Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Brain Sci ; 14(3)2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38539659

RESUMEN

Emotion is one of the most important higher cognitive functions of the human brain and plays an important role in transaction processing and decisions. In traditional emotion recognition studies, the frequency band features in EEG signals have been shown to have a high correlation with emotion production. However, traditional emotion recognition methods cannot satisfactorily solve the problem of individual differences in subjects and data heterogeneity in EEG, and subject-independent emotion recognition based on EEG signals has attracted extensive attention from researchers. In this paper, we propose a subject-independent emotion recognition model based on adaptive extraction of layer structure based on frequency bands (BFE-Net), which is adaptive in extracting EEG map features through the multi-graphic layer construction module to obtain a frequency band-based multi-graphic layer emotion representation. To evaluate the performance of the model in subject-independent emotion recognition studies, extensive experiments are conducted on two public datasets including SEED and SEED-IV. The experimental results show that in most experimental settings, our model has a more advanced performance than the existing studies of the same type. In addition, the visualization of brain connectivity patterns reveals that some of the findings are consistent with previous neuroscientific validations, further validating the model in subject-independent emotion recognition studies.

2.
Front Neurosci ; 15: 611653, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34177441

RESUMEN

As a physiological process and high-level cognitive behavior, emotion is an important subarea in neuroscience research. Emotion recognition across subjects based on brain signals has attracted much attention. Due to individual differences across subjects and the low signal-to-noise ratio of EEG signals, the performance of conventional emotion recognition methods is relatively poor. In this paper, we propose a self-organized graph neural network (SOGNN) for cross-subject EEG emotion recognition. Unlike the previous studies based on pre-constructed and fixed graph structure, the graph structure of SOGNN are dynamically constructed by self-organized module for each signal. To evaluate the cross-subject EEG emotion recognition performance of our model, leave-one-subject-out experiments are conducted on two public emotion recognition datasets, SEED and SEED-IV. The SOGNN is able to achieve state-of-the-art emotion recognition performance. Moreover, we investigated the performance variances of the models with different graph construction techniques or features in different frequency bands. Furthermore, we visualized the graph structure learned by the proposed model and found that part of the structure coincided with previous neuroscience research. The experiments demonstrated the effectiveness of the proposed model for cross-subject EEG emotion recognition.

3.
Front Neurosci ; 15: 626277, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33613187

RESUMEN

Due to a large number of potential applications, a good deal of effort has been recently made toward creating machine learning models that can recognize evoked emotions from one's physiological recordings. In particular, researchers are investigating the use of EEG as a low-cost, non-invasive method. However, the poor homogeneity of the EEG activity across participants hinders the implementation of such a system by a time-consuming calibration stage. In this study, we introduce a new participant-based feature normalization method, named stratified normalization, for training deep neural networks in the task of cross-subject emotion classification from EEG signals. The new method is able to subtract inter-participant variability while maintaining the emotion information in the data. We carried out our analysis on the SEED dataset, which contains 62-channel EEG recordings collected from 15 participants watching film clips. Results demonstrate that networks trained with stratified normalization significantly outperformed standard training with batch normalization. In addition, the highest model performance was achieved when extracting EEG features with the multitaper method, reaching a classification accuracy of 91.6% for two emotion categories (positive and negative) and 79.6% for three (also neutral). This analysis provides us with great insight into the potential benefits that stratified normalization can have when developing any cross-subject model based on EEG.

4.
Front Neurosci ; 12: 162, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29615853

RESUMEN

Recognizing cross-subject emotions based on brain imaging data, e.g., EEG, has always been difficult due to the poor generalizability of features across subjects. Thus, systematically exploring the ability of different EEG features to identify emotional information across subjects is crucial. Prior related work has explored this question based only on one or two kinds of features, and different findings and conclusions have been presented. In this work, we aim at a more comprehensive investigation on this question with a wider range of feature types, including 18 kinds of linear and non-linear EEG features. The effectiveness of these features was examined on two publicly accessible datasets, namely, the dataset for emotion analysis using physiological signals (DEAP) and the SJTU emotion EEG dataset (SEED). We adopted the support vector machine (SVM) approach and the "leave-one-subject-out" verification strategy to evaluate recognition performance. Using automatic feature selection methods, the highest mean recognition accuracy of 59.06% (AUC = 0.605) on the DEAP dataset and of 83.33% (AUC = 0.904) on the SEED dataset were reached. Furthermore, using manually operated feature selection on the SEED dataset, we explored the importance of different EEG features in cross-subject emotion recognition from multiple perspectives, including different channels, brain regions, rhythms, and feature types. For example, we found that the Hjorth parameter of mobility in the beta rhythm achieved the best mean recognition accuracy compared to the other features. Through a pilot correlation analysis, we further examined the highly correlated features, for a better understanding of the implications hidden in those features that allow for differentiating cross-subject emotions. Various remarkable observations have been made. The results of this paper validate the possibility of exploring robust EEG features in cross-subject emotion recognition.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA