Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 521
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Int J Legal Med ; 138(5): 2157-2167, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38763927

RESUMEN

In most experimental protocols, false starts are produced on dry bones obtained through a maceration process for anthropological analyses, for the sake of reproducibility. Although this allows for controlled experimental conditions, the absence of soft parts when experimentally creating false starts does not correspond to the real conditions of criminal dismemberment. The main objective of this study was to determine if the results of experimental work on the characteristics of false starts were valid under medico-legal conditions. In this experimental study, a hand saw (rip saw, wavy set, TPI 32) was used. 240 false starts were produced on human and pig bones. Randomly, the false starts were either produced on a dry bone or on a flesh bone. The criteria for microscopic analysis included the shape of the walls, the shape and visibility of striae on the floor, the shape of the profile, and the minimum width of the false start. On human bone, 100% of the false starts produced on a bone that had previously undergone a maceration process for anthropological analyses (dry bone) allowed the definition of all the blade characteristics. This was the case for 78.3% on bone in the presence of soft tissue (flesh bone). The striae on the floor of the false start are in some cases less visible with flesh bones, implying that it may be more difficult to conclude on the characteristics of a saw under medico-legal conditions.


Asunto(s)
Huesos , Desmembramiento de Cadáver , Humanos , Porcinos , Animales , Huesos/patología , Antropología Forense/métodos
2.
Anal Bioanal Chem ; 416(2): 509-518, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37989848

RESUMEN

The application of standing surface acoustic wave (SSAW) tweezers based on backpropagation superposition to achieve precise behavior manipulation of microscale cells and even nanoscale bacteria has been widely studied and industrialized. However, the structure requires multiple transducer components or full channel resonance. It is very challenging to design a simple structure for nano-control by complex acoustic field. In this study, a reflector-interdigital transducer (R-IDT) acoustofluidic device based on unilateral coherence enhancement is proposed to achieve SSAW definition features of periodic particle capture positions. The SAW device based on a unilateral transducer can not only generate leaky-SAW in water-filled microchannel, but also have a contribution of spherical waves in the vibration area of the substrate-liquid interface due to the Huygens-Fresnel diffractive principle. Both of them form a robust time-averaged spatial periodicity in the pressure potential gradient, accurately predicting the lateral spacing of these positions through acoustic patterning methods. Furthermore, a reflector based on Bragg-reflection is used to suppress backward transmitted SAW and enhance forward conducted SAW beams. By using a finite element model, R-IDT structure's amplitude enhances 60.78% compared to single IDT structure. The particle manipulation range of the diffractive acoustic field greatly improves, verified by experimental polystyrene microspheres. Besides, biocompatibility is conformed through red blood cells and Bacillus subtilis. We investigate the overall shift of periodic pressure field that can still occur when the phase changes. This work provides a simpler and low-cost solution for the application of acoustic tweezer in biological cell culture and filtering.

3.
Mikrochim Acta ; 191(6): 323, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730192

RESUMEN

Bilayer graphene (Bl-Gr) and sulphur-doped graphene (S-Gr) have been integrated with LiTaO3 surface acustic wave (SAW) sensors to enhance the performance of NO2 detection at room temperature. The sensitivity of the Bl-Gr SAW sensors toward NO2, measured at room temperature, was 0.29º/ppm, with a limit of detection of 0.068 ppm. The S-Gr SAW sensors showed 0.19º/ppm sensitivity and a limit of detection of 0.140 ppm. The origin of these high sensitivities was attributed to the mass loading and elastic effects of the graphene-based sensing materials, with surface changes caused by the absorption of the NO2 molecules on the sensing films. Although there are no significant differences regarding the sensitivity and detection limit of the two types of sensors, the measurements in the presence of interferent gases and various humidity conditions outlined much better selectivity and sensing performances towards NO2 gas for the Bl-Gr SAW sensors.

4.
Sensors (Basel) ; 24(13)2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-39001076

RESUMEN

In the present study, we used two popular radio communication SAW resonators as a base for gas sensors and tested their performance. Taking into account issues related to sensor sensitivity, the possibility of applying a sensor layer, the availability of devices, and other related issues, we selected two popular single-port resonators with center frequencies of 315 and 433 MHz (models R315 and R433, respectively) for testing purposes. Both resonators were equipped with a sensitive film of hexafluoroisopropanol-substituted polydimethylsiloxane, a material that selectively absorbs molecules with a high ability to form basic hydrogen bonds. Fabricated sensors were used to detect trace amounts of dimethyl methylphosphonate (DMMP) vapor, which has often been used in similar studies as a nerve chemical warfare agent simulant. Sensors using both devices loaded with sensor layers of an optimal thickness rapidly reacted to a gas containing DMMP at a concentration of 3 mg/m3, generating a stable analytical signal ranging from several to several dozen kilohertz. In the case of R433, the frequency signal was 20.5 kHz at 1 min from the beginning of exposure to DMMP. The obtained results showed that the used transducers exhibited good performance as a base for gas sensors. Finally, their suitability for sensing applications was confirmed by a comparison with the results obtained in previous similar studies.

5.
Sensors (Basel) ; 24(8)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38676093

RESUMEN

The latest trends in the field of the on-site detection of chemical warfare agents (CWAs) involve increasing the availability of point detectors to enhance the operational awareness of commanders and soldiers. Among the intensively developed concepts aimed at meeting these requirements, wearable detectors, gas analyzers as equipment for micro- and mini-class unmanned aerial vehicles (UAVs), and distributed sensor networks can be mentioned. One of the analytical techniques well suited for use in this field is surface acoustic wave sensors, which can be utilized to construct lightweight, inexpensive, and undemanding gas analyzers for detecting CWAs. This review focuses on the intensively researched and developed variant of this technique, utilizing absorptive sensor layers dedicated for nerve CWAs' detection. The paper describes the mechanism of the specific interaction occurring between the target analyte and the sensing layer, which serves as the foundation for their selective detection. The main section of this paper includes a chronological review of individual achievements in the field, largely based on the peer-reviewed scientific literature dating back to the mid-1980s to the present day. The final section presents conclusions regarding the prospects for the development of this analytical technique in the targeted application.

6.
Sensors (Basel) ; 24(13)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-39000932

RESUMEN

This paper proposed a fine dust detection system using time-interleaved counters in which surface acoustic wave (SAW) sensors changed the resonance point characteristic. When fine dust was applied to the SAW sensor, the resonance point decreased. The SAW oscillator made of the SAW sensor and radio frequency (RF) amplifier generated an oscillation frequency that was the same as the resonance frequency. The oscillation frequency was transferred to digital data by a 20-bit asynchronous counter. This system has two channels: a sensing channel and a reference channel. Each channel has a SAW oscillator and a 20-bit asynchronous counter. The difference of the two channel counter results is the frequency difference. Through this, it is possible to know whether fine dust adheres to the SAW sensor. The proposed circuit achieved 0.95 ppm frequency resolution when it was operated at a frequency of 460 MHz. This circuit was implemented in a TSMC 130 nm CMOS process.

7.
Sensors (Basel) ; 24(11)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38894449

RESUMEN

In the present paper the humidity sensing properties of regioregular rr-P3HT (poly-3-hexylthiophene) polymer films is investigated by means of surface acoustic wave (SAW) based sensors implemented on LiNbO3 (1280 Y-X) and ST-quartz piezoelectric substrates. The polymeric layers were deposited along the SAW propagation path by spray coating method and the layers thickness was measured by atomic force microscopy (AFM) technique. The response of the SAW devices to relative humidity (rh) changes in the range ~5-60% has been investigated by measuring the SAW phase and frequency changes induced by the (rh) absorption in the rr-P3HT layer. The SAW sensor implemented onto LiNbO3 showed improved performance as the thickness of the membrane increases (from 40 to 240 nm): for 240 nm thick polymeric membrane a phase shift of about -1.2 deg and -8.2 deg was measured for the fundamental (~78 MHz operating frequency) and 3rd (~234 MHz) harmonic wave at (rh) = 60%. A thick rr-P3HT film (~600 nm) was deposited onto the quartz-based SAW sensor: the sensor showed a linear frequency shift of ~-20.5 Hz per unit (rh) changes in the ~5-~50% rh range, and a quite fast response (~5 s) even at low humidity level (~5% rh). The LiNbO3 and quartz-based sensors response was assessed by using a dual delay line system to reduce unwanted common mode signals. The simple and cheap spray coating technology for the rr-P3HT polymer films deposition, complemented with fast low level humidity detection of the tested SAW sensors (much faster than the commercially available Michell SF-52 device), highlight their potential in a low-medium range humidity sensing application.

8.
Sensors (Basel) ; 24(7)2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38610503

RESUMEN

Ice accumulation on infrastructure poses severe safety risks and economic losses, necessitating effective detection and monitoring solutions. This study introduces a novel approach employing surface acoustic wave (SAW) sensors, known for their small size, wireless operation, energy self-sufficiency, and retrofit capability. Utilizing a SAW dual-mode delay line device on a 64°-rotated Y-cut lithium niobate substrate, we demonstrate a solution for combined ice detection and temperature measurement. In addition to the shear-horizontal polarized leaky SAW, our findings reveal an electrically excitable Rayleigh-type wave in the X+90° direction on the same cut. Experimental results in a temperature chamber confirm capability for reliable differentiation between liquid water and ice loading and simultaneous temperature measurements. This research presents a promising advancement in addressing safety concerns and economic losses associated with ice accretion.

9.
Sensors (Basel) ; 24(2)2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38276335

RESUMEN

The article presents the design concept of a surface acoustic wave (SAW)-based lab-on-a-chip sensor with multifrequency and multidirectional sensitivity. The conventional SAW sensors use delay lines that suffer from multiple signal losses such as insertion, reflection, transmission losses, etc. Most delay lines are designed to transmit and receive continuous signal at a fixed frequency. Thus, the delay lines are limited to only a few features, like frequency shift and change in wave velocity, during the signal analysis. These facts lead to limited sensitivity and a lack of opportunity to utilize the multi-directional variability of the sensing platform at different frequencies. Motivated by these facts, a guided wave sensing platform that utilizes simultaneous tone burst-based excitation in multiple directions is proposed in this article. The design incorporates a five-count tone burst signal for the omnidirectional actuation. This helps the acquisition of sensitive long part of the coda wave (CW) signals from multiple directions, which is hypothesized to enhance sensitivity through improved signal analysis. In this article, the design methodology and implementation of unique tone burst interdigitated electrodes (TB-IDT) are presented. Sensing using TB-IDT enables accessing multiple frequencies simultaneously. This results in a wider frequency spectrum and allows better scope for the detection of different target analytes. The novel design process utilized guided wave analysis of the substrate, and selective directional focused interdigitated electrodes (F-IDT) were implemented. The article demonstrates computational simulation along with experimental results with validation of multifrequency and multidirectional sensing capability.

10.
Nutr Health ; : 2601060241265389, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39042923

RESUMEN

Saw palmetto extract (SPE) is the most commonly used supplement for the treatment of lower urinary tract symptoms (LUTS), but most evidence is for those with LUTS, and little data is verifying its effectiveness for those who do not have the disease but are troubled by symptoms. The purpose of this study was to examine the effect of SPE on the improvement of urinary frequency problems that present stress due to urinary urgency in daily life, among healthy Japanese adults aged ≥50 years who are not diagnosed with benign prostatic hyperplasia or overactive bladder. They were randomly assigned to the SPE group or placebo group (34 participants per group) using a computerized random number generator. Each participant was instructed to take one capsule containing SPE (320 mg) or placebo every day for 12 weeks. Subjective symptoms were assessed using the overactive bladder questionnaire, and the score of symptom bother by frequent urination during the daytime hours was set as the primary outcome. The other outcomes were subjective urinary symptoms and urinary frequencies. The final efficacy analysis dataset was per protocol set, and 33 participants in each group were analyzed. After SPE intervention for 12 weeks, the score of symptom bother by frequent urination during the daytime hours was significantly improved and the daytime frequency of urination assessed using the urinary log was significantly decreased. The consumption of SPE improved urinary frequency-related quality of life such as bother of urinary symptoms in healthy Japanese adults (UMIN000045334).

11.
Int J Mol Sci ; 25(2)2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38256117

RESUMEN

Atherosclerosis is an inflammatory disease of the arteries associated with alterations in lipid and other metabolism and is a major cause of cardiovascular disease (CVD). LDL consists of several subclasses with different sizes, densities, and physicochemical compositions. Small dense LDL (sd-LDL) is a subclass of LDL. There is growing evidence that sd-LDL-C is associated with CVD risk, metabolic dysregulation, and several pathophysiological processes. In this study, we present a straightforward membrane device filtration method that can be performed with simple laboratory methods to directly determine sd-LDL in serum without the need for specialized equipment. The method consists of three steps: first, the precipitation of lipoproteins with magnesium harpin; second, the collection of effluent from a 100 nm filter; and third, the quantification of sd-LDL-ApoB in the effluent with an SH-SAW biosensor. There was a good correlation between ApoB values obtained using the centrifugation (y = 1.0411x + 12.96, r = 0.82, n = 20) and filtration (y = 1.0633x + 15.13, r = 0.88, n = 20) methods and commercially available sd-LDL-C assay values. In addition to the filtrate method, there was also a close correlation between sd-LDL-C and ELISA assay values (y = 1.0483x - 4489, r = 0.88, n = 20). The filtration treatment method also showed a high correlation with LDL subfractions and NMR spectra ApoB measurements (y = 2.4846x + 4.637, r = 0.89, n = 20). The presence of sd-LDL-ApoB in the effluent was also confirmed by ELISA assay. These results suggest that this filtration method is a simple and promising pretreatment for use with the SH-SAW biosensor as a rapid in vitro diagnostic (IVD) method for predicting sd-LDL concentrations. Overall, we propose a very sensitive and specific SH-SAW biosensor with the ApoB antibody in its sensitive region to monitor sd-LDL levels by employing a simple delay-time phase shifted SH-SAW device. In conclusion, based on the demonstration of our study, the SH-SAW biosensor could be a strong candidate for the future measurement of sd-LDL.


Asunto(s)
Antígenos de Grupos Sanguíneos , Enfermedades Cardiovasculares , Humanos , LDL-Colesterol , Tecnología , Anticuerpos , Arterias
12.
J Environ Manage ; 362: 121302, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38824896

RESUMEN

Two industrial solid wastes, Ti-bearing blast furnace slag (TBFS) and diamond wire saw silicon waste (DWSSW), contain large amounts of Ti and Si, and their accumulation wastes resources and intensifies environmental pollution. In the present study, DWSSW was used as the silicon source to reduce titanium oxide in TBFS by electromagnetic induction smelting, and meanwhile Na3AlF6 was added as a flux to improve the recycling of the wastes. Ti and Si of the two wastes were simultaneously recovered in the form of alloy. The effects of different addition amount of Na3AlF6 flux in the mixture of DWSSW and TBFS on chemical composition, viscosity, basicity and structure of slag were investigated. The dissolution behavior of SiO2 in Na3AlF6 flux was theoretically deduced and experimentally verification. The optimized recovery rate of Ti and Si were obtained, and the research realizes the efficient recycling of DWSSW and TBFS simultaneously.


Asunto(s)
Aleaciones , Reciclaje , Silicio , Titanio , Titanio/química , Silicio/química , Aleaciones/química , Diamante/química , Residuos Industriales/análisis
13.
Neuroophthalmology ; 48(4): 272-278, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38933752

RESUMEN

See-saw nystagmus (SSN) is a rare form of nystagmus characterised by alternating elevation with incyclotorsion of one eye and concomitant depression with excyclotorsion of the other eye, often due to abnormalities involving the midbrain and parasellar region. Herein, we highlight a rare case of pendular SSN, which demonstrated complete resolution following resection of a pituitary macroadenoma. A patient in their 40s was identified to have SSN and was diagnosed with a pituitary macroadenoma. They underwent an endoscopic endonasal transsellar approach for resection of the pituitary adenoma. Their nystagmus resolved immediately after surgery. From a review of the literature, resolution and/or significant improvement in SSN occurred in 74% of cases following treatment, with 100%, 86% and 50% following treatment for medication-induced, neurological infarcts, and mass-effect aetiologies of SSN, respectively. SSN is a rare entity with a wide array of aetiologies. Identification of the causative aetiology and appropriate treatment can lead to significant improvement or resolution of the nystagmus in most cases.

14.
Small ; 19(19): e2206831, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36811154

RESUMEN

Improving electrical and optical properties is important in manufacturing high-efficiency solar cells. Previous studies focused on individual gettering and texturing methods to improve solar cell material quality and reduce reflection loss, respectively. This study presents a novel method called saw damage gettering with texturing that effectively combines both methods for multicrystalline silicon (mc-Si) wafers manufactured using the diamond wire sawing (DWS) method. Although mc-Si is not the Si material currently used in photovoltaic products, the applicability of this method using the mc-Si wafers as it contains all grain orientations is demonstrated. It utilizes saw damage sites on the wafer surfaces for gettering metal impurities during annealing. Additionally, it can crystallize amorphous silicon on wafer surfaces generated during the sawing process to allow conventional acid-based wet texturing. This texturing method and annealing for 10 min allow for the removal of metal impurities and effectively forms a textured DWS Si wafer. The results show that the open-circuit voltage (ΔVoc  = +29 mV), short-circuit current density (ΔJsc  = +2.5 mA cm-2 ), and efficiency (Δη = +2.1%) improved in the p-type passivated emitter and rear cells (p-PERC) manufactured using this novel method, as compared to those in the reference solar cells.

15.
Biotechnol Bioeng ; 120(6): 1667-1677, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36815727

RESUMEN

Here, we introduce a customized hanging insert fitting a six-well plate to culture Caco-2 cells on hydrogel membranes under flow conditions. The cells are cultured in the apical channel-like chamber, which provides about 1.3 dyn/cm2 shear, while the basolateral chamber is mixed when the device is rocked. The device was tested by investigating the functional impact of the initial seeding density in combination with flow applied at confluency. The low seeding density cultures grew in two dimensional (2D) irrespective of the flow. Flow and higher seeding density resulted in a mixture of three dimensional (3D) structures and 2D layers. Static culture and high cell seeding density resulted in 2D layers. The flow increased the height and ZO-1 expression of cells in 2D layers, which correlated with an improved barrier function. Cultures with 3D structures had higher ZO-1 expression than 2D cultures, but this did not correlate with an increased barrier function. 2D monolayers in static and dynamic cultures had similar morphology and heterogeneity in the expression of Mucin-2 and Villin, while the 3D structures had generally higher expression of these markers. The result shows that the cell density and flow determine 3D growth and that the highest barrier function was obtained with low-density cultures and flow.


Asunto(s)
Células CACO-2 , Humanos , Recuento de Células , Morfogénesis
16.
Phytother Res ; 37(11): 5289-5299, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37463655

RESUMEN

The safety of Serenoa repens (SR)-containing products was evaluated conducting a retrospective worldwide analysis of pharmaco- and phytovigilance report forms of suspected adverse reactions (SARs) collected up to 31 January 2022. Multivariate logistic regression was performed to estimate the odds ratios (ORs) of serious SAR. A total of 1810 report forms were analysed; 92% of subjects were males, with a median age of 69 years; 44% of cases were defined as serious. Subjects exposed to dietary supplements had a higher risk of developing serious SARs (OR: 1.60 [95% CI: 1.20-2.15]), as subjects exposed to 2-5 (OR: 1. 83 [95% CI: 1.30-2.58]) or more than 5 (OR: 3.45 [95% CI: 2.36-5.06]) suspect/interacting products. The probability of experiencing serious SAR was higher for subjects exposed to concomitant products (OR: 1.55 [95% CI: 1.15-2.08]), to more than four active compounds (OR: 4.38 [95% CI: 3.21-5.99]) and to SR for more than 14 days (OR: 1.89 [95% CI: 1.10-3, 22]), and lower for subjects exposed to higher doses of SR (OR: of 0.34 [95% CI: 0.20-0.58]). This evidence improves awareness on safety of SR containing products, suggesting the need of a further update of periodic reviews by national and international regulatory agencies.


Asunto(s)
Hiperplasia Prostática , Serenoa , Masculino , Humanos , Anciano , Femenino , Serenoa/efectos adversos , Farmacovigilancia , Estudios Retrospectivos , Hiperplasia Prostática/tratamiento farmacológico , Extractos Vegetales/efectos adversos , Suplementos Dietéticos/efectos adversos
17.
J Hand Surg Am ; 48(2): 141-148, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35277301

RESUMEN

PURPOSE: Table saws are commonly used woodworking tools that carry a substantial risk of injury. Blade-stopping technology has been developed and has the potential to reduce the frequency and severity of injury. This study aimed to evaluate this technology on human tissue and characterize the resulting injuries. METHODS: Twenty-seven fresh, frozen cadaveric specimen hands were used. Three scenarios were tested, with the specimen (1) moving forward ("forward"); (2) moving backward, such as in a kickback scenario ("reverse"); and (3) dropped from above the saw blade ("top"). Each scenario was tested at both slow (0.001 m/sec) and fast (forward: 0.6 m/sec; reverse: 0.5 m/sec; top: 2.4 m/sec) approach speeds. The severity of the injuries was characterized by anatomic evaluation and confirmed with radiographic evaluation. Injuries were classified as no laceration, superficial soft tissue injury, deep soft tissue injury, and bony injury. RESULTS: For the slow approach speed, the brake cartridge engaged in 100% of the trials for all 3 scenarios, and 100% of the specimens sustained no injuries. Forward testing at a fast approach speed revealed the brake cartridge engaged in 89% of the trials (injuries: 4 superficial, 2 deep, 3 bony). Reverse testing at a fast approach speed revealed the brake cartridge engaged in 11% of trials (injuries: 1 superficial, 8 bony). Top testing at a fast approach speed revealed the brake cartridge engaged in 89% of the trials (injuries: 9 bony). CONCLUSIONS: Modern blade-stopping technology did not prevent all traumatic hand injuries in fast approach speed scenarios, but it reduced the incidence and severity of injuries. The technology was more effective at low approach speed scenarios. CLINICAL RELEVANCE: The findings of this study provide information to help understand the factors that can prevent or reduce the severity of contact injuries (hand, finger, or thumb) for operators of table saws.


Asunto(s)
Amputación Traumática , Traumatismos de la Mano , Traumatismos de los Tejidos Blandos , Humanos , Accidentes de Trabajo , Traumatismos de la Mano/etiología , Amputación Traumática/epidemiología , Cadáver
18.
Phytochem Anal ; 34(5): 594-605, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37282799

RESUMEN

INTRODUCTION: Ssajuari-ssuk and sajabal-ssuk have many clinical benefits. It is difficult to discriminate between these two species based on general characteristics aside from the shapes of the leaves. Thus, species identification and quality control between ssajuari-ssuk and sajabal-ssuk are of great concern in plant science and clinical therapy. OBJECTIVE: The aim of this study is to determine whether fast gas chromatography with uncoated surface acoustic wave sensor (GC-SAW) can be a useful technique for performing species identification and quality control using volatile patterns of ssajuari-ssuk and sajabal-ssuk air-dried for 4 months and 2 years and 4 months. METHODOLOGY: Fast GC-SAW sensor provides second unit analysis, simple, on-line measurements that do not require pretreatment of the sample and rapid sensory information. Headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) was employed to confirm the identification of the volatiles and compared to fast GC-SAW sensor. RESULTS: In air-dried sajabal-ssuk, the concentration of 1,8-cineole was higher than that in air-dried ssajuari-ssuk, while the level of α-thujone was considerably lower than that of air-dried ssajuari-ssuk. Each of ssajuari-ssuk and sajabal-ssuk air-dried for 4 months and 2 years and 4 months has its own characteristic volatile pattern owing to its individual chemotypes or chemical compositions. CONCLUSION: Consequently, the fast GC-SAW sensor can be a useful technique for species identification and quality control using volatile patterns of ssajuari-ssuk and sajabal-ssuk air-dried for 4 months and 2 years and 4 months. This method can be used for the standardisation of quality control using volatile patterns of herbal medicines.


Asunto(s)
Artemisia , Compuestos Orgánicos Volátiles , Cromatografía de Gases y Espectrometría de Masas/métodos , Artemisia/química , Sonido , Control de Calidad , República de Corea , Compuestos Orgánicos Volátiles/análisis , Microextracción en Fase Sólida/métodos
19.
Sensors (Basel) ; 23(4)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36850814

RESUMEN

A comparative analysis of the responses of two types of acoustic waves (surface SAW and plate APW) with close frequencies and the same type of waves (SAW) with different frequencies toward various liquid vapors (water, acetone, ethanol) was carried out in this paper. Two types of films based on mycelium of higher fungus Ganoderma lucidum (Curtis) P. Karst (G. lucidum) prepared by various methods were used as sensitive coatings. These films were based on G. lucidum mycelium ethanolic (48% v/v) homogenizate (MEGl) and extract (EGl). A film deposition procedure compatible with acoustic devices technology was developed. Various piezoelectric substrates (YX-LiNbO3, 128 YX-LiNbO3) were used for appropriate acoustic delay lines production. It was found that additional SAW and APW attenuation associated with the appearance of mycelium films on the surface of the acoustic waveguide is two times greater for MEGL than for EGL films in the frequency range of 20-80 MHz The changes in acoustic wave amplitude and phase due to vapor absorption were measured and compared with each other, taking into account the differences in geometry of the samples. It was found that the phase response of the SAW delay lines with EGL films is three times higher than one with the presence of MEGL films for water and ethanol vapors. The films used are demonstrated good reproducibility and long-term stability for at least 2 months. Based on the results obtained, it was concluded that MEGl film is not appropriate for use in high frequency SAW delay lines as a sensitive coating. However, both types of the films (MEGl and EGl) could be used as sensitive coatings for low frequency SAW and APW sensors based on corresponding delay lines. Additionally, it was found that the films used are not sensitive to acetone vapor. As a result of the work carried out, a technique for creating sensitive films based on the mycelium of higher fungi compatible with the planar technology of acoustoelectronic delay lines was developed. The possibility of using such films for the development of gas SAW and APW sensors was shown.


Asunto(s)
Acetona , Sonido , Reproducibilidad de los Resultados , Etanol , Hongos , Gases , Micelio , Agua
20.
Sensors (Basel) ; 23(18)2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37765774

RESUMEN

The detection and location of pipeline leakage can be deduced from the time arrival leak signals measured by acoustic sensors placed at the pipe. Ongoing research in this field is primarily focused on refining techniques for accurately estimating the time delays. This enhancement predominantly revolves around the application of advanced signal processing methods. Additionally, researchers are actively immersed in the utilization of machine learning approaches on vibro-acoustic data files, to determine the presence or absence of leaks. Less attention has been given to evaluating the sensitivity, performance, and overall effectiveness of these sensors in leak detection; although acoustic methods have been successfully used for leak detection in metallic pipes, they are less effective in plastic pipes due to the high attenuation of leak noise signals. The primary thrust of this research centers on identifying sensors that not only possess sensitivity but also exhibit high efficiency. To accomplish this goal, we conducted an exhaustive evaluation of the performance of three distinct categories of acoustic sensors employed for detecting water leaks in plastic pipes: specifically, lead zirconate titanate (PZT) sensors, polyvinylidene fluoride (PVDF) sensors, and surface acoustic wave (SAW) sensors. Our evaluation encompassed the performance of PVDF and SAW sensors in leak detection, comparing them to PZT sensors under a variety of conditions, including different leak sizes, flow rates, and distances from the leak. The results showed that all three sensors, when they were placed in the same position, were able to detect water leaks in plastic pipes with different sensitivities. For small leaks (1 mm, 2 mm), the PVDF sensor showed the greatest sensitivity (0.4 dB/L/h, 0.33 dB/L/h), followed by the SAW sensor (0.16 dB/L/h, 0.14 dB/L/h), and finally the PZT (0.13 dB/L/h, 0.12 dB/L/h). Similarly, for larger leaks (4 mm, 10 mm), the PVDF sensor continued to show superior sensitivity (0.2 dB/L/h, 0.17 dB/L/h), followed by the SAW sensor (0.13 dB/L/h, 0.11), and finally the PZT sensor (0.12 dB/L/h, 0.1 dB/L/h), outperforming the PZT sensor. This suggests that SAW and PVDF sensors, have the potential to serve as valuable, cost-effective alternatives to traditional commercial leak noise transducers. The outcomes of this comparative study involving three acoustic sensors hold the potential to advance the development of robust and dependable systems for the detection of water leaks in plastic pipelines.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA