Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.764
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 184(4): 957-968.e21, 2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-33567265

RESUMEN

Ligand-gated ion channels mediate signal transduction at chemical synapses and transition between resting, open, and desensitized states in response to neurotransmitter binding. Neurotransmitters that produce maximum open channel probabilities (Po) are full agonists, whereas those that yield lower than maximum Po are partial agonists. Cys-loop receptors are an important class of neurotransmitter receptors, yet a structure-based understanding of the mechanism of partial agonist action has proven elusive. Here, we study the glycine receptor with the full agonist glycine and the partial agonists taurine and γ-amino butyric acid (GABA). We use electrophysiology to show how partial agonists populate agonist-bound, closed channel states and cryo-EM reconstructions to illuminate the structures of intermediate, pre-open states, providing insights into previously unseen conformational states along the receptor reaction pathway. We further correlate agonist-induced conformational changes to Po across members of the receptor family, providing a hypothetical mechanism for partial and full agonist action at Cys-loop receptors.


Asunto(s)
Activación del Canal Iónico , Receptores de Glicina/agonistas , Receptores de Glicina/metabolismo , Animales , Sitios de Unión , Línea Celular , Microscopía por Crioelectrón , Glicina , Células HEK293 , Humanos , Imagenología Tridimensional , Maleatos/química , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutación/genética , Neurotransmisores/metabolismo , Dominios Proteicos , Receptores de Glicina/genética , Receptores de Glicina/ultraestructura , Estireno/química , Pez Cebra , Ácido gamma-Aminobutírico/metabolismo
2.
EMBO J ; 43(10): 1919-1946, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38360993

RESUMEN

Most cellular ubiquitin signaling is initiated by UBA1, which activates and transfers ubiquitin to tens of E2 enzymes. Clonally acquired UBA1 missense mutations cause an inflammatory-hematologic overlap disease called VEXAS (vacuoles, E1, X-linked, autoinflammatory, somatic) syndrome. Despite extensive clinical investigation into this lethal disease, little is known about the underlying molecular mechanisms. Here, by dissecting VEXAS-causing UBA1 mutations, we discovered that p.Met41 mutations alter cytoplasmic isoform expression, whereas other mutations reduce catalytic activity of nuclear and cytoplasmic isoforms by diverse mechanisms, including aberrant oxyester formation. Strikingly, non-p.Met41 mutations most prominently affect transthioesterification, revealing ubiquitin transfer to cytoplasmic E2 enzymes as a shared property of pathogenesis amongst different VEXAS syndrome genotypes. A similar E2 charging bottleneck exists in some lung cancer-associated UBA1 mutations, but not in spinal muscular atrophy-causing UBA1 mutations, which instead, render UBA1 thermolabile. Collectively, our results highlight the precision of conformational changes required for faithful ubiquitin transfer, define distinct and shared mechanisms of UBA1 inactivation in diverse diseases, and suggest that specific E1-E2 modules control different aspects of tissue differentiation and maintenance.


Asunto(s)
Enzimas Activadoras de Ubiquitina , Enzimas Activadoras de Ubiquitina/metabolismo , Enzimas Activadoras de Ubiquitina/genética , Humanos , Mutación Missense , Ubiquitina/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo
3.
Hum Mol Genet ; 33(13): 1120-1130, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38520738

RESUMEN

Spinal muscular atrophy (SMA), which results from the deletion or/and mutation in the SMN1 gene, is an autosomal recessive neuromuscular disorder that leads to weakness and muscle atrophy. SMN2 is a paralogous gene of SMN1. SMN2 copy number affects the severity of SMA, but its role in patients treated with disease modifying therapies is unclear. The most appropriate individualized treatment for SMA has not yet been determined. Here, we reported a case of SMA type I with normal breathing and swallowing function. We genetically confirmed that this patient had a compound heterozygous variant: one deleted SMN1 allele and a novel splice mutation c.628-3T>G in the retained allele, with one SMN2 copy. Patient-derived sequencing of 4 SMN1 cDNA clones showed that this intronic single transversion mutation results in an alternative exon (e)5 3' splice site, which leads to an additional 2 nucleotides (AG) at the 5' end of e5, thereby explaining why the patient with only one copy of SMN2 had a mild clinical phenotype. Additionally, a minigene assay of wild type and mutant SMN1 in HEK293T cells also demonstrated that this transversion mutation induced e5 skipping. Considering treatment cost and goals of avoiding pain caused by injections and starting treatment as early as possible, risdiplam was prescribed for this patient. However, the patient showed remarkable clinical improvements after treatment with risdiplam for 7 months despite carrying only one copy of SMN2. This study is the first report on the treatment of risdiplam in a patient with one SMN2 copy in a real-world setting. These findings expand the mutation spectrum of SMA and provide accurate genetic counseling information, as well as clarify the molecular mechanism of careful genotype-phenotype correlation of the patient.


Asunto(s)
Mutación , Empalme del ARN , Atrofias Musculares Espinales de la Infancia , Proteína 2 para la Supervivencia de la Neurona Motora , Femenino , Humanos , Alelos , Compuestos Azo , Exones/genética , Células HEK293 , Pirimidinas/uso terapéutico , Empalme del ARN/genética , Atrofias Musculares Espinales de la Infancia/genética , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 2 para la Supervivencia de la Neurona Motora/genética , Recién Nacido , Lactante
4.
Hum Mol Genet ; 33(15): 1367-1377, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38704739

RESUMEN

Spinal Muscular Atrophy is caused by partial loss of survival of motoneuron (SMN) protein expression. The numerous interaction partners and mechanisms influenced by SMN loss result in a complex disease. Current treatments restore SMN protein levels to a certain extent, but do not cure all symptoms. The prolonged survival of patients creates an increasing need for a better understanding of SMA. Although many SMN-protein interactions, dysregulated pathways, and organ phenotypes are known, the connections among them remain largely unexplored. Monogenic diseases are ideal examples for the exploration of cause-and-effect relationships to create a network describing the disease-context. Machine learning tools can utilize such knowledge to analyze similarities between disease-relevant molecules and molecules not described in the disease so far. We used an artificial intelligence-based algorithm to predict new genes of interest. The transcriptional regulation of 8 out of 13 molecules selected from the predicted set were successfully validated in an SMA mouse model. This bioinformatic approach, using the given experimental knowledge for relevance predictions, enhances efficient targeted research in SMA and potentially in other disease settings.


Asunto(s)
Inteligencia Artificial , Biología Computacional , Modelos Animales de Enfermedad , Atrofia Muscular Espinal , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Animales , Ratones , Humanos , Biología Computacional/métodos , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Aprendizaje Automático , Algoritmos , Regulación de la Expresión Génica/genética
5.
Development ; 150(22)2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37823339

RESUMEN

The kidney vasculature has a complex architecture that is essential for renal function. The molecular mechanisms that direct development of kidney blood vessels are poorly characterized. We identified a regionally restricted, stroma-derived signaling molecule, netrin 1 (Ntn1), as a regulator of renal vascular patterning in mice. Stromal progenitor (SP)-specific ablation of Ntn1 (Ntn1SPKO) resulted in smaller kidneys with fewer glomeruli, as well as profound defects of the renal artery and transient blood flow disruption. Notably, Ntn1 ablation resulted in loss of arterial vascular smooth muscle cell (vSMC) coverage and in ectopic SMC deposition at the kidney surface. This was accompanied by dramatic reduction of arterial tree branching that perdured postnatally. Transcriptomic analysis of Ntn1SPKO kidneys revealed dysregulation of vSMC differentiation, including downregulation of Klf4, which we find expressed in a subset of SPs. Stromal Klf4 deletion similarly resulted in decreased smooth muscle coverage and arterial branching without, however, the disruption of renal artery patterning and perfusion seen in Ntn1SPKO. These data suggest a stromal Ntn1-Klf4 axis that regulates stromal differentiation and reinforces stromal-derived smooth muscle as a key regulator of renal blood vessel formation.


Asunto(s)
Perfilación de la Expresión Génica , Riñón , Ratones , Animales , Netrina-1/genética , Netrina-1/metabolismo , Riñón/fisiología , Diferenciación Celular/genética , Morfogénesis , Miocitos del Músculo Liso
6.
Genes Dev ; 32(15-16): 1045-1059, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-30012555

RESUMEN

Ubiquitous deficiency in the survival motor neuron (SMN) protein causes death of motor neurons-a hallmark of the neurodegenerative disease spinal muscular atrophy (SMA)-through poorly understood mechanisms. Here, we show that the function of SMN in the assembly of spliceosomal small nuclear ribonucleoproteins (snRNPs) regulates alternative splicing of Mdm2 and Mdm4, two nonredundant repressors of p53. Decreased inclusion of critical Mdm2 and Mdm4 exons is most prominent in SMA motor neurons and correlates with both snRNP reduction and p53 activation in vivo. Importantly, increased skipping of Mdm2 and Mdm4 exons regulated by SMN is necessary and sufficient to synergistically elicit robust p53 activation in wild-type mice. Conversely, restoration of full-length Mdm2 and Mdm4 suppresses p53 induction and motor neuron degeneration in SMA mice. These findings reveal that loss of SMN-dependent regulation of Mdm2 and Mdm4 alternative splicing underlies p53-mediated death of motor neurons in SMA, establishing a causal link between snRNP dysfunction and neurodegeneration.


Asunto(s)
Empalme Alternativo , Neuronas Motoras/metabolismo , Atrofia Muscular Espinal/genética , Proteínas Proto-Oncogénicas c-mdm2/genética , Proteínas Proto-Oncogénicas/genética , Animales , Muerte Celular , Exones , Ratones , Neuronas Motoras/patología , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/fisiopatología , Células 3T3 NIH , Degeneración Nerviosa/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/biosíntesis , Proteína p53 Supresora de Tumor/metabolismo
7.
J Neurosci ; 44(8)2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38123361

RESUMEN

When we intensively train a timing skill, such as learning to play the piano, we not only produce brain changes associated with task-specific learning but also improve our performance in other temporal behaviors that depend on these tuned neural resources. Since the neural basis of time learning and generalization is still unknown, we measured the changes in neural activity associated with the transfer of learning from perceptual to motor timing in a large sample of subjects (n = 65; 39 women). We found that intense training in an interval discrimination task increased the acuity of time perception in a group of subjects that also exhibited learning transfer, expressed as a reduction in inter-tap interval variability during an internally driven periodic motor task. In addition, we found subjects with no learning and/or generalization effects. Notably, functional imaging showed an increase in pre-supplementary motor area and caudate-putamen activity between the post- and pre-training sessions of the tapping task. This increase was specific to the subjects that generalized their timing acuity from the perceptual to the motor context. These results emphasize the central role of the cortico-basal ganglia circuit in the generalization of timing abilities between tasks.


Asunto(s)
Corteza Motora , Humanos , Femenino , Transferencia de Experiencia en Psicología , Imagen por Resonancia Magnética/métodos , Encéfalo , Ganglios Basales , Destreza Motora
8.
Mol Ther ; 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39108096

RESUMEN

Farber disease (FD) and spinal muscular atrophy with progressive myoclonic epilepsy (SMA-PME) are ultra-rare lysosomal storage disorders caused by deficient acid ceramidase (ACDase) activity. Although both conditions are caused by mutations in the ASAH1 gene, clinical presentations differ considerably. FD patients usually die in childhood while SMA-PME patients can live until adulthood. There is no treatment for FD or SMA-PME. Hematopoietic stem cell transplantation (HSCT) and gene therapy strategies for the treatment of ACDase deficiency are being investigated. We have previously generated and characterized mouse models of both FD and SMA-PME that recapitulate the symptoms described in patients. Here, we show that HSCT improves lifespan, behavior, hematopoietic system anomalies, plasma cytokine levels, and significantly reduces histiocytic infiltration and ceramide accumulation throughout the tissues investigated, including the CNS, in both models of ACDase deficient mice. HSCT was also successful in preventing lesion development and significant demyelination of the spinal cord seen in SMA-PME mice. Importantly, we note that only early and generally pre-symptomatic treatment was effective and kidney impairment was not improved in either model.

9.
Biochem Biophys Res Commun ; 712-713: 149923, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38640735

RESUMEN

Stasimon/Tmem41b is a transmembrane protein with phospholipid scrambling activity that resides in the endoplasmic reticulum and has been implicated in autophagy, lipid metabolism, and viral replication. Stasimon/Tmem41b has also been linked to the function of sensory-motor circuits and the pathogenesis of spinal muscular atrophy. However, the early embryonic lethality of constitutive knockout in mice has hindered the analysis of spatial and temporal requirements of Stasimon/Tmem41b in vivo. To address this, we developed a novel mouse line harboring a conditional knockout allele of the Stasimon/Tmem41b gene in which exon 4 has been flanked by loxP sites (Stas/Tmem41bCKO). Cre-mediated recombination of Stas/Tmem41bCKO generates a functionally null allele (Stas/Tmem41bΔ4) resulting in loss of protein expression and embryonic lethality in the homozygous mouse mutant. Here, using a ubiquitously expressed, tamoxifen inducible Cre recombinase in the homozygous Stas/Tmem41bCKO mice, we demonstrate that postnatal depletion of Stasimon/Tmem41b rapidly arrests weight gain in adult mice and causes motor dysfunction and death approximately three weeks after tamoxifen treatment. Moreover, we show that depletion of Stasimon/Tmem41b severely affects cell proliferation in mouse embryonic fibroblasts. This study provides new insights into the essential requirement of Stasimon/Tmem41b for cellular and organismal fitness and expands the experimental toolkit to investigate its functions in the mammalian system.


Asunto(s)
Proliferación Celular , Proteínas de la Membrana , Ratones Noqueados , Animales , Ratones , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Fibroblastos/metabolismo , Ratones Endogámicos C57BL
10.
RNA ; 28(3): 303-319, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34893560

RESUMEN

Spinal muscular atrophy (SMA) is a devastating neurodegenerative disease caused by reduced amounts of the ubiquitously expressed Survival of Motor Neuron (SMN) protein. In agreement with its crucial role in the biogenesis of spliceosomal snRNPs, SMN-deficiency is correlated to numerous splicing alterations in patient cells and various tissues of SMA mouse models. Among the snRNPs whose assembly is impacted by SMN-deficiency, those involved in the minor spliceosome are particularly affected. Importantly, splicing of several, but not all U12-dependent introns has been shown to be affected in different SMA models. Here, we have investigated the molecular determinants of this differential splicing in spinal cords from SMA mice. We show that the branchpoint sequence (BPS) is a key element controlling splicing efficiency of minor introns. Unexpectedly, splicing of several minor introns with suboptimal BPS is not affected in SMA mice. Using in vitro splicing experiments and oligonucleotides targeting minor or major snRNAs, we show for the first time that splicing of these introns involves both the minor and major machineries. Our results strongly suggest that splicing of a subset of minor introns is not affected in SMA mice because components of the major spliceosome compensate for the loss of minor splicing activity.


Asunto(s)
Atrofia Muscular Espinal/genética , Empalme del ARN , Empalmosomas/metabolismo , Animales , Células HeLa , Humanos , Intrones , Ratones , Atrofia Muscular Espinal/metabolismo , Sitios de Empalme de ARN , Ribonucleoproteínas Nucleares Pequeñas/metabolismo
11.
J Virol ; 97(6): e0032723, 2023 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-37255444

RESUMEN

The mature human immunodeficiency virus (HIV) envelope glycoprotein (Env) trimer, which consists of noncovalently associated gp120 exterior and gp41 transmembrane subunits, mediates virus entry into cells. The pretriggered (State-1) Env conformation is the major target for broadly neutralizing antibodies (bNAbs), whereas receptor-induced downstream Env conformations elicit immunodominant, poorly neutralizing antibody (pNAb) responses. To examine the contribution of membrane anchorage to the maintenance of the metastable pretriggered Env conformation, we compared wild-type and State-1-stabilized Envs solubilized in detergents or in styrene-maleic acid (SMA) copolymers. SMA directly incorporates membrane lipids and resident membrane proteins into lipid nanoparticles (styrene-maleic acid lipid particles [SMALPs]). The integrity of the Env trimer in SMALPs was maintained at both 4°C and room temperature. In contrast, Envs solubilized in Cymal-5, a nonionic detergent, were unstable at room temperature, although their stability was improved at 4°C and/or after incubation with the entry inhibitor BMS-806. Envs solubilized in ionic detergents were relatively unstable at either temperature. Comparison of Envs solubilized in Cymal-5 and SMA at 4°C revealed subtle differences in bNAb binding to the gp41 membrane-proximal external region, consistent with these distinct modes of Env solubilization. Otherwise, the antigenicity of the Cymal-5- and SMA-solubilized Envs was remarkably similar, both in the absence and in the presence of BMS-806. However, both solubilized Envs were recognized differently from the mature membrane Env by specific bNAbs and pNAbs. Thus, detergent-based and detergent-free solubilization at 4°C alters the pretriggered membrane Env conformation in consistent ways, suggesting that Env assumes default conformations when its association with the membrane is disrupted. IMPORTANCE The human immunodeficiency virus (HIV) envelope glycoproteins (Envs) in the viral membrane mediate virus entry into the host cell and are targeted by neutralizing antibodies elicited by natural infection or vaccines. Detailed studies of membrane proteins rely on purification procedures that allow the proteins to maintain their natural conformation. In this study, we show that a styrene-maleic acid (SMA) copolymer can extract HIV-1 Env from a membrane without the use of detergents. The Env in SMA is more stable at room temperature than Env in detergents. The purified Env in SMA maintains many but not all of the characteristics expected of the natural membrane Env. Our results underscore the importance of the membrane environment to the native conformation of HIV-1 Env. Purification methods that bypass the need for detergents could be useful tools for future studies of HIV-1 Env structure and its interaction with receptors and antibodies.


Asunto(s)
Proteína gp120 de Envoltorio del VIH , Proteína gp41 de Envoltorio del VIH , VIH-1 , Anticuerpos ampliamente neutralizantes , Productos del Gen env del Virus de la Inmunodeficiencia Humana , Glicoproteínas/química , Anticuerpos Anti-VIH , Proteína gp120 de Envoltorio del VIH/química , Proteína gp41 de Envoltorio del VIH/química , Lípidos , Conformación Proteica , Estireno/metabolismo , Detergentes
12.
Ann Surg Oncol ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39008210

RESUMEN

BACKGROUND: Pancreatic head cancer with perineural invasion of the superior mesenteric artery (SMA) requires dissection of the nerve plexus around the SMA (PLsma, superior mesenteric nerve plexus) to obtain cancer-free margins.1,2 Technically challenging robot-assisted pancreaticoduodenectomy with PLsma resection is rarely performed owing to the technical limitations of the robot. In this multimedia article, we present our approach to robot-assisted pancreaticoduodenectomy with PLsma dissection.3-5 METHODS: We performed a robot-assisted pancreaticoduodenectomy with resection of the hemicircle of the PLsma in a 78-year-old woman with resectable pancreatic cancer extending to the root of the inferior pancreaticoduodenal artery. In this video, we show how to obtain an optimal view using the multiple scope transition method,4 and technical tips to perform a PLsma dissection with a robot to perform this difficult surgery safely. RESULTS: The operative time was 568 min and 300 mL of blood was lost. The pathological diagnosis was invasive pancreatic ductal carcinoma with lymph node metastasis, and R0 resection was performed. The distance margin from the SMA was 2 mm. The patient was discharged on the 18th postoperative day without postoperative complications. CONCLUSIONS: Robot-assisted pancreaticoduodenectomy with dissection of the hemicircle of the PLsma, which is difficult to perform, can be performed safely with an optimal view using the multiple-scope transition method, and delicate dissection using a robot.

13.
Acta Neuropathol ; 147(1): 53, 2024 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-38470509

RESUMEN

Spinal muscular atrophy (SMA) is a neuromuscular disorder caused by recessive pathogenic variants affecting the survival of motor neuron (SMN1) gene (localized on 5q). In consequence, cells lack expression of the corresponding protein. This pathophysiological condition is clinically associated with motor neuron (MN) degeneration leading to severe muscular atrophy. Additionally, vulnerability of other cellular populations and tissues including skeletal muscle has been demonstrated. Although the therapeutic options for SMA have considerably changed, treatment responses may differ thus underlining the persistent need for validated biomarkers. To address this need and to identify novel marker proteins for SMA, we performed unbiased proteomic profiling on cerebrospinal fluid derived (CSF) from genetically proven SMA type 1-3 cases and afterwards performed ELISA studies on CSF and serum samples to validate the potential of a novel biomarker candidates in both body fluids. To further decipher the pathophysiological impact of this biomarker, immunofluorescence studies were carried out on spinal cord and skeletal muscle derived from a 5q-SMA mouse model. Proteomics revealed increase of LARGE1 in CSF derived from adult patients showing a clinical response upon treatment with nusinersen. Moreover, LARGE1 levels were validated in CSF samples of further SMA patients (type 1-3) by ELISA. These studies also unveiled a distinguishment between groups in improvement of motor skills: adult patients do present with lowered level per se at baseline visit while no elevation upon treatment in the pediatric cohort can be observed. ELISA-based studies of serum samples showed no changes in the pediatric cohort but unraveled elevated level in adult patients responding to future intervention with nusinersen, while non-responders did not show a significant increase. Additional immunofluorescence studies of LARGE1 in MN and skeletal muscle of a SMA type 3 mouse model revealed an increase of LARGE1 during disease progression. Our combined data unraveled LARGE1 as a protein dysregulated in serum and CSF of SMA-patients (and in MN and skeletal muscle of SMA mice) holding the potential to serve as a disease marker for SMA and enabling to differentiate between patients responding and non-responding to therapy with nusinersen.


Asunto(s)
Atrofia Muscular Espinal , Atrofias Musculares Espinales de la Infancia , Adulto , Humanos , Niño , Ratones , Animales , Proteómica , Atrofia Muscular Espinal/genética , Atrofias Musculares Espinales de la Infancia/tratamiento farmacológico , Atrofias Musculares Espinales de la Infancia/patología , Neuronas Motoras/patología , Biomarcadores/líquido cefalorraquídeo , Modelos Animales de Enfermedad
14.
Arch Biochem Biophys ; 754: 109944, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38395124

RESUMEN

The collagen/fibrin(ogen) receptor, glycoprotein VI (GPVI), is a platelet activating receptor and a promising anti-thrombotic drug target. However, while agonist-induced GPVI clustering on platelet membranes has been shown to be essential for its activation, it is unknown if GPVI dimerisation represents a unique conformation for ligand binding. Current GPVI structures all contain only the two immunoglobulin superfamily (IgSF) domains in the GPVI extracellular region, so lacking the mucin-like stalk, transmembrane, cytoplasmic tail of GPVI and its associated Fc receptor γ (FcRγ) homodimer signalling chain, and provide contradictory insights into the mechanisms of GPVI dimerisation. Here, we utilised styrene maleic-acid lipid particles (SMALPs) to extract GPVI in complex with its two associated FcRγ chains from transfected HEK-293T cells, together with the adjacent lipid bilayer, then purified and characterised the GPVI/FcRγ-containing SMALPs, to enable structural insights into the full-length GPVI/FcRγ complex. Using size exclusion chromatography followed by a native polyacrylamide gel electrophoresis (PAGE) method, SMA-PAGE, we revealed multiple sizes of the purified GPVI/FcRγ SMALPs, suggesting the potential existence of GPVI oligomers. Importantly, GPVI/FcRγ SMALPs were functional as they could bind collagen. Mono-dispersed GPVI/FcRγ SMALPs could be observed under negative stain electron microscopy. These results pave the way for the future investigation of GPVI stoichiometry and structure, while also validating SMALPs as a promising tool for the investigation of human membrane protein interactions, stoichiometry and structure.


Asunto(s)
Plaquetas , Receptores de IgG , Humanos , Receptores de IgG/metabolismo , Plaquetas/química , Plaquetas/metabolismo , Membrana Celular/metabolismo , Transducción de Señal , Colágeno/metabolismo
15.
Arch Biochem Biophys ; 754: 109946, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38395122

RESUMEN

G-protein-coupled receptors (GPCRs) are the largest family of membrane proteins, regulate a plethora of physiological responses and are the therapeutic target for 30-40% of clinically-prescribed drugs. They are integral membrane proteins deeply embedded in the plasma membrane where they activate intracellular signalling via coupling to G-proteins and ß-arrestin. GPCRs are in intimate association with the bilayer lipids and that lipid environment regulates the signalling functions of GPCRs. This complex lipid 'landscape' is both heterogeneous and dynamic. GPCR function is modulated by bulk membrane properties including membrane fluidity, microdomains, curvature, thickness and asymmetry but GPCRs are also regulated by specific lipid:GPCR binding, including cholesterol and anionic lipids. Understanding the molecular mechanisms whereby GPCR signalling is regulated by lipids is a very active area of research currently. A major advance in membrane protein research in recent years was the application of poly(styrene-co-maleic acid) (SMA) copolymers. These spontaneously generate SMA lipid particles (SMALPs) encapsulating membrane protein in a nano-scale disc of cell membrane, thereby removing the historical need for detergent and preserving lipid:GPCR interaction. The focus of this review is how GPCR-SMALPs are increasing our understanding of GPCR structure and function at the molecular level. Furthermore, an increasing number of 'second generation' SMA-like copolymers have been reported recently. These are reviewed from the context of increasing our understanding of GPCR molecular mechanisms. Moreover, their potential as a novel platform for downstream biophysical and structural analyses is assessed and looking ahead, the translational application of SMA-like copolymers to GPCR drug discovery programmes in the future is considered.


Asunto(s)
Receptores Acoplados a Proteínas G , Membrana Celular , Lípidos/química , Proteínas de la Membrana/química
16.
Muscle Nerve ; 69(3): 340-348, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38238963

RESUMEN

INTRODUCTION/AIMS: Current upper limb assessments in pediatric spinal muscular atrophy (SMA) may not adequately capture change with disease progression. Our aim was to examine the relationship between motor function, strength, and hand/finger mobility of the upper limb in treatment-naïve children with SMA Types 2 and 3 to assess new methods to supplement current outcomes. METHODS: The Revised Upper Limb Module (RULM), grip and pinch strength, and hand/finger mobility data were collected from 19 children with SMA Types 2 and 3 aged 5.2-16.9 years over a year. RESULTS: A median loss between 0.5 and 2.5 points in the RULM was seen across all SMA subgroups with the biggest median loss recorded between 10 and 14 years of age. The grip strength loss was -0.06 kg (-4.69 to 3.49; IQR, 1.21); pinch improvement of 0.05 (-0.65 to 1.27; IQR, 0.48); hand/finger mobility test improvement of 4 points (-24 to 14; IQR, 6.75) for the whole cohort. Significant correlations were found between the RULM and grip strength (p < .001), RULM and pinch strength (p < .001), RULM and revised Brooke (p < .001), grip strength and pinch strength (p < .001). DISCUSSION: The combined use of the RULM, dynamometry, and hand mobility provide insight about correlations between function and strength in children with SMA. The RULM and grip strength assessments captured a significant decline in upper limb function, whereas the pinch and finger/hand mobility showed an improvement over the course of 1 year and these results should be considered for future studies.


Asunto(s)
Atrofia Muscular Espinal , Atrofias Musculares Espinales de la Infancia , Humanos , Niño , Adolescente , Extremidad Superior , Mano , Fuerza de la Mano
17.
Muscle Nerve ; 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39096012

RESUMEN

INTRODUCTION/AIMS: Fatigue (subjective perception) and fatigability (objective motor performance worsening) are relevant aspects of disability in individuals with spinal muscular atrophy (SMA). The effect of nusinersen on fatigability in SMA patients has been investigated with conflicting results. We aimed to evaluate this in adult with SMA3. METHODS: We conducted a multicenter retrospective cohort study, including adult ambulant patients with SMA3, data available on 6-minute walk test (6MWT) and Hammersmith Functional Motor Scale-Expanded (HFMSE) at baseline and at least at 6 months of treatment with nusinersen. We investigated fatigability, estimated as 10% or higher decrease in walked distance between the first and sixth minute of the 6MWT, at baseline and over the 14-month follow-up. RESULTS: Forty-eight patients (56% females) were included. The 6MWT improved after 6, 10, and 14 months of treatment (p < 0.05). Of the 27 patients who completed the entire follow-up, 37% improved (6MWT distance increase ≥30 m), 48.2% remained stable, and 14.8% worsened (6MWT distance decline ≥30 m). Fatigability was found at baseline in 26/38 (68%) patients and confirmed at subsequent time points (p < 0.05) without any significant change over the treatment period. There was no correlation between fatigability and SMN2 copy number, sex, age at disease onset, age at baseline, nor with 6MWT total distance and baseline HFMSE score. DISCUSSION: Fatigability was detected at baseline in approximately 2/3 of SMA3 walker patients, without any correlation with clinical features, included motor performance. No effect on fatigability was observed during the 14-month treatment period with nusinersen.

18.
Muscle Nerve ; 2024 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-39129236

RESUMEN

The nutritional implications of spinal muscular atrophy (SMA) are profound. Disease modifying therapies (DMT) have improved clinical outcomes. This review describes the impact of DMT on nutrition outcomes. A systematic search strategy was applied across seven databases until May 2023. Eligible studies measured nutrition outcomes in individuals with SMA on DMT (nusinersen, risdiplam or onasemnogene abeparvovec [OA]) compared to untreated comparators. Nutrition outcomes included anthropometry, feeding route, swallowing dysfunction, dietary intake, dietetic intervention, nutritional biochemistry, metabolism, gastrointestinal issues and energy expenditure. Articles retrieved were screened in duplicate, data were extracted and appraised systematically. Sixty three articles from 54 studies were included; 41% (n = 22) investigated nusinersen in pediatric participants with SMA type 1. Anthropometry (n = 18), feeding route (n = 39), and swallowing dysfunction (n = 18) were the most commonly reported outcomes. In combined pediatric and adult cohorts, BMI z-score remained stable post nusinersen therapy. The proportion of children with SMA requiring enteral nutrition was stable post nusinersen therapy. Ability to thrive at age 1.5 years was higher in children treated in early infancy with OA compared to historical controls. Significant heterogeneity existed across study population characteristics and outcome measures. Nusinersen may prevent deterioration in some nutrition outcomes; and OA in early infancy may be associated with improved nutrition outcomes. Timing of DMT initiation is an important consideration for future nutrition research. Studies investigating nutrition as a primary outcome of DMT, using consistent outcome measures are required for nutritional management strategies for this cohort to be appropriately tailored.

19.
Eur J Neurol ; 31(1): e16099, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37823715

RESUMEN

BACKGROUND: To assess compound muscle action potential (CMAP) amplitudes as electrophysiologic markers in relation to clinical outcome in adult patients with 5q-linked spinal muscular atrophy (SMA) before and during treatment with risdiplam. METHODS: In this monocentric longitudinal cohort study, CMAP of 18 adult patients with SMA type 2 or 3 were assessed at baseline (T0 ) and after 10 months (T10 ) of risdiplam treatment. CMAP amplitudes of the median, ulnar, peroneal, and tibial nerves were compared with established clinical outcome scores, and with the course of disease before start of treatment. RESULTS: During a pharmacotherapy-naive pre-treatment period of 328 ± 46 days, Revised Upper Limb Module (RULM) score and peroneal nerve CMAP amplitudes decreased, while CMAP of tibial and upper limb nerves remained unchanged. CMAP amplitudes positively correlated with clinical scores (Hammersmith Functional Motor Scale-Expanded [HFMSE], RULM) at T0 . During risdiplam treatment, HFMSE and Children's Hospital of Philadelphia Infant Test of Neuromuscular Disorders (CHOP INTEND) scores increased, paralleled by marked increase of CMAP amplitudes in both median nerves (T10 -T0 ; right: Δ = 1.4 ± 1.4 mV, p = 0.0003; left: Δ = 1.3 ± 1.4 mV, p = 0.0007), but not in ulnar, peroneal, or tibial nerves. A robust increase of median nerve CMAP amplitudes correlated well with an increase in the HFMSE score (T10 -T0 ). Median nerve CMAP amplitudes at T0 were associated with subsequent risdiplam-related improvement of HFMSE and CHOP INTEND scores at T10 . CONCLUSIONS: Median nerve CMAP amplitudes increase with risdiplam treatment in adult SMA patients, and should be further evaluated as potential easy-to-use electrophysiologic markers in assessing and monitoring clinical response to therapy.


Asunto(s)
Atrofia Muscular Espinal , Atrofias Musculares Espinales de la Infancia , Adulto , Niño , Lactante , Humanos , Estudios Longitudinales , Atrofia Muscular Espinal/tratamiento farmacológico , Atrofias Musculares Espinales de la Infancia/tratamiento farmacológico , Evaluación de Resultado en la Atención de Salud
20.
J Surg Res ; 295: 70-80, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37992455

RESUMEN

INTRODUCTION: Acute proximal superior mesenteric artery (SMA) occlusion is highly lethal, and adjuncts are needed to mitigate ischemic injury until definitive therapy. We hypothesized that raising mean arterial pressure (MAP) >90 mmHg with norepinephrine may delay irreversible bowel ischemia by increasing gastroduodenal artery (GDA) flow despite possible pressor-induced vasospasm. METHODS: 12 anesthetized swine underwent laparotomy, GDA flow probe placement, and proximal SMA exposure and clamping. Animals were randomized between conventional therapy (CT) versus targeted MAP >90 mmHg (MAP push; MP) where norepinephrine was titrated after 45 min of SMA occlusion. Animals were followed until bowel death or 4 h. Kaplan-Meier bowel survival, mean normalized GDA flow, and histology were compared. RESULTS: 12 swine (mean 57.8 ± 7.6 kgs) were included, six per group. Baseline weight, HR, MAP and GDA flows were not different. Within 5 min following SMA clamping, all 12 animals had an increase in MAP without other intervention from 81.7 to 105.5 mmHg (29.1%, P < 0.01) with a concomitant 74.9% increase in GDA flow as compared to baseline (P < 0.01). Beyond 45 min postclamp, MAP was greater in the MP group as intended, as were GDA flows. Median time to irreversibly ischemic bowel was 31% longer for MAP push animals (CT: 178 versus MP: 233 min, P = 0.006), Hazard Ratio of CT 8.85 (95% CI: 1.86-42.06); 3/6 MP animals versus 0/6 CT animals with bowel survived to predetermined end point. CONCLUSIONS: In this swine model of acute complete proximal SMA occlusion, increasing MAP >90 mmHg with norepinephrine was associated with an increase in macrovascular blood flow through the GDA and bowel survival. Norepinephrine was not associated with worse bowel survival and a MAP push may increase the time window where ischemic bowel can be salvaged.


Asunto(s)
Presión Arterial , Isquemia Mesentérica , Animales , Presión Sanguínea , Isquemia/patología , Arteria Mesentérica Superior/cirugía , Isquemia Mesentérica/etiología , Isquemia Mesentérica/cirugía , Norepinefrina , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA