Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Cancer ; 155(7): 1327-1339, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38738976

RESUMEN

The primary objective of this study is to develop a prediction model for peritoneal metastasis (PM) in colorectal cancer by integrating the genomic features of primary colorectal cancer, along with clinicopathological features. Concurrently, we aim to identify potential target implicated in the peritoneal dissemination of colorectal cancer through bioinformatics exploration and experimental validation. By analyzing the genomic landscape of primary colorectal cancer and clinicopathological features from 363 metastatic colorectal cancer patients, we identified 22 differently distributed variables, which were used for subsequent LASSO regression to construct a PM prediction model. The integrated model established by LASSO regression, which incorporated two clinicopathological variables and seven genomic variables, precisely discriminated PM cases (AUC 0.899; 95% CI 0.860-0.937) with good calibration (Hosmer-Lemeshow test p = .147). Model validation yielded AUCs of 0.898 (95% CI 0.896-0.899) and 0.704 (95% CI 0.622-0.787) internally and externally, respectively. Additionally, the peritoneal metastasis-related genomic signature (PGS), which was composed of the seven genes in the integrated model, has prognostic stratification capability for colorectal cancer. The divergent genomic landscape drives the driver genes of PM. Bioinformatic analysis concerning these driver genes indicated SERINC1 may be associated with PM. Subsequent experiments indicate that knocking down of SERINC1 functionally suppresses peritoneal dissemination, emphasizing its importance in CRCPM. In summary, the genomic landscape of primary cancer in colorectal cancer defines peritoneal metastatic pattern and reveals the potential target of SERINC1 for PM in colorectal cancer.


Asunto(s)
Neoplasias Colorrectales , Genómica , Neoplasias Peritoneales , Humanos , Neoplasias Peritoneales/secundario , Neoplasias Peritoneales/genética , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Femenino , Masculino , Persona de Mediana Edad , Genómica/métodos , Pronóstico , Biomarcadores de Tumor/genética , Anciano , Animales , Regulación Neoplásica de la Expresión Génica , Ratones , Biología Computacional/métodos
2.
J Virol ; 97(10): e0082323, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37768085

RESUMEN

IMPORTANCE: Pathogenesis of HIV-1 is enhanced through several viral-encoded proteins that counteract a range of host restriction molecules. HIV-1 Nef counteracts the cell membrane protein SERINC5 by downregulating it from the cell surface, thereby enhancing virion infectivity. Some subtype B reference Envelope sequences have shown the ability to bypass SERINC5 infectivity restriction independent of Nef. However, it is not clear if and to what extent circulating HIV-1 strains can exhibit resistance to SERINC5 restriction. Using a panel of Envelope sequences isolated from 50 Tanzanians infected with non-B HIV-1 subtypes, we show that the lentiviral reporters pseudotyped with patient-derived Envelopes have reduced sensitivity to SERINC5 and that this sensitivity differed among viral subtypes. Moreover, we found that SERINC5 sensitivity within patient-derived Envelopes can be modulated by separate regions, highlighting the complexity of viral/host interactions.


Asunto(s)
Infecciones por VIH , VIH-1 , Interacciones Microbiota-Huesped , Proteínas de la Membrana , Productos del Gen env del Virus de la Inmunodeficiencia Humana , Humanos , Membrana Celular/metabolismo , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética , Infecciones por VIH/metabolismo , Infecciones por VIH/virología , VIH-1/clasificación , VIH-1/patogenicidad , VIH-1/fisiología , Proteínas de la Membrana/metabolismo , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/metabolismo , Tanzanía
3.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-34001619

RESUMEN

SERINC5 is a potent lentiviral restriction factor that gets incorporated into nascent virions and inhibits viral fusion and infectivity. The envelope glycoprotein (Env) is a key determinant for SERINC restriction, but many aspects of this relationship remain incompletely understood, and the mechanism of SERINC5 restriction remains unresolved. Here, we have used mutants of HIV-1 and HIV-2 to show that truncation of the Env cytoplasmic tail (ΔCT) confers complete resistance of both viruses to SERINC5 and SERINC3 restriction. Critically, fusion of HIV-1 ΔCT virus was not inhibited by SERINC5 incorporation into virions, providing a mechanism to explain how EnvCT truncation allows escape from restriction. Neutralization and inhibitor assays showed ΔCT viruses have an altered Env conformation and fusion kinetics, suggesting that EnvCT truncation dysregulates the processivity of entry, in turn allowing Env to escape targeting by SERINC5. Furthermore, HIV-1 and HIV-2 ΔCT viruses were also resistant to IFITMs, another entry-targeting family of restriction factors. Notably, while the EnvCT is essential for Env incorporation into HIV-1 virions and spreading infection in T cells, HIV-2 does not require the EnvCT. Here, we reveal a mechanism by which human lentiviruses can evade two potent Env-targeting restriction factors but show key differences in the capacity of HIV-1 and HIV-2 to exploit this. Taken together, this study provides insights into the interplay between HIV and entry-targeting restriction factors, revealing viral plasticity toward mechanisms of escape and a key role for the long lentiviral EnvCT in regulating these processes.


Asunto(s)
VIH-1/genética , VIH-2/genética , Glicoproteínas de Membrana/genética , Proteínas de la Membrana/genética , Virión/genética , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética , Antígenos de Diferenciación/genética , Antígenos de Diferenciación/inmunología , Línea Celular , Regulación de la Expresión Génica , Células HEK293 , Infecciones por VIH/genética , Infecciones por VIH/inmunología , Infecciones por VIH/virología , VIH-1/inmunología , VIH-1/patogenicidad , VIH-2/inmunología , VIH-2/patogenicidad , Células HeLa , Humanos , Evasión Inmune , Glicoproteínas de Membrana/inmunología , Proteínas de la Membrana/inmunología , Dominios Proteicos , Isoformas de Proteínas/genética , Isoformas de Proteínas/inmunología , Transducción de Señal , Células Madre , Virión/inmunología , Virión/patogenicidad , Internalización del Virus , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología
4.
Retrovirology ; 20(1): 3, 2023 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-37004071

RESUMEN

BACKGROUND: Nef performs multiple cellular activities that enhance HIV-1 pathogenesis. The role of Nef-mediated down-regulation of the host restriction factor SERINC5 in HIV-1 pathogenesis is not well-defined. We aimed to investigate if SERINC5 down-regulation activity contributes to HIV-1 subtype C disease progression, to assess the relative contribution of this activity to overall Nef function, and to identify amino acids required for optimal activity. We measured the SERINC5 down-regulation activity of 106 subtype C Nef clones, isolated from individuals in early infection, for which the Nef activities of CD4 and HLA-I down-regulation as well as alteration of TCR signalling were previously measured. The relationship between SERINC5 down-regulation and markers of disease progression, and the relative contribution of SERINC5 down-regulation to a Nef fitness model-derived E value (a proxy for overall Nef fitness in vivo), were assessed. RESULTS: No overall relationship was found between SERINC5 down-regulation and viral load set point (p = 0.28) or rate of CD4+ T cell decline (p = 0.45). CD4 down-regulation (p = 0.02) and SERINC5 down-regulation (p = 0.003) were significant determinants of E values in univariate analyses, with the greatest relative contribution for SERINC5 down-regulation, and only SERINC5 down-regulation remained significant in the multivariate analysis (p = 0.003). Using a codon-by-codon analysis, several amino acids were significantly associated with increased (10I, 11V, 38D, 51T, 65D, 101V, 188H and, 191H) or decreased (10K, 38E, 65E, 135F, 173T, 176T and, 191R) SERINC5 down-regulation activity. Site-directed mutagenesis experiments of selected mutants confirmed a substantial reduction in SERINC5 down-regulation activity associated with the mutation 173T, while mutations 10K, 135F, and 176T were associated with more modest reductions in activity that were not statistically significant. CONCLUSIONS: These results suggest that SERINC5 down-regulation is a significant contributor to overall Nef function and identify potential genetic determinants of this Nef function that may have relevance for vaccines or therapeutics.


Asunto(s)
Infecciones por VIH , VIH-1 , Humanos , Regulación hacia Abajo , VIH-1/fisiología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/metabolismo , Linfocitos T
5.
J Virol ; 96(11): e0017622, 2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35536019

RESUMEN

Most simian immunodeficiency viruses (SIVs) use Nef to counteract restriction by the tetherin proteins of their nonhuman primate hosts. In addition to counteracting tetherin, SIV Nef has a number of other functions, including the downmodulation of CD3, CD4, and major histocompatibility complex class I (MHC I) molecules from the surface of SIV-infected cells and the enhancement of viral infectivity by preventing the incorporation of SERINC5 into virions. Although these activities require different surfaces of Nef, they can be difficult to separate because of their dependence on similar interactions with AP-1 or AP-2 for clathrin-mediated endocytosis. We previously observed extensive overlap of the SIV Nef residues required for counteracting tetherin and SERINC5. Here, we define substitutions in Nef that separate anti-tetherin activity from SERINC5 antagonism and other activities of Nef. This information was used to engineer an infectious molecular clone of SIV (SIVmac239nefSA) that is sensitive to tetherin but retains CD3, CD4, MHC I, and SERINC5 downmodulation. In primary rhesus macaque CD4+ T cells, SIVmac239nefSA exhibits impaired replication compared to wild-type SIVmac239 under conditions of interferon-induced upregulation of tetherin. These results demonstrate that tetherin antagonism can be separated from other Nef functions and that resistance to tetherin is essential for optimal replication in primary CD4+ T cells. IMPORTANCE Tetherin is an interferon-inducible transmembrane protein that prevents the detachment of enveloped viruses from infected cells by physically tethering nascent virions to cellular membranes. SIV Nef downmodulates simian tetherin to overcome this restriction in nonhuman primate hosts. Nef also enhances virus infectivity by preventing the incorporation of SERINC5 into virions and contributes to immune evasion by downmodulating other proteins from the cell surface. To assess the contribution of tetherin antagonism to virus replication, we engineered an infectious molecular clone of SIV with substitutions in Nef that uncouple tetherin antagonism from other Nef functions. These substitutions impaired virus replication in interferon-treated macaque CD4+ T cells, revealing the impact of tetherin on SIV replication under physiological conditions in primary CD4+ lymphocytes.


Asunto(s)
Antígeno 2 del Estroma de la Médula Ósea , Productos del Gen nef , Proteínas de la Membrana , Virus de la Inmunodeficiencia de los Simios , Replicación Viral , Animales , Antígeno 2 del Estroma de la Médula Ósea/metabolismo , Linfocitos T CD4-Positivos , Productos del Gen nef/genética , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/metabolismo , Interferones/metabolismo , Linfocitos/metabolismo , Linfocitos/virología , Macaca mulatta , Proteínas de la Membrana/metabolismo , Virus de la Inmunodeficiencia de los Simios/fisiología
6.
Med Microbiol Immunol ; 212(2): 133-140, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35333966

RESUMEN

Serine incorporator 5 (SERINC5 or SER5) is a multipass transmembrane protein with ill-defined cellular activities. SER5 was recently described as a human immunodeficiency virus 1 (HIV-1) restriction factor capable of inhibiting HIV-1 that does not express its accessory protein Nef (Δ Nef). SER5 incorporated into the viral membrane impairs the entry of HIV-1 by disrupting the fusion between the viral and the plasma membrane after envelope receptor interaction induced the first steps of the fusion process. The mechanisms of how SER5 prevents membrane fusion are not fully understood and viral envelope proteins were identified that escape the SER5-mediated restriction. Primate lentiviruses, such as HIV-1 and simian immunodeficiency viruses (SIVs), use their accessory protein Nef to downregulate SER5 from the plasma membrane by inducing an endocytic pathway. In addition to being directly antiviral, recent data suggest that SER5 is an important adapter protein in innate signaling pathways leading to the induction of inflammatory cytokines. This review discusses the current knowledge about HIV-1 restriction by SER5.


Asunto(s)
VIH-1 , Animales , Humanos , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/metabolismo , Proteínas de la Membrana/metabolismo
7.
Biol Cell ; 114(10): 276-292, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35713972

RESUMEN

BACKGROUND: HIV-1 Nef regulates several cellular functions in an infected cell which results in viral persistence and AIDS pathogenesis. The currently understood molecular mechanism(s) underlying Nef-dependent cellular function(s) are unable to explain how events are coordinately regulated in the host cell. Intracellular membranous trafficking maintains cellular homeostasis and is regulated by Rab GTPases - a member of the Ras superfamily. RESULTS: In the current study, we tried to decipher the role of Nef on the Rab GTPases-dependent complex and vesicular trafficking. Expression profiling of Rabs in Nef-expressing cells showed that Nef differentially regulates the expression of individual Rabs in a cell-specific manner. Further analysis of Rabs in HIV-1NL4-3 or ΔNef infected cells demonstrated that the Nef protein is responsible for variation in Rabs expression. Using a panel of competitive peptide inhibitors against Nef, we identified the critical domain of HIV-1 Nef involved in modulation of Rabs expression. The molecular function of Nef-mediated upregulation of Rab5 and Rab7 and downregulation of Rab11 increased the transport of SERINC5 from the cell surface to the lysosomal compartment. Moreover, the Nef-dependent increase in Rab27 expression assists exosome release. Reversal of Rabs expression using competitive inhibitors against Nef and manipulation of Rabs expression reduced viral release and infectivity of progeny virions. CONCLUSION: This study demonstrates that Nef differentially regulates the expression of Rab proteins in HIV-1 infected cells to hijack the host intracellular trafficking, which augments viral replication and HIV-1 pathogenesis. SIGNIFICANCE: Our study emphasized the indispensable role of HIV-1 protein Nef on various aspects of the intracellular trafficking regulated by Rabs GTPases, which explained how HIV-1 Nef may hijack membrane trafficking pathways in infected cells.


Asunto(s)
VIH-1 , VIH-1/fisiología , Proteínas de la Membrana/metabolismo , Virión/química , Virión/metabolismo , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/análisis , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/metabolismo , Proteínas de Unión al GTP rab/metabolismo
8.
J Virol ; 95(18): e0063421, 2021 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-34190600

RESUMEN

The host transmembrane protein SERINC5 is incorporated into viral particles and restricts infection by certain retroviruses. However, what motif of SERINC5 mediates this process remains elusive. By conducting mutagenesis analyses, we found that the substitution of phenylalanine with alanine at position 412 (F412A) resulted in a >75-fold reduction in SERINC5's restriction function. The F412A substitution also resulted in the loss of SERINC5's function to sensitize HIV-1 neutralization by antibodies recognizing the envelope's membrane proximal region. A series of biochemical analyses revealed that F412A showed steady-state protein expression, localization at the cellular membrane, and incorporation into secreted virus particles to a greater extent than in the wild type. Furthermore, introduction of several amino acid mutations at this position revealed that the aromatic side chains, including phenylalanine, tyrosine, and tryptophan, were required to maintain SERINC5 functions to impair the virus-cell fusion process and virion infectivity. Moreover, the wild-type SERINC5 restricted infection of lentiviruses pseudotyped with envelopes of murine leukemia viruses, simian immunodeficiency virus, and HIV-2, and F412A abrogated this function. Taken together, our results highlight the importance of the aromatic side chain at SERINC5 position 412 to maintain its restriction function against diverse retrovirus envelopes. IMPORTANCE The host protein SERINC5 is incorporated into progeny virions of certain retroviruses and restricts the infectivity of these viruses or sensitizes the envelope glycoprotein to a class of neutralizing antibodies. However, how and which part of SERINC5 engages with the diverse array of retroviral envelopes and exerts its antiretroviral functions remain elusive. During mutagenesis analyses, we eventually found that the single substitution of phenylalanine with alanine, but not with tyrosine or tryptophan, at position 412 (F412A) resulted in the loss of SERINC5's functions toward diverse retroviruses, whereas F412A showed steady-state protein expression, localization at the cellular membrane, and incorporation into progeny virions to a greater extent than the wild type. Results suggest that the aromatic side chain at position 412 of SERINC5 plays a critical role in mediating antiviral functions toward various retroviruses, thus providing additional important information regarding host and retrovirus interaction.


Asunto(s)
Aminoácidos Aromáticos/genética , Membrana Celular/metabolismo , Infecciones por VIH/virología , VIH-1/patogenicidad , Virus de la Leucemia Murina/patogenicidad , Proteínas de la Membrana/metabolismo , Mutación , Células HEK293 , Infecciones por VIH/genética , VIH-1/genética , Interacciones Huésped-Patógeno , Humanos , Virus de la Leucemia Murina/genética , Proteínas de la Membrana/genética , Virulencia
9.
J Virol ; 95(16): e0058821, 2021 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-34037423

RESUMEN

Serine incorporator 5 (SERINC5) reduces the infectivity of progeny HIV-1 virions by incorporating into the outer host-derived viral membrane during egress. To counter SERINC5, the HIV-1 accessory protein Nef triggers SERINC5 internalization by engaging the adaptor protein 2 (AP-2) complex using the [D/E]xxxL[L/I]167 Nef dileucine motif. Nef also engages AP-2 via its dileucine motif to downregulate the CD4 receptor. Although these two Nef functions are related, the mechanisms governing SERINC5 downregulation are incompletely understood. Here, we demonstrate that two primary Nef isolates, referred to as 2410 and 2391 Nef, acquired from acutely HIV-1 infected women from Zimbabwe, both downregulate CD4 from the cell surface. However, only 2410 Nef retains the ability to downregulate cell surface SERINC5. Using a series of Nef chimeras, we mapped the region of 2391 Nef responsible for the functional uncoupling of these two antagonistic pathways to the dileucine motif. Modifications of the first and second x positions of the 2410 Nef dileucine motif to asparagine and aspartic acid residues, respectively (ND164), impaired cell surface SERINC5 downregulation, which resulted in reduced infectious virus yield in the presence of SERINC5. The ND164 mutation additionally partially impaired, but did not completely abrogate, Nef-mediated cell surface CD4 downregulation. Furthermore, the patient infected with HIV-1 encoding 2391 Nef had stable CD4+ T cell counts, whereas infection with HIV-1 encoding 2410 Nef resulted in CD4+ T cell decline and disease progression. IMPORTANCE A contributing factor to HIV-1 persistence is evasion of the host immune response. HIV-1 uses the Nef accessory protein to evade the antiviral roles of the adaptive and intrinsic innate immune responses. Nef targets SERINC5, a restriction factor which potently impairs HIV-1 infection by triggering SERINC5 removal from the cell surface. The molecular determinants underlying this Nef function remain incompletely understood. Recent studies have found a correlation between the extent of Nef-mediated SERINC5 downregulation and the rate of disease progression. Furthermore, single-residue polymorphisms outside the known Nef functional motifs can modulate SERINC5 downregulation. The identification of a naturally occurring Nef polymorphism impairing SERINC5 downregulation in this study supports a link between Nef downregulation of SERINC5 and the rate of plasma CD4+ T cell decline. Moreover, the observed functional impairments of this polymorphism could provide clues to further elucidate unknown aspects of the SERINC5 antagonistic pathway via Nef.


Asunto(s)
Antígenos CD4/metabolismo , Infecciones por VIH/virología , VIH-1/patogenicidad , Proteínas de la Membrana/metabolismo , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/fisiología , Secuencias de Aminoácidos , Linfocitos T CD4-Positivos/patología , Progresión de la Enfermedad , Regulación hacia Abajo , Femenino , Infecciones por VIH/metabolismo , VIH-1/genética , Humanos , Mutación , Polimorfismo Genético , Virión , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/metabolismo
10.
J Virol ; 95(9)2021 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-33597208

RESUMEN

HIV-1 has to overcome physical barriers posed by host cell restriction factors (RFs) for efficient replication. Some RFs, including Trim5α and tetherin, trigger antiviral signaling in addition to directly impairing HIV replication. SERINC5 (S5) is an RF that is incorporated into HIV-1 particles to potently impair their infectivity and is efficiently antagonized by the viral pathogenesis factor Nef. Since effects of S5 on HIV-1 infectivity were mostly studied in reporter cell lines, we analyzed the effects of S5 during infection of primary HIV-1 target cells. In activated CD4+ T lymphocytes, virion incorporation of S5 only moderately impaired virion infectivity and was not associated with altered innate immune recognition. In contrast, in monocyte-derived macrophages, S5 virion incorporation potentiated the production of proinflammatory cytokines with very potent but donor-dependent effects on virion infectivity. Nef counteracted effects of S5 on both cytokine production and virion infectivity. Similar S5-induced cytokine production was observed in immature monocyte-derived dendritic cells. Notably, S5-mediated enhancement of cytokine production was not linked to the efficacy of productive infection and could be overcome by using vesicular stomatitis virus glycoprotein (VSV-G) but not infectivity restriction-insensitive HIV-1 Env for cell entry. Moreover, inhibiting entry of S5-negative HIV-1 ΔNef particles increased proinflammatory cytokine production comparably to virion incorporation of S5. Together, these results describe the sensitization of noninfectious HIV-1 particles to proinflammatory cytokine production by myeloid target cells as an additional and Nef-sensitive activity of S5. Moreover, the study reveals important cell-type and donor-dependent differences in the sensitivity of HIV target cells for antiviral effects of S5.IMPORTANCE SERINC5 (S5) is a host cell restriction factor (RF) that impairs the infectivity of HIV-1 particles in target cell lines. To assess the potential physiological relevance of this restriction, we assessed the effects of S5 on HIV-1 infection of relevant primary human target cells. We found that effects of S5 on infection of CD4+ T lymphocytes were negligible. In myeloid target cells, however, virion incorporation of S5 potently suppressed infectivity and promoted innate immune recognition of HIV-1 particles characterized by proinflammatory cytokine production. Both effects were not observed in cells of all donors analyzed, were exerted independently of one another, and were counteracted by the HIV-1 pathogenesis factor Nef. These results identify the sensitization of HIV-1 particles for innate immune recognition by myeloid target cells as a novel activity of S5 and emphasize the need to study RF function in the context of primary target cells and taking donor variabilities into account.


Asunto(s)
Citocinas/metabolismo , Infecciones por VIH/virología , VIH-1/fisiología , Interacciones Microbiota-Huesped , Proteínas de la Membrana/metabolismo , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/metabolismo , Linfocitos T CD4-Positivos/inmunología , Células Dendríticas/inmunología , Células HEK293 , Humanos , Leucocitos Mononucleares/inmunología , Macrófagos/inmunología , Células Mieloides/inmunología , Virión/metabolismo
11.
J Virol ; 95(13): e0022921, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-33883219

RESUMEN

SERINC5 restricts nef-defective HIV-1 by affecting early steps of the virus life cycle. Distantly related retroviruses with a wide host range encode virulent factors in response to challenge by SERINC5. However, the evolutionary origins of this antiretroviral activity, its prevalence among the paralogs, and its ability to target retroviruses remain understudied. In agreement with previous studies, we found that four human SERINC paralogs inhibit nef-defective HIV-1, with SERINC2 being an exception. Here, we demonstrate that this lack of activity in human SERINC2 is associated with its post-whole-genome duplication (post-WGD) divergence, as evidenced by the ability of pre-WGD orthologs from Saccharomyces cerevisiae and flies and a post-WGD-proximate SERINC2 from coelacanths to inhibit the virus. Intriguingly, Nef is unable to counter coelacanth SERINC2, indicating that such activity was directed toward other retroviruses found in coelacanths (like foamy viruses). However, foamy virus-derived vectors are intrinsically resistant to the action of SERINC2, and we show that the foamy virus envelope confers this resistance by affecting its steady-state levels. Our study highlights an ancient origin of antiretroviral activity in SERINCs and a hitherto-unknown interaction with a foamy virus. IMPORTANCESERINC5 constitutes a critical barrier to the propagation of retroviruses, as highlighted by parallel emergence of anti-SERINC5 activities among distant retroviral lineages. Therefore, understanding the origin and evolution of these host factors will provide key information about virus-host relationships that can be exploited for future drug development. Here, we show that SERINC5-mediated nef-defective HIV-1 infection inhibition is evolutionarily conserved. SERINC2 from coelacanth restricts HIV-1, and it was functionally adapted to target foamy viruses. Our findings provide insights into the evolutionary origin of antiretroviral activity in the SERINC gene family and uncover the role of SERINCs in shaping the long-term conflicts between retroviruses and their hosts.


Asunto(s)
VIH-1/crecimiento & desarrollo , Proteínas de la Membrana/metabolismo , Spumavirus/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Replicación Viral/fisiología , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/genética , Animales , Antirretrovirales/metabolismo , Línea Celular , Peces/genética , Células HEK293 , Haplorrinos/genética , Humanos , Proteínas de la Membrana/genética , Saccharomyces cerevisiae/metabolismo
12.
J Neurovirol ; 28(4-6): 552-565, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36001227

RESUMEN

HIV infects astrocytes in a restricted manner but leads to abundant expression of Nef, a major viral factor for HIV replication and disease progression. However, the roles of Nef in HIV gene expression and replication in astrocytes and viral transfer from astrocytes to CD4+ T cells remain largely unclear. In this study, we attempted to address these issues by transfecting human primary astrocytes with HIV molecular clones with intact Nef and without Nef (a nonsense Nef mutant) and comparing gene expression and replication in astrocytes and viral transfer from astrocytes to CD4+ T cells MT4. First, we found that lack of Nef expression led to increased extracellular virus production from astrocytes and intracellular viral protein and RNA expression in astrocytes. Using a HIV LTR-driven luciferase reporter gene assay, we showed that ectopic Nef expression alone inhibited the HIV LTR promoter activity in astrocytes. Consistent with the previously established function of Nef, we showed that the infectivity of HIV derived from astrocytes with Nef expression was significantly higher than that with no Nef expression. Next, we performed the co-culture assay to determine HIV transfer from astrocytes transfected to MT4. We showed that lack of Nef expression led to significant increase in HIV transfer from astrocytes to MT4 using two HIV clones. We also used Nef-null HIV complemented with Nef in trans in the co-culture assay and demonstrated that Nef expression led to significantly decreased HIV transfer from astrocytes to MT4. Taken together, these findings support a negative role of Nef in HIV replication and pathogenesis in astrocytes.


Asunto(s)
Infecciones por VIH , VIH-1 , Humanos , Linfocitos T , Astrocitos , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/genética , Replicación Viral/genética , VIH-1/genética , Linfocitos T CD4-Positivos , Infecciones por VIH/genética , Expresión Génica
13.
Proc Natl Acad Sci U S A ; 116(12): 5705-5714, 2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30842281

RESUMEN

The T cell Ig and mucin domain (TIM) proteins inhibit release of HIV-1 and other enveloped viruses by interacting with cell- and virion-associated phosphatidylserine (PS). Here, we show that the Nef proteins of HIV-1 and other lentiviruses antagonize TIM-mediated restriction. TIM-1 more potently inhibits the release of Nef-deficient relative to Nef-expressing HIV-1, and ectopic expression of Nef relieves restriction. HIV-1 Nef does not down-regulate the overall level of TIM-1 expression, but promotes its internalization from the plasma membrane and sequesters its expression in intracellular compartments. Notably, Nef mutants defective in modulating membrane protein endocytic trafficking are incapable of antagonizing TIM-mediated inhibition of HIV-1 release. Intriguingly, depletion of SERINC3 or SERINC5 proteins in human peripheral blood mononuclear cells (PBMCs) attenuates TIM-1 restriction of HIV-1 release, in particular that of Nef-deficient viruses. In contrast, coexpression of SERINC3 or SERINC5 increases the expression of TIM-1 on the plasma membrane and potentiates TIM-mediated inhibition of HIV-1 production. Pulse-chase metabolic labeling reveals that the half-life of TIM-1 is extended by SERINC5 from <2 to ∼6 hours, suggesting that SERINC5 stabilizes the expression of TIM-1. Consistent with a role for SERINC protein in potentiating TIM-1 restriction, we find that MLV glycoGag and EIAV S2 proteins, which, like Nef, antagonize SERINC-mediated diminishment of HIV-1 infectivity, also effectively counteract TIM-mediated inhibition of HIV-1 release. Collectively, our work reveals a role of Nef in antagonizing TIM-1 and highlights the complex interplay between Nef and HIV-1 restriction by TIMs and SERINCs.


Asunto(s)
Infecciones por VIH/metabolismo , Receptor Celular 1 del Virus de la Hepatitis A/fisiología , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/fisiología , Membrana Celular/metabolismo , Regulación hacia Abajo , Células HEK293 , Seropositividad para VIH , VIH-1/metabolismo , VIH-1/patogenicidad , Receptor Celular 1 del Virus de la Hepatitis A/antagonistas & inhibidores , Receptor Celular 1 del Virus de la Hepatitis A/metabolismo , Interacciones Huésped-Patógeno/fisiología , Humanos , Leucocitos Mononucleares/metabolismo , Glicoproteínas de Membrana , Proteínas de la Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Transporte de Proteínas , Receptores de Superficie Celular/metabolismo , Virión/metabolismo , Replicación Viral/efectos de los fármacos , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/metabolismo
14.
J Biol Chem ; 295(46): 15540-15552, 2020 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-32873704

RESUMEN

SERINC5 is a multipass intrinsic membrane protein that suppresses HIV-1 infectivity when incorporated into budding virions. The HIV-1 Nef virulence factor prevents viral incorporation of SERINC5 by triggering its down-regulation from the producer cell membrane through an AP-2-dependent endolysosomal pathway. However, the mechanistic basis for SERINC5 down-regulation by Nef remains elusive. Here we demonstrate that Nef homodimers are important for SERINC5 down-regulation, trafficking to late endosomes, and exclusion from newly synthesized viral particles. Based on previous X-ray crystal structures, we mutated three conserved residues in the Nef dimer interface (Leu112, Tyr115, and Phe121) and demonstrated attenuated homodimer formation in a cell-based fluorescence complementation assay. Point mutations at each position reduced the infectivity of HIV-1 produced from transfected 293T cells, the Jurkat TAg T-cell line, and donor mononuclear cells in a SERINC5-dependent manner. In SERINC5-transfected 293T cells, virion incorporation of SERINC5 was increased by dimerization-defective Nef mutants, whereas down-regulation of SERINC5 from the membrane of transfected Jurkat cells by these mutants was significantly reduced. Nef dimer interface mutants also failed to trigger internalization of SERINC5 and localization to Rab7+ late endosomes in T cells. Importantly, fluorescence complementation assays demonstrated that dimerization-defective Nef mutants retained interaction with both SERINC5 and AP-2. These results show that down-regulation of SERINC5 and subsequent enhancement of viral infectivity require Nef homodimers and support a mechanism by which the Nef dimer bridges SERINC5 to AP-2 for endocytosis. Pharmacological disruption of Nef homodimers may control HIV-1 infectivity and viral spread by enhancing virion incorporation of SERINC5.


Asunto(s)
VIH-1/fisiología , Proteínas de la Membrana/metabolismo , Factor de Transcripción AP-2/metabolismo , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/metabolismo , Dimerización , Regulación hacia Abajo , Endocitosis , Endosomas/metabolismo , Células HEK293 , Infecciones por VIH/metabolismo , Infecciones por VIH/patología , VIH-1/metabolismo , Humanos , Células Jurkat , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/genética , Mutagénesis Sitio-Dirigida , Factor de Transcripción AP-2/química , Factor de Transcripción AP-2/genética , Internalización del Virus , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/química , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/genética
15.
Proteins ; 89(10): 1240-1250, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33982326

RESUMEN

Ice2p is an integral endoplasmic reticulum (ER) membrane protein in budding yeast S. cerevisiae named ICE because it is required for Inheritance of Cortical ER. Ice2p has also been reported to be involved in an ER metabolic branch-point that regulates the flux of lipid either to be stored in lipid droplets or to be used as membrane components. Alternately, Ice2p has been proposed to act as a tether that physically bridges the ER at contact sites with both lipid droplets and the plasma membrane via a long loop on the protein's cytoplasmic face that contains multiple predicted amphipathic helices. Here we carried out a bioinformatic analysis to increase understanding of Ice2p. First, regarding topology, we found that diverse members of the fungal Ice2 family have 10 transmembrane helices (TMHs), which places the long loop on the exofacial face of Ice2p, where it cannot form inter-organelle bridges. Second, we identified Ice2p as a full-length homolog of SERINC (serine incorporator), a family of proteins with 10 TMHs found universally in eukaryotes. Since SERINCs are potent restriction factors for HIV and other viruses, study of Ice2p may reveal functions or mechanisms that shed light on viral restriction by SERINCs.


Asunto(s)
Proteínas de la Membrana/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Estructura Secundaria de Proteína
16.
J Virol ; 94(7)2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-31941773

RESUMEN

The cellular protein SERINC5 inhibits the infectivity of diverse retroviruses, and its activity is counteracted by the glycosylated Gag (glycoGag) protein of murine leukemia virus (MLV), the S2 protein of equine infectious anemia virus (EIAV), and the Nef protein of human immunodeficiency virus type 1 (HIV-1). Determining the regions within SERINC5 that provide restrictive activity or Nef sensitivity should inform mechanistic models of the SERINC5/HIV-1 relationship. Here, we report that deletion of the conserved sequence EDTEE, which is located within a cytoplasmic loop of SERINC5 and which is reminiscent of an acidic-cluster membrane trafficking signal, increases the sensitivity of SERINC5 to antagonism by Nef, while it has no effect on the intrinsic activity of the protein as an inhibitor of infectivity. These effects correlated with enhanced removal of the ΔEDTEE mutant relative to that of wild-type SERINC5 from the cell surface and with enhanced exclusion of the mutant protein from virions by Nef. Mutational analysis indicated that the acidic residues, but not the threonine, within the EDTEE motif are important for the relative resistance to Nef. Deletion of the EDTEE sequence did not increase the sensitivity of SERINC5 to antagonism by the glycoGag protein of MLV, suggesting that its virologic role is Nef specific. These results are consistent with the reported mapping of the cytoplasmic loop that contains the EDTEE sequence as a general determinant of Nef responsiveness, but they further indicate that sequences inhibitory to as well as supportive of Nef activity reside in this region. We speculate that the EDTEE motif might have evolved to mediate resistance against retroviruses that use Nef-like proteins to antagonize SERINC5.IMPORTANCE Cellular membrane proteins in the SERINC family, especially SERINC5, inhibit the infectivity of retroviral virions. This inhibition is counteracted by retroviral proteins, specifically, HIV-1 Nef, MLV glycoGag, and EIAV S2. One consequence of such a host-pathogen "arms race" is a compensatory change in the host antiviral protein as it evolves to escape the effects of viral antagonists. This is often reflected in a genetic signature, positive selection, which is conspicuously missing in SERINC5 Here we show that despite this lack of genetic evidence, a sequence in SERINC5 nonetheless provides relative resistance to antagonism by HIV-1 Nef.


Asunto(s)
Proteínas de la Membrana/química , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/metabolismo , Alelos , Secuencias de Aminoácidos , Citoplasma/metabolismo , Eliminación de Gen , Glicosilación , Células HEK293 , VIH-1 , Células HeLa , Humanos , Virus de la Anemia Infecciosa Equina/metabolismo , Células Jurkat , Virus de la Leucemia Murina de Moloney/metabolismo , Mutación , Dominios Proteicos , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/genética
17.
J Virol ; 94(16)2020 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-32493821

RESUMEN

Infection of human immunodeficiency virus type 1 (HIV-1) is subject to restriction by cellular factors. Serine incorporator 5 (SERINC5) and interferon-inducible transmembrane 3 (IFITM3) proteins represent two of these restriction factors, which inhibit HIV-1 entry into target cells. Both proteins impede fusion of the viral membrane with the cellular membrane and the formation of a viral fusion pore, and both are countered by the HIV-1 envelope glycoprotein (Env). Given the immense and lasting pressure which Env endures from host adaptive immune responses, it is important to understand whether and how HIV-1 Env is able to maintain the resistance to SERINC5 and IFITM3 throughout the course of infection. We have thus examined a panel of HIV-1 Env clones that were isolated at different stages of viral infection-transmission, acute, and chronic. While HIV-1 Env clones from the transmission stage are resistant to both SERINC5 and IFITM3, as infection progresses into the acute and chronic stages, the resistance to IFITM3 but not to SERINC5 is gradually lost. We further discovered a significant correlation between the resistance of HIV-1 Env to soluble CD4 inhibition and the resistance to SERINC5 but not to IFITM3. Interestingly, the miniprotein CD4 mimetic M48U1 sensitizes HIV-1 Env to the inhibition by SERINC5 but not IFITM3. Together, these data indicate that SERINC5 and IFITM3 exert differential inhibitory pressures on HIV-1 Env over different stages of HIV-1 infection and that HIV-1 Env uses varied strategies to resist these two restriction factors.IMPORTANCE HIV-1 Env protein is exposed to the inhibition not only by humoral response, but also by host restriction factors, including serine incorporator 5 (SERINC5) and interferon-inducible transmembrane 3 (IFITM3). This study investigates how HIV-1 envelope glycoprotein (Env) manages to overcome the pressures from all these different host inhibition mechanisms over the long course of viral infection. HIV-1 Env preserves the resistance to SERINC5 but becomes sensitive to IFITM3 when infection progresses into the chronic stage. Our study also supports the possibility of using CD4 mimetic compounds to sensitize HIV-1 Env to the inhibition by SERINC5 as a potential therapeutic strategy.


Asunto(s)
Infecciones por VIH/metabolismo , VIH-1/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Unión al ARN/metabolismo , Línea Celular , Glicoproteínas/metabolismo , Células HEK293 , Infecciones por VIH/fisiopatología , Interacciones Huésped-Patógeno , Humanos , Proteínas de la Membrana/fisiología , Unión Proteica , Proteínas de Unión al ARN/fisiología , Proteínas del Envoltorio Viral/metabolismo , Virión/metabolismo , Internalización del Virus/efectos de los fármacos , Productos del Gen env del Virus de la Inmunodeficiencia Humana/metabolismo , Productos del Gen env del Virus de la Inmunodeficiencia Humana/fisiología
18.
J Virol ; 94(20)2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32796070

RESUMEN

SERINC5 is a 10-transmembrane-domain cellular protein that is incorporated into budding HIV-1 particles and reduces HIV-1 infectivity by inhibiting virus-cell fusion. HIV-1 susceptibility to SERINC5 is determined by sequences in the viral Env glycoprotein gp120, and the antiviral effect of SERINC5 is counteracted by the viral accessory protein Nef. While the precise mechanism by which SERINC5 inhibits HIV-1 infectivity is unclear, previous studies have suggested that SERINC5 affects Env conformation. To define the effects of SERINC5 on Env conformation, we quantified the binding of HIV-1 particles to immobilized Env-specific monoclonal antibodies. We observed that SERINC5 reduced the binding of HIV-1 particles bearing a SERINC5-susceptible Env to antibodies that recognize the V3 loop, a soluble CD4 (sCD4)-induced epitope, and an N-linked glycan. In contrast, SERINC5 did not alter the capture of HIV-1 particles bearing the SERINC5-resistant Env protein. Moreover, the effect of SERINC5 on antibody-dependent virus capture was abrogated by Nef expression. Our results indicate that SERINC5 inhibits HIV-1 infectivity by altering the conformation of gp120 on virions and/or physical masking of specific HIV-1 Env epitopes.IMPORTANCE SERINC5 is a host cell protein that inhibits the infectivity of HIV-1 by a novel and poorly understood mechanism. Here, we provide evidence that the SERINC5 protein alters the conformation of the HIV-1 Env proteins and that this action is correlated with SERINC5's ability to inhibit HIV-1 infectivity. Defining the specific effects of SERINC5 on the HIV-1 glycoprotein conformation may be useful for designing new antiviral strategies targeting Env.


Asunto(s)
Antígenos CD4/metabolismo , Proteína gp120 de Envoltorio del VIH/metabolismo , Infecciones por VIH/metabolismo , VIH-1/metabolismo , Proteínas de la Membrana/metabolismo , Antígenos CD4/genética , Células HEK293 , Proteína gp120 de Envoltorio del VIH/genética , Infecciones por VIH/genética , VIH-1/genética , Humanos , Proteínas de la Membrana/genética , Estructura Secundaria de Proteína
19.
Depress Anxiety ; 38(9): 985-995, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34288243

RESUMEN

BACKGROUND: Although common variants in a large collection of patients are associated with increased risk for bipolar disorder (BD), studies have only been able to predict 25%-45% of risks, suggesting that lots of variants that contribute to the risk for BD haven't been identified. Our study aims to identify novel BD risk genes. METHODS: We performed whole-exome sequencing of 27 individuals from 6 BD multi-affected Chinese families to identify candidate variants. Targeted sequencing of one of the novel risk genes, SERINC2, in additional sporadic 717 BD patients and 312 healthy controls (HC) validated the association. Magnetic resonance imaging (MRI) were performed to evaluate the effect of the variant to brain structures from 213 subjects (4 BD subjects from a multi-affected family, 130 sporadic BD subjects and 79 HC control). RESULTS: BD pedigrees had an increased burden of uncommon variants in extracellular matrix (ECM) and calcium ion binding. By large-scale sequencing we identified a novel recessive BD risk gene, SERINC2, which plays a role in synthesis of sphingolipid and phosphatidylserine (PS). MRI image results show the homozygous nonsense variant in SERINC2 affects the volume of white matter in cerebellum. CONCLUSIONS: Our study identified SERINC2 as a risk gene of BD in the Chinese population.


Asunto(s)
Trastorno Bipolar , Trastorno Bipolar/diagnóstico por imagen , Trastorno Bipolar/genética , Estudios de Casos y Controles , China , Predisposición Genética a la Enfermedad , Humanos , Proteínas de la Membrana/genética , Linaje , Secuenciación del Exoma
20.
Mol Biol Rep ; 48(5): 4247-4252, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34097204

RESUMEN

Among the host restriction factors against HIV, SERINC5 has been described in vitro, but the mRNA level of SERINC5 in vivo has been little studied. We compare SERINC5 expression in subjects with HIV-1 (highly active antiretroviral treatment (HAART) and HAART-naïve) with and without suppression of viral load. A cross-sectional study was performed with 107 individuals distributed as follows: 24 with HAART-naïve and detectable viral load (> 50 copies/mL), 13 with HAART and detectable viral load (> 50 copies/mL), 50 with HAART and undetectable viral load (≤ 50 copies/mL), and 20 without HIV-1. SERINC5 expression in buffy coats was determined using RT-qPCR. The viral load was determined using real-time PCR and the amount of CD4 + and CD8 + T-lymphocytes was measured using flow cytometry. The data were normalized with the Shapiro-Wilk test and the Kruskal-Wallis test was subsequently performed. The relative expression was compared with a T-test and the remaining data with the Mann-Whitney U-test. ANCOVA multiple linear regression analysis was performed between characteristics of patients with SERINC5 expression. The mean and SD of the SERINC5 expression in the three groups with HIV-1 was 0.9 ± 0.2 and without HIV-1 was 1.7 ± 0.14 (P < 0.001). Multiple linear regression did not show the participation of CD4 +, CD8 + , viral load, infection time, or treatment time. No differences in the SERINC5 expression were found among the studied groups of patients with HIV-1. When comparing the groups with and without HIV-1 infection, SERINC5 was downregulation in the HIV-1 groups.


Asunto(s)
Capa Leucocitaria de la Sangre/metabolismo , Regulación hacia Abajo/genética , Infecciones por VIH/sangre , Infecciones por VIH/genética , VIH-1/genética , Proteínas de la Membrana/genética , Carga Viral/métodos , Adolescente , Adulto , Anciano , Terapia Antirretroviral Altamente Activa/métodos , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/metabolismo , Estudios Transversales , Femenino , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/virología , Humanos , Masculino , Proteínas de la Membrana/sangre , Persona de Mediana Edad , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Resultado del Tratamiento , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA