Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.007
Filtrar
Más filtros

Intervalo de año de publicación
1.
Annu Rev Biochem ; 90: 581-603, 2021 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-33823650

RESUMEN

SNARE proteins and Sec1/Munc18 (SM) proteins constitute the core molecular engine that drives nearly all intracellular membrane fusion and exocytosis. While SNAREs are known to couple their folding and assembly to membrane fusion, the physiological pathways of SNARE assembly and the mechanistic roles of SM proteins have long been enigmatic. Here, we review recent advances in understanding the SNARE-SM fusion machinery with an emphasis on biochemical and biophysical studies of proteins that mediate synaptic vesicle fusion. We begin by discussing the energetics, pathways, and kinetics of SNARE folding and assembly in vitro. Then, we describe diverse interactions between SM and SNARE proteins and their potential impact on SNARE assembly in vivo. Recent work provides strong support for the idea that SM proteins function as chaperones, their essential role being to enable fast, accurate SNARE assembly. Finally, we review the evidence that SM proteins collaborate with other SNARE chaperones, especially Munc13-1, and briefly discuss some roles of SNARE and SM protein deficiencies in human disease.


Asunto(s)
Proteínas SNARE/química , Proteínas SNARE/metabolismo , Enfermedad/genética , Humanos , Fusión de Membrana , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Proteínas Munc18/química , Proteínas Munc18/metabolismo , Mutación , Pinzas Ópticas , Fosforilación , Dominios Proteicos , Pliegue de Proteína , Proteínas SNARE/genética
2.
Mol Cell ; 81(17): 3481-3495.e7, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-34358446

RESUMEN

PRMT5 is an essential arginine methyltransferase and a therapeutic target in MTAP-null cancers. PRMT5 uses adaptor proteins for substrate recruitment through a previously undefined mechanism. Here, we identify an evolutionarily conserved peptide sequence shared among the three known substrate adaptors (CLNS1A, RIOK1, and COPR5) and show that it is necessary and sufficient for interaction with PRMT5. We demonstrate that PRMT5 uses modular adaptor proteins containing a common binding motif for substrate recruitment, comparable with other enzyme classes such as kinases and E3 ligases. We structurally resolve the interface with PRMT5 and show via genetic perturbation that it is required for methylation of adaptor-recruited substrates including the spliceosome, histones, and ribosomal complexes. Furthermore, disruption of this site affects Sm spliceosome activity, leading to intron retention. Genetic disruption of the PRMT5-substrate adaptor interface impairs growth of MTAP-null tumor cells and is thus a site for development of therapeutic inhibitors of PRMT5.


Asunto(s)
Proteína-Arginina N-Metiltransferasas/metabolismo , Proteína-Arginina N-Metiltransferasas/fisiología , Animales , Línea Celular Tumoral , Citoplasma/metabolismo , Femenino , Células HCT116 , Células HEK293 , Histonas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Canales Iónicos/metabolismo , Masculino , Metilación , Ratones , Ratones Desnudos , Proteínas Nucleares/metabolismo , Péptidos/genética , Unión Proteica , Procesamiento Proteico-Postraduccional , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína-Arginina N-Metiltransferasas/genética , Empalmosomas/metabolismo
3.
Proc Natl Acad Sci U S A ; 121(3): e2315259121, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38194449

RESUMEN

Competing exonucleases that promote 3' end maturation or degradation direct quality control of small non-coding RNAs, but how these enzymes distinguish normal from aberrant RNAs is poorly understood. The Pontocerebellar Hypoplasia 7 (PCH7)-associated 3' exonuclease TOE1 promotes maturation of canonical small nuclear RNAs (snRNAs). Here, we demonstrate that TOE1 achieves specificity toward canonical snRNAs through their Sm complex assembly and cap trimethylation, two features that distinguish snRNAs undergoing correct biogenesis from other small non-coding RNAs. Indeed, disruption of Sm complex assembly via snRNA mutations or protein depletions obstructs snRNA processing by TOE1, and in vitro snRNA processing by TOE1 is stimulated by a trimethylated cap. An unstable snRNA variant that normally fails to undergo maturation becomes fully processed by TOE1 when its degenerate Sm binding motif is converted into a canonical one. Our findings uncover the molecular basis for how TOE1 distinguishes snRNAs from other small non-coding RNAs and explain how TOE1 promotes maturation specifically of canonical snRNAs undergoing proper processing.


Asunto(s)
Exonucleasas , ARN Nuclear Pequeño , ARN Nuclear Pequeño/genética , ARN , Mutación , Control de Calidad
4.
Proc Natl Acad Sci U S A ; 121(16): e2315123121, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38602915

RESUMEN

Pulmonary arterial hypertension (PAH) is characterized by stenosis and occlusions of small pulmonary arteries, leading to elevated pulmonary arterial pressure and right heart failure. Although accumulating evidence shows the importance of interleukin (IL)-6 in the pathogenesis of PAH, the target cells of IL-6 are poorly understood. Using mice harboring the floxed allele of gp130, a subunit of the IL-6 receptor, we found substantial Cre recombination in all hematopoietic cell lineages from the primitive hematopoietic stem cell level in SM22α-Cre mice. We also revealed that a CD4+ cell-specific gp130 deletion ameliorated the phenotype of hypoxia-induced pulmonary hypertension in mice. Disruption of IL-6 signaling via deletion of gp130 in CD4+ T cells inhibited phosphorylation of signal transducer and activator of transcription 3 (STAT3) and suppressed the hypoxia-induced increase in T helper 17 cells. To further examine the role of IL-6/gp130 signaling in more severe PH models, we developed Il6 knockout (KO) rats using the CRISPR/Cas9 system and showed that IL-6 deficiency could improve the pathophysiology in hypoxia-, monocrotaline-, and Sugen5416/hypoxia (SuHx)-induced rat PH models. Phosphorylation of STAT3 in CD4+ cells was also observed around the vascular lesions in the lungs of the SuHx rat model, but not in Il6 KO rats. Blockade of IL-6 signaling had an additive effect on conventional PAH therapeutics, such as endothelin receptor antagonist (macitentan) and soluble guanylyl cyclase stimulator (BAY41-2272). These findings suggest that IL-6/gp130 signaling in CD4+ cells plays a critical role in the pathogenesis of PAH.


Asunto(s)
Hipertensión Pulmonar , Interleucina-6 , Animales , Ratones , Ratas , Linfocitos T CD4-Positivos/patología , Receptor gp130 de Citocinas/genética , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/patología , Hipoxia/patología , Interleucina-6/genética , Arteria Pulmonar/patología
5.
Semin Cell Dev Biol ; 146: 20-30, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-36581481

RESUMEN

Just like the cells they infect viruses express different classes of noncoding RNAs (ncRNAs). Viral ncRNAs come in all shapes and forms, and they usually associate with cellular proteins that are important for their functions. Viral ncRNAs have diverse functions, but they all contribute to the viral control of the cellular environment. Viruses utilize ncRNAs to regulate viral replication, to decide whether they should remain latent or reactivate, to evade the host immune responses, or to promote cellular transformation. In this review we describe the diverse functions played by different classes of ncRNAs expressed by adenoviruses and herpesviruses, how they contribute to the viral infection, and how their study led to insights into RNA-based mechanisms at play in host cells.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Virosis , Virus , Humanos , ARN Viral/genética , ARN Viral/metabolismo , ARN no Traducido/genética , ARN no Traducido/metabolismo , Virus/genética , Virus/metabolismo , Virosis/genética
6.
J Biol Chem ; 300(3): 105782, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38395304

RESUMEN

Intracellular vesicle fusion is driven by the soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) and their cofactors, including Sec1/Munc18 (SM), α-SNAP, and NSF. α-SNAP and NSF play multiple layers of regulatory roles in the SNARE assembly, disassembling the cis-SNARE complex and the prefusion SNARE complex. How SM proteins coupled with NSF and α-SNAP regulate SNARE-dependent membrane fusion remains incompletely understood. Munc18c, an SM protein involved in the exocytosis of the glucose transporter GLUT4, binds and activates target (t-) SNAREs to accelerate the fusion reaction through a SNARE-like peptide (SLP). Here, using an in vitro reconstituted system, we discovered that α-SNAP blocks the GLUT4 SNAREs-mediated membrane fusion. Munc18c interacts with t-SNAREs to displace α-SNAP, which overcomes the fusion inhibition. Furthermore, Munc18c shields the trans-SNARE complex from NSF/α-SNAP-mediated disassembly and accelerates SNARE-dependent fusion kinetics in the presence of NSF and α-SNAP. The SLP in domain 3a is indispensable in Munc18c-assisted resistance to NSF and α-SNAP. Together, our findings demonstrate that Munc18c protects the prefusion SNARE complex from α-SNAP and NSF, promoting SNARE-dependent membrane fusion through its SLP.


Asunto(s)
Fusión de Membrana , Proteínas Munc18 , Proteínas SNARE , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida , Fusión de Membrana/fisiología , Proteínas Munc18/metabolismo , Proteínas Sensibles a N-Etilmaleimida/genética , Proteínas Sensibles a N-Etilmaleimida/metabolismo , Orgánulos/metabolismo , Péptidos/metabolismo , Proteínas SNARE/metabolismo , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida/genética , Animales , Ratones
7.
RNA ; 29(11): 1673-1690, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37562960

RESUMEN

U7 snRNP is a multisubunit endonuclease required for 3' end processing of metazoan replication-dependent histone pre-mRNAs. In contrast to the spliceosomal snRNPs, U7 snRNP lacks the Sm subunits D1 and D2 and instead contains two related proteins, Lsm10 and Lsm11. The remaining five subunits of the U7 heptameric Sm ring, SmE, F, G, B, and D3, are shared with the spliceosomal snRNPs. The pathway that assembles the unique ring of U7 snRNP is unknown. Here, we show that a heterodimer of Lsm10 and Lsm11 tightly interacts with the methylosome, a complex of the arginine methyltransferase PRMT5, MEP50, and pICln known to methylate arginines in the carboxy-terminal regions of the Sm proteins B, D1, and D3 during the spliceosomal Sm ring assembly. Both biochemical and cryo-EM structural studies demonstrate that the interaction is mediated by PRMT5, which binds and methylates two arginine residues in the amino-terminal region of Lsm11. Surprisingly, PRMT5 also methylates an amino-terminal arginine in SmE, a subunit that does not undergo this type of modification during the biogenesis of the spliceosomal snRNPs. An intriguing possibility is that the unique methylation pattern of Lsm11 and SmE plays a vital role in the assembly of the U7 snRNP.


Asunto(s)
Ribonucleoproteína Nuclear Pequeña U7 , Ribonucleoproteínas Nucleares Pequeñas , Animales , Ribonucleoproteína Nuclear Pequeña U7/química , Metilación , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Histonas/metabolismo , Arginina/química
8.
Proc Natl Acad Sci U S A ; 119(17): e2119016119, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35452312

RESUMEN

Low-dimensional semimetal­semiconductor (Sm-S) van der Waals (vdW) heterostructures have shown their potentials in nanoelectronics and nano-optoelectronics recently. It is an important scientific issue to study the interfacial charge transfer as well as the corresponding Fermi-level shift in Sm-S systems. Here we investigated the gate-tunable contact-induced Fermi-level shift (CIFS) behavior in a semimetal single-walled carbon nanotube (SWCNT) that formed a heterojunction with a transition-metal dichalcogenide (TMD) flake. A resistivity comparison methodology and a Fermi-level catch-up model have been developed to measure and analyze the CIFS, whose value is determined by the resistivity difference between the naked SWCNT segment and the segment in contact with the TMD. Moreover, the relative Fermi-level positions of SWCNT and two-dimensional (2D) semiconductors can be efficiently reflected by the gate-tunable resistivity difference. The work function change of the semimetal, as a result of CIFS, will naturally introduce a modified form of the Schottky­Mott rule, so that a modified Schottky barrier height can be obtained for the Sm-S junction. The methodology and physical model should be useful for low-dimensional reconfigurable nanodevices based on Sm-S building blocks.

9.
Proc Natl Acad Sci U S A ; 119(10): e2112397119, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35239443

RESUMEN

SignificanceThe modulation of growth hormone secretagogue receptor-1a (GHSR1a) signaling is a promising strategy for treating brain conditions of metabolism, aging, and addiction. GHSR1a activation results in pleiotropic physiological outcomes through distinct and pharmacologically separable G protein- and ß-arrestin (ßarr)-dependent signaling pathways. Thus, pathway-selective modulation can enable improved pharmacotherapeutics that can promote therapeutic efficacy while mitigating side effects. Here, we describe the discovery of a brain-penetrant small molecule, N8279 (NCATS-SM8864), that biases GHSR1a conformations toward Gαq activation and reduces aberrant dopaminergic behavior in mice. N8279 represents a promising chemical scaffold to advance the development of better treatments for GHSR1a-related brain disorders involving the pathological dysregulation of dopamine.


Asunto(s)
Encéfalo/metabolismo , Dopamina/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Receptores de Ghrelina/metabolismo , Animales , Dopamina/genética , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Masculino , Ratones , Ratones Noqueados , Receptores de Ghrelina/genética
10.
Proc Natl Acad Sci U S A ; 119(12): e2120933119, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35290127

RESUMEN

The formation and differentiation of planetary bodies are dated using radioactive decay systems, including the short-lived 146Sm-142Nd (T½ = 103 or 68 Ma) and long-lived 147Sm-143Nd (T½ = 106 Ga) radiogenic pairs that provide relative and absolute ages, respectively. However, the initial abundance and half-life of the extinct radioactive isotope 146Sm are still debated, weakening the interpretation of 146Sm-142Nd systematics obtained for early planetary processes. Here, we apply the short-lived 26Al-26Mg, 146Sm-142Nd, and long-lived 147Sm-143Sm chronometers to the oldest known andesitic meteorite, Erg Chech 002 (EC 002), to constrain the Solar System initial abundance of 146Sm. The 26Al-26Mg mineral isochron of EC 002 provides a tightly constrained initial δ26Mg* of −0.009 ± 0.005 ‰ and (26Al/27Al)0 of (8.89 ± 0.09) × 10−6. This initial abundance of 26Al is the highest measured so far in an achondrite and corresponds to a crystallization age of 1.80 ± 0.01 Myr after Solar System formation. The 146Sm-142Nd mineral isochron returns an initial 146Sm/144Sm ratio of 0.00830 ± 0.00032. By combining the Al-Mg crystallization age and initial 146Sm/144Sm ratio of EC 002 with values for refractory inclusions, achondrites, and lunar samples, the best-fit half-life for 146Sm is 102 ± 9 Ma, corresponding to the physically measured value of 103 ± 5 Myr, rather than the latest and lower revised value of 68 ± 7 Ma. Using a half-life of 103 Ma for 146Sm, the 146Sm/144Sm abundance of EC 002 translates into an initial Solar System 146Sm/144Sm ratio of 0.00840 ± 0.00032, which represents the most reliable and precise estimate to date and makes EC 002 an ideal anchor for the 146Sm-142Nd clock.

11.
Med Res Rev ; 44(2): 867-891, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38054758

RESUMEN

Autoimmune diseases are characterized by the immune system's attack on one's own tissues which are highly diverse and diseases differ in severity, causing damage in virtually all human systems including connective tissue (e.g., rheumatoid arthritis), neurological system (e.g., multiple sclerosis) and digestive system (e.g., inflammatory bowel disease). Historically, treatments normally include pain-killing medication, anti-inflammatory drugs, corticosteroids, and immunosuppressant drugs. However, given the above characteristics, treatment of autoimmune diseases has always been a challenge. Artemisinin is a natural sesquiterpene lactone initially extracted and separated from Chinese medicine Artemisia annua L., which has a long history of curing malaria. Artemisinin's derivatives such as artesunate, dihydroartemisinin, artemether, artemisitene, and so forth, are a family of artemisinins with antimalarial activity. Over the past decades, accumulating evidence have indicated the promising therapeutic potential of artemisinins in autoimmune diseases. Herein, we systematically summarized the research regarding the immunoregulatory properties of artemisinins including artemisinin and its derivatives, discussing their potential therapeutic viability toward major autoimmune diseases and the underlying mechanisms. This review will provide new directions for basic research and clinical translational medicine of artemisinins.


Asunto(s)
Antimaláricos , Artemisininas , Enfermedades Autoinmunes , Humanos , Artemisininas/farmacología , Artemisininas/uso terapéutico , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Arteméter , Enfermedades Autoinmunes/tratamiento farmacológico
12.
J Cell Physiol ; 239(5): e31251, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38634445

RESUMEN

Krüppel-like factor 13 (KLF13), a zinc finger transcription factor, is considered as a potential regulator of cardiomyocyte differentiation and proliferation during heart morphogenesis. However, its precise role in the dedifferentiation of vascular smooth muscle cells (VSMCs) during atherosclerosis and neointimal formation after injury remains poorly understood. In this study, we investigated the relationship between KLF13 and SM22α expression in normal and atherosclerotic plaques by bioanalysis, and observed a significant increase in KLF13 levels in the atherosclerotic plaques of both human patients and ApoE-/- mice. Knockdown of KLF13 was found to ameliorate intimal hyperplasia following carotid artery injury. Furthermore, we discovered that KLF13 directly binds to the SM22α promoter, leading to the phenotypic dedifferentiation of VSMCs. Remarkably, we observed a significant inhibition of platelet-derived growth factor BB-induced VSMCs dedifferentiation, proliferation, and migration when knocked down KLF13 in VSMCs. This inhibitory effect of KLF13 knockdown on VCMC function was, at least in part, mediated by the inactivation of p-AKT signaling in VSMCs. Overall, our findings shed light on a potential therapeutic target for treating atherosclerotic lesions and restenosis after vascular injury.


Asunto(s)
Desdiferenciación Celular , Proliferación Celular , Factores de Transcripción de Tipo Kruppel , Proteínas de Microfilamentos , Proteínas Musculares , Músculo Liso Vascular , Miocitos del Músculo Liso , Proteínas Represoras , Animales , Humanos , Masculino , Ratones , Aterosclerosis/genética , Aterosclerosis/patología , Aterosclerosis/metabolismo , Traumatismos de las Arterias Carótidas/patología , Traumatismos de las Arterias Carótidas/genética , Traumatismos de las Arterias Carótidas/metabolismo , Movimiento Celular/genética , Proliferación Celular/genética , Células Cultivadas , Factores de Transcripción de Tipo Kruppel/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Ratones Endogámicos C57BL , Proteínas Musculares/genética , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Neointima/metabolismo , Neointima/patología , Neointima/genética , Fenotipo , Placa Aterosclerótica/patología , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/genética , Regiones Promotoras Genéticas/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transducción de Señal , Proteínas de Ciclo Celular , Proteínas de Microfilamentos/genética
13.
Small ; 20(20): e2309200, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38295089

RESUMEN

Self-assembled lipid nanoparticles (LNPs), serving as essential nanocarriers in recent COVID-19 mRNA vaccines, provide a stable and versatile platform for delivering a wide range of biological materials. Notably, LNPs with unique inverse mesostructures, such as cubosomes and hexosomes, are recognized as fusogenic nanocarriers in the drug delivery field. This study delves into the physicochemical properties, including size, lyotropic liquid crystalline mesophase, and apparent pKa of LNPs with various lipid components, consisting of two ionizable lipids (ALC-0315 and SM-102) used in commercial COVID-19 mRNA vaccines and a well-known inverse mesophase structure-forming helper lipid, phytantriol (PT). Two partial mesophase diagrams are generated for both ALC-0315/PT LNPs and SM-102/PT LNPs as a function of two factors, ionizable lipid ratio (α, 0-100 mol%) and pH condition (pH 3-11). Furthermore, the impact of different LNP stabilizers (Pluronic F127, Pluronic F108, and Tween 80) on their pH-dependent phase behavior is evaluated. The findings offer insights into the self-assembled mesostructure and ionization state of the studied LNPs with potentially enhanced endosomal escape ability. This research is relevant to developing innovative next-generation LNP systems for delivering various therapeutics.


Asunto(s)
Alcoholes Grasos , Lípidos , Cristales Líquidos , Nanopartículas , Nanopartículas/química , Alcoholes Grasos/química , Cristales Líquidos/química , Concentración de Iones de Hidrógeno , Lípidos/química , Iones/química , Liposomas
14.
Chemphyschem ; : e202400597, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39072975

RESUMEN

Single-component organic solar cells (SCOSCs) have attracted extensive attention due to their simplified device manufacturing and excellent stability. However, the relationship between morphology and charge carrier mobility in the active layers of SCOSCs is not well understood. In this work, we present a comprehensive investigation on this issue by studying four dyads (fullerenes as acceptor units) used as materials of active layers in small-molecule single-component organic solar cells (SM-SCOSCs), in which dyad 4 created the record of power conversion efficiency (PCE) of SM-SCOSC until now. Utilizing a multiscale theoretical approach, the results identify that the acceptor-acceptor stacking is dominant in amorphous films, significantly improving electron mobility and lowering hole mobility. We also find the importance of achieving a balance between electron and hole mobility to further improve PCE of SM-SCOSC because dyad 4 exhibits a more balanced electron/hole mobility than the other three molecules. These findings indicate the importance of tuning and enhancing donor-donor and acceptor-acceptor stacking simultaneously, offering insights for the design and optimization of future SM-SCOSC.

15.
Mol Pharm ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39133824

RESUMEN

Pharmacokinetic bioequivalence of orally inhaled drug products is a critical component of the US FDA's "weight of evidence" approach, and it can serve as the sole indicator of safety and effectiveness of follow-on inhalation products approved in Europe and some other geographic areas. The approved labels of the orally inhaled drug products recommend the maximum number of actuations that can be administered in a single dose on one occasion. This single maximum dose may consist of one or more inhalations depending upon the product. Bioequivalence studies for the inhalation drug product registrations in the US and EU have employed single and multiple actuation doses, in some cases over and above the approved single maximum labeled doses, thus, inconsistent with the approved labeling of the reference products. Pharmacokinetics of inhaled drug products after single and multiple doses may be different, with implications for bioequivalence determined at single and multiple doses. Scientific literature indicates that the relative bioavailability of the Test and Reference products may differ between administrations of doses in one and multiple inhalations. Multiple doses not only alter the pharmacokinetics but also may reduce the sensitivity of the bioassay to actual differences between the Test and Reference product performances. Ability of the pharmacokinetic bioassay to accurately determine the extent of difference between two products may also be substantially reduced at high doses. Therefore, in our opinion, pharmacokinetic bioequivalence to support regulatory approvals of inhalation products at doses above the recommended single maximum dose should be avoided. Furthermore, the bioequivalence of products (if any) established at doses exceeding the approved single maximum doses should be revisited to determine if the products maintain bioequivalence when evaluated at the clinically relevant single maximum doses.

16.
BMC Public Health ; 24(1): 1298, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38741049

RESUMEN

INTRODUCTION: Improving breastfeeding practices does not always link to interventions relying only on improving nutrition awareness and education but needs cultural and behavioral insights . AIM: This study aimed to evaluate the changes in core breastfeeding indicators as a result of the use of social marketing (SM) approach for improving breastfeeding practices of Egyptian women and the physical growth of infants aged 6 to 12 months. The core breastfeeding indicators were: Early initiation of breastfeeding within one hour of birth, Predominant and exclusive breastfeeding to 6 months (EBF), Bottle feeding with formula, continued breastfeeding to 1 and 2 years, and responsiveness to cues of hunger and satiety. METHODS: A quasi-experimental longitudinal study with a posttest-only control design was done over 3 years in three phases; the first was in-depth interviews and formative research followed by health education and counseling interventions and ended by measuring the outcome. Motivating mothers' voluntary behaviors toward breastfeeding promotion "feeding your baby like a baby" was done using SM principles: product, price, place, and promotion. The interventions targeted 646 pregnant women in their last trimester and delivered mothers and 1454 women in their childbearing period. The statistical analysis was done by using SPSS program, version 26. RESULTS: Most mothers showed significantly increased awareness about the benefits of breastfeeding and became interested in breastfeeding their children outside the house using the breastfeeding cover (Gawn) (p < 0.05). Breastfeeding initiation, exclusive breastfeeding under 6 months, frequency of breastfeeding per day, and percentage of children who continued breastfeeding till 2 years, were significantly increased (from 30%, 23%, 56%, and 32% to 62%, 47.3%, 69%, and 43.5% respectively). The girls who recorded underweight results over boys during the first year of life were significantly improved (p < 0.01) after the intervention (from 52.1% to 18.8% respectively). At the same time, girls found to be obese before the intervention (15.6%) became no longer obese. CONCLUSIONS: Improvement for the majority of the key breastfeeding indicators and physical growth of infants indicates that raising a healthy generation should start by promoting breastfeeding practices that are respectable to societal norms.


Asunto(s)
Lactancia Materna , Promoción de la Salud , Mercadeo Social , Humanos , Lactancia Materna/estadística & datos numéricos , Egipto , Femenino , Lactante , Estudios Longitudinales , Adulto , Promoción de la Salud/métodos , Adulto Joven , Masculino , Desarrollo Infantil/fisiología , Recién Nacido
17.
Luminescence ; 39(3): e4714, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38506395

RESUMEN

In this study, the melt quenching approach is used to synthesize a lead borate-strontium-based glass system doped with samarium ions. Modifications in the glass network structure arising from the addition of various concentrations of Sm3+ ions were investigated via Fourier transform infrared (FTIR) spectroscopy. FTIR analysis revealed B-O-B bridges, BO3 , and BO4 units are present. UV-vis-NIR spectroscopic measurement was performed to study the optical absorption spectra. Optical constants such as optical bandgap energies, refractive indices, and other related parameters were evaluated. The lifetime fluorescence decay was measured and ranged between 1.04 and 1.88 ns. The photoluminescence spectra in the range 500-750 nm revealed four transitions from the ground state 6 G5/2 to the excited states 6 H5/2 , 6 H7/2 , 6 H9/2 and 6 H11/2 and J-O theory was utilized to study these optical transitions for Sm3+ ions. Calculations of the oscillator strengths and J-O intensity parameters were performed and the obtained J-O parameters followed the sequence Ω4 > Ω6 > Ω2 . The ratio O/R indicated a high lattice asymmetry around the samarium ions. The values of lifetimes and branching ratios for the fabricated samples emphasized their suitability to be used in laser applications. The current glass samples are good candidates for orange and red emission devices.


Asunto(s)
Boratos , Tungsteno , Boratos/química , Samario/química , Iones , Vidrio/química
18.
Luminescence ; 39(4): e4737, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38587084

RESUMEN

The predominant method for pest control has been the use of pesticides, which have been shown to have detrimental effects on soil, freshwater, and crop quality. Therefore, the development of novel and sustainable crop protection strategies has become increasingly imperative. In this study, a novel orange-red emitting Ba2SrWO6: Sm3+ phosphor was synthesized using the high-temperature solid-state reaction. Under ultraviolet excitation, the phosphors showed obvious emission peaks at 575, 614, and 662 nm. The Ba2SrWO6: Sm3+ was used to fabricate a fluorescence film with polydimethylsiloxane (PDMS), and attracted twice as many insects as the blank control group under 365 nm ultraviolet light. This material holds great potential as a fluorescent agent for insect trapping in the pest control fields of tea, cotton, eggplant, rice, potato, grape, and other agricultural industries. Our findings provide an eco-friendly approach to pest management for the increment of food production.


Asunto(s)
Luminiscencia , Óxidos , Samario , Compuestos de Calcio , Titanio
19.
Ultrason Imaging ; : 1617346241271119, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39189365

RESUMEN

Sm-doped Pb(Mg1/3Nb2/3)O3-0.28PbTiO3 (PMN-0.28PT) ceramic has been reported to exhibit very large piezoelectric response (d33~1300 pC/N) that can be comparable with PMN-0.30PT single crystal. Based on the Sm-doped PMN-0.28PT ceramics, a high frequency ultrasound transducer with the center frequency above 30 MHz has been designed and fabricated for intravascular ultrasound imaging, and the performance of the transducer was investigated via ultrasound pulse-echo tests. Further, for a porcine vessel wall, the 2D and 3D ultrasound images were constructed using signal acquisition and processing from the fabricated high-frequency transducer. The obtained details of the vessel wall by the IVUS transducer indicate that Sm-doped PMN-0.28PT ceramic is a promising candidate for high frequency transducers.

20.
Int J Mol Sci ; 25(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38203750

RESUMEN

The Sm protein superfamily includes Sm, like-Sm (Lsm), and Hfq found in the Eukarya, Archaea, and Bacteria domains. Archaeal Lsm proteins have been shown to bind sRNAs and are probably involved in various cellular processes, suggesting a similar function in regulating sRNAs by Hfq in bacteria. Moreover, archaeal Lsm proteins probably represent the ancestral Lsm domain from which eukaryotic Sm proteins have evolved. In this work, Haloferax mediterranei was used as a model organism because it has been widely used to investigate the nitrogen cycle and its regulation in Haloarchaea. Predicting this protein's secondary and tertiary structures has resulted in a three-dimensional model like the solved Lsm protein structure of Archaeoglobus fulgidus. To obtain information on the oligomerization state of the protein, homologous overexpression and purification by means of molecular exclusion chromatography have been performed. The results show that this protein can form hexameric complexes, which can aggregate into 6 or 12 hexameric rings depending on the NaCl concentration and without RNA. In addition, the study of transcriptional expression via microarrays has allowed us to obtain the target genes regulated by the Lsm protein under nutritional stress conditions: nitrogen or carbon starvation. Microarray analysis has shown the first universal stress proteins (USP) in this microorganism that mediate survival in situations of nitrogen deficiency.


Asunto(s)
Proteínas Arqueales , Haloferax mediterranei , Haloferax mediterranei/genética , Proteínas Arqueales/genética , Proteínas de Choque Térmico , Archaea , Nitrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA