We estimated the levels and cross-reactivity of infection-induced sera including Wild, Delta, Omicron as well as vaccine breakthrough infections (Delta and Omicron). We found an approximately two-fold increase in spike-specific IgG antibody binding in post-Omicron infection compared with the pre-Omicron period, whilst the change in pre- and post-Delta infections were similar. Further investigation of Omicron-specific humoral responses revealed primary Omicron infection as an inducer of cross-reactive antibodies against predecessor variants, in spite of the weaker degree of humoral response compared to Wuhan-Hu-1 and Delta infection. Intriguingly, Omicron vaccine-breakthrough infections when compared with primary infections, exhibited increased humoral responses against RBD (7.7-fold) and Trimeric S (Trimeric form of spike protein) (34.6-fold) in addition to increased binding of IgGs towards previously circulating variants (4.2 - 6.5-fold). Despite Delta breakthrough infections showing a higher level of humoral response against RBD (2.9-fold) and Trimeric S (5.7-fold) compared to primary Delta sera, a demonstrably reduced binding (36%-49%) was observed to Omicron spike protein. Omicron vaccine breakthrough infection results in increased intensity of humoral response and wider breadth of IgG binding to spike proteins of antigenically-distinct, predecessor variants.


Asunto(s)
COVID-19 , Vacunas , Humanos , Proteínas Portadoras , Glicoproteína de la Espiga del Coronavirus , SARS-CoV-2 , Infección Irruptiva , Inmunoglobulina G , Anticuerpos Antivirales , Anticuerpos Neutralizantes
18.
J Med Virol ; 95(1): e28300, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36369641

RESUMEN

Against the background of the current COVID-19 infection dynamics with its rapid spread of SARS-CoV-2 variants of concern (VOC), the immunity and the vaccine prevention of healthcare workers (HCWs) against SARS-CoV-2 continues to be of high importance. This observational cross-section study assesses factors influencing the level of anti-SARS-CoV-2-spike IgG after SARS-CoV-2 infection or vaccination. One thousand seven hundred and fifty HCWs were recruited meeting the following inclusion criteria: age ≥18 years, PCR-confirmed SARS-CoV-2 infection convalescence and/or at least one dose of COVID-19 vaccination. anti-SARS-CoV-2-spike IgG titers were determined by SERION ELISA agile SARS-CoV-2 IgG. Mean anti-SARS-CoV-2-spike IgG levels increased significantly by number of COVID-19 vaccinations (92.2 BAU/ml for single, 140.9 BAU/ml for twice and 1144.3 BAU/ml for threefold vaccination). Hybrid COVID-19 immunized respondents (after infection and vaccination) had significantly higher antibody titers compared with convalescent only HCWs. Anti-SARS-CoV-2-spike IgG titers declined significantly with time after the second vaccination. Smoking and high age were associated with lower titers. Both recovered and vaccinated HCWs presented a predominantly good humoral immune response. Smoking and higher age limited the humoral SARS-CoV-2 immunity, adding to the risk of severe infections within this already health impaired collective.


Asunto(s)
COVID-19 , Humanos , Adolescente , COVID-19/prevención & control , Vacunas contra la COVID-19 , SARS-CoV-2 , Anticuerpos Antivirales , Personal de Salud , Inmunoglobulina G
19.
Anal Biochem ; 670: 115137, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36997015

RESUMEN

Chemiluminescence was used to test the susceptibility of the SARS-CoV-2 N and S proteins to oxidation by reactive oxygen species (ROS) at pH 7.4 and pH 8.5. The Fenton's system generates various ROS (H2O2, OH, -OH, OOH). All proteins were found to significantly suppress oxidation (the viral proteins exhibited 25-60% effect compared to albumin). In the second system, H2O2 was used both as a strong oxidant and as a ROS. A similar effect was observed (30-70%); N protein approached the effect of albumin at physiological pH (∼45%). In the O2.--generation system, albumin was most effective in the suppression of generated radicals (75%, pH 7.4). The viral proteins were more susceptible to oxidation (inhibition effect no more than 20%, compared to albumin). The standard antioxidant assay confirmed the strong antioxidant capacity of both viral proteins (1.5-1.7 fold higher than albumin). These results demonstrate the effective and significant inhibition of ROS-induced oxidation by the proteins. Obviously, the viral proteins could not be involved in the oxidative stress reactions during the course of the infection. They even suppress the metabolites involved in its progression. These results can be explained by their structure. Probably, an evolutionary self-defense mechanism of the virus has been developed.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Especies Reactivas de Oxígeno/metabolismo , Antioxidantes , Peróxido de Hidrógeno/metabolismo , Glicoproteína de la Espiga del Coronavirus , Nucleocápside/metabolismo , Inflamación , Albúminas , Anticuerpos Antivirales
20.
Biotechnol Bioeng ; 120(7): 1746-1761, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36987713

RESUMEN

Protein expression from stably transfected Chinese hamster ovary (CHO) clones is an established but time-consuming method for manufacturing therapeutic recombinant proteins. The use of faster, alternative approaches, such as non-clonal stable pools, has been restricted due to lower productivity and longstanding regulatory guidelines. Recently, the performance of stable pools has improved dramatically, making them a viable option for quickly producing drug substance for GLP-toxicology and early-phase clinical trials in scenarios such as pandemics that demand rapid production timelines. Compared to stable CHO clones which can take several months to generate and characterize, stable pool development can be completed in only a few weeks. Here, we compared the productivity and product quality of trimeric SARS-CoV-2 spike protein ectodomains produced from stable CHO pools or clones. Using a set of biophysical and biochemical assays we show that product quality is very similar and that CHO pools demonstrate sufficient productivity to generate vaccine candidates for early clinical trials. Based on these data, we propose that regulatory guidelines should be updated to permit production of early clinical trial material from CHO pools to enable more rapid and cost-effective clinical evaluation of potentially life-saving vaccines.


Asunto(s)
COVID-19 , SARS-CoV-2 , Cricetinae , Animales , Humanos , Cricetulus , SARS-CoV-2/metabolismo , Células CHO , Anticuerpos Monoclonales , Vacunas contra la COVID-19/genética , COVID-19/prevención & control , Proteínas Recombinantes/metabolismo , Vacunas de Subunidad/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA