Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Mol Cell ; 74(1): 73-87.e8, 2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30876805

RESUMEN

The Hsp90 chaperone machinery in eukaryotes comprises a number of distinct accessory factors. Cns1 is one of the few essential co-chaperones in yeast, but its structure and function remained unknown. Here, we report the X-ray structure of the Cns1 fold and NMR studies on the partly disordered, essential segment of the protein. We demonstrate that Cns1 is important for maintaining translation elongation, specifically chaperoning the elongation factor eEF2. In this context, Cns1 interacts with the novel co-factor Hgh1 and forms a quaternary complex together with eEF2 and Hsp90. The in vivo folding and solubility of eEF2 depend on the presence of these proteins. Chaperoning of eEF2 by Cns1 is essential for yeast viability and requires a defined subset of the Hsp90 machinery as well as the identified eEF2 recruiting factor Hgh1.


Asunto(s)
Proteínas HSP90 de Choque Térmico/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Chaperonas Moleculares/metabolismo , Extensión de la Cadena Peptídica de Translación , Factor 2 de Elongación Peptídica/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Cristalografía por Rayos X , Peptidil-Prolil Isomerasa F , Ciclofilinas/genética , Ciclofilinas/metabolismo , Proteínas HSP90 de Choque Térmico/química , Proteínas HSP90 de Choque Térmico/genética , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/genética , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Resonancia Magnética Nuclear Biomolecular , Factor 2 de Elongación Peptídica/química , Factor 2 de Elongación Peptídica/genética , Unión Proteica , Pliegue de Proteína , Dominios y Motivos de Interacción de Proteínas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Relación Estructura-Actividad
2.
J Biol Chem ; 295(31): 10689-10708, 2020 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-32518165

RESUMEN

Cells must be able to cope with the challenge of folding newly synthesized proteins and refolding those that have become misfolded in the context of a crowded cytosol. One such coping mechanism that has appeared during evolution is the expression of well-conserved molecular chaperones, such as those that are part of the heat shock protein 70 (Hsp70) family of proteins that bind and fold a large proportion of the proteome. Although Hsp70 family chaperones have been extensively examined for the last 50 years, most studies have focused on regulation of Hsp70 activities by altered transcription, co-chaperone "helper" proteins, and ATP binding and hydrolysis. The rise of modern proteomics has uncovered a vast array of post-translational modifications (PTMs) on Hsp70 family proteins that include phosphorylation, acetylation, ubiquitination, AMPylation, and ADP-ribosylation. Similarly to the pattern of histone modifications, the histone code, this complex pattern of chaperone PTMs is now known as the "chaperone code." In this review, we discuss the history of the Hsp70 chaperone code, its currently understood regulation and functions, and thoughts on what the future of research into the chaperone code may entail.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Animales , Humanos
3.
Proc Natl Acad Sci U S A ; 115(10): E2210-E2219, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29463764

RESUMEN

Heat shock protein 90 (Hsp90) is a highly conserved ATP-dependent molecular chaperone that is essential in eukaryotes. It is required for the activation and stabilization of more than 200 client proteins, including many kinases and steroid hormone receptors involved in cell-signaling pathways. Hsp90 chaperone activity requires collaboration with a subset of the many Hsp90 cochaperones, including the Hsp70 chaperone. In higher eukaryotes, the collaboration between Hsp90 and Hsp70 is indirect and involves Hop, a cochaperone that interacts with both Hsp90 and Hsp70. Here we show that yeast Hsp90 (Hsp82) and yeast Hsp70 (Ssa1), directly interact in vitro in the absence of the yeast Hop homolog (Sti1), and identify a region in the middle domain of yeast Hsp90 that is required for the interaction. In vivo results using Hsp90 substitution mutants showed that several residues in this region were important or essential for growth at high temperature. Moreover, mutants in this region were defective in interaction with Hsp70 in cell lysates. In vitro, the purified Hsp82 mutant proteins were defective in direct physical interaction with Ssa1 and in protein remodeling in collaboration with Ssa1 and cochaperones. This region of Hsp90 is also important for interactions with several Hsp90 cochaperones and client proteins, suggesting that collaboration between Hsp70 and Hsp90 in protein remodeling may be modulated through competition between Hsp70 and Hsp90 cochaperones for the interaction surface.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Secuencias de Aminoácidos , Proteínas HSP70 de Choque Térmico/química , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP90 de Choque Térmico/química , Proteínas HSP90 de Choque Térmico/genética , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Modelos Moleculares , Mutación , Unión Proteica , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
4.
J Biol Chem ; 292(19): 8007-8018, 2017 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-28286332

RESUMEN

The biosynthesis of many eukaryotic proteins requires accurate targeting to and translocation across the endoplasmic reticulum membrane. Post-translational protein translocation in yeast requires both the Sec61 translocation channel, and a complex of four additional proteins: Sec63, Sec62, Sec71, and Sec72. The structure and function of these proteins are largely unknown. This pathway also requires the cytosolic Hsp70 protein Ssa1, but whether Ssa1 associates with the translocation machinery to target protein substrates to the membrane is unclear. Here, we use a combined structural and biochemical approach to explore the role of Sec71-Sec72 subcomplex in post-translational protein translocation. To this end, we report a crystal structure of the Sec71-Sec72 complex, which revealed that Sec72 contains a tetratricopeptide repeat (TPR) domain that is anchored to the endoplasmic reticulum membrane by Sec71. We also determined the crystal structure of this TPR domain with a C-terminal peptide derived from Ssa1, which suggests how Sec72 interacts with full-length Ssa1. Surprisingly, Ssb1, a cytoplasmic Hsp70 that binds ribosome-associated nascent polypeptide chains, also binds to the TPR domain of Sec72, even though it lacks the TPR-binding C-terminal residues of Ssa1. We demonstrate that Ssb1 binds through its ATPase domain to the TPR domain, an interaction that leads to inhibition of nucleotide exchange. Taken together, our results suggest that translocation substrates can be recruited to the Sec71-Sec72 complex either post-translationally through Ssa1 or co-translationally through Ssb1.


Asunto(s)
Ascomicetos/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatasas/metabolismo , Cristalografía por Rayos X , Citosol/metabolismo , Mutación , Péptidos/química , Unión Proteica , Dominios Proteicos , Procesamiento Proteico-Postraduccional , Transporte de Proteínas , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Protein Expr Purif ; 152: 56-63, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30030046

RESUMEN

Chaperone proteins are required to maintain the overall fold and function of proteins in the cell. As part of the Hsp70 family, Ssa1 acts to maintain cellular proteostasis through a variety of diverse pathways aimed to preserve the native conformation of target proteins, thereby preventing aggregation and future states of cellular toxicity. Studying the structural dynamics of Ssa1 in vitro is essential to determining their precise mechanisms and requires the development of purification methods that result in highly pure chaperones. Current methods of expressing and purifying Ssa1 utilize affinity tagged constructs expressed in Escherichia coli, however, expression in an exogenous source produces proteins that lack post-translational modifications leading to undesired structural and functional effects. Current protocols to purify Ssa1 from Saccharomyces cerevisiae require large amounts of starting material, multiple steps of chromatography, and result in low yield. Our objective was to establish a small-scale purification of Ssa1 expressed from its endogenous source, Saccharomyces cerevisiae, with significant yield and purity. We utilized a protein A affinity tag that was previously used to purify large protein complexes from yeast, combined with magnetic Dynabeads that are conjugated with rabbit immunoglobulin G (IgG). Our results show that we can produce native, highly pure, active Ssa1 via this one-step purification with minimal amounts of starting material, and this Ssa1-protein A fusion does not alter cellular phenotypes. This methodology is a significant improvement in Ssa1 purification and will facilitate future experiments that will elucidate the biochemical and biophysical properties of Hsp70 chaperones.


Asunto(s)
Adenosina Trifosfatasas/aislamiento & purificación , Biotecnología/métodos , Proteínas HSP70 de Choque Térmico/aislamiento & purificación , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación , Saccharomyces cerevisiae/genética , Proteína Estafilocócica A/aislamiento & purificación , Adenosina Trifosfatasas/biosíntesis , Adenosina Trifosfatasas/genética , Animales , Cromatografía de Afinidad/métodos , Clonación Molecular , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Proteínas HSP70 de Choque Térmico/biosíntesis , Proteínas HSP70 de Choque Térmico/genética , Inmunoglobulina G/química , Separación Inmunomagnética/métodos , Conejos , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/genética , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/biosíntesis , Proteínas de Saccharomyces cerevisiae/genética , Proteína Estafilocócica A/genética , Proteína Estafilocócica A/metabolismo
6.
J Comput Aided Mol Des ; 32(11): 1217-1227, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30392073

RESUMEN

Genetics experiments have identified six mutations located in the subdomain IA (A17V, R23H, G32D, G32S, R34K, V372I) of Ssa1 that influence propagation of the yeast [PSI+] prion. However, the underlining molecular mechanisms of these mutations are still unclear. The six mutation sites are present in the IA subdomain of the nucleotide-binding domain (NBD). The ATPase subdomain IA is a critical mediator of inter-domain allostery in Hsp70 molecular chaperones, so the mutation and changes in this subdomain may influence the function of the substrate-binding domain. In addition, ADP release is a rate-limiting step of the ATPase cycle and dysregulation of the ATPase cycle influences the propagation of the yeast [PSI+] prion. In this work, steered molecular dynamics (SMD) simulations were performed to explore the interaction between ADP and NBD. Results suggest that during the SMD simulations, hydrophobic interactions are predominant and variations in the binding state of ADP within the mutants is a potential reason for in vivo effects on yeast [PSI+] prion propagation. Additionally, we identify the primary residues in the ATPase domain that directly constitute the main hydrophobic interaction network and directly influence the ADP interaction state with the NBD of Ssa1. Furthermore, this in silico analysis reaffirms the importance of previously experimentally-determined residues in the Hsp70 ATPase domain involved in ADP binding and also identifies new residues potentially involved in this process.


Asunto(s)
Adenosina Difosfato/química , Adenosina Trifosfatasas/química , Proteínas HSP70 de Choque Térmico/química , Simulación de Dinámica Molecular , Proteínas de Saccharomyces cerevisiae/química , Adenosina Trifosfatasas/genética , Sitios de Unión , Simulación por Computador , Proteínas HSP70 de Choque Térmico/genética , Mutación , Factores de Terminación de Péptidos/química , Unión Proteica , Conformación Proteica , Dominios Proteicos , Proteínas de Saccharomyces cerevisiae/genética
7.
Exp Mol Pathol ; 98(1): 65-72, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25526666

RESUMEN

Efficient management of misfolded or aggregated proteins in ASH and NASH is crucial for continued hepatic viability. Cellular protein quality control systems play an important role in the pathogenesis and progression of ASH and NASH. In a recent study, elevated Mca1 expression counteracted aggregation and accumulation of misfolded proteins and extended the life span of the yeast Saccharomyces cerevisiae (Hill et al, 2014). Mca1 may also associate with Ssa1 and Hsp104 in disaggregation and fragmentation of aggregated proteins and their subsequent degradation through the ER-associated degradation (ERAD) pathway. If degradation is not available, protection of the cellular environment from a misfolded protein is accomplished by its sequestration into two distinct inclusion bodies (Kaganovich et al., 2008) called the JUNQ (JUxta Nuclear Quality control compartment) and the IPOD (Insoluble Protein Deposit). Mca1, Hsp104, Hsp40, Ydj1, Ssa1, VCP/p97, and p62 all play important roles in protein quality control systems. This study aims to measure the expression of Mca1 and related chaperones involved in protein quality control in alcoholic steatohepatitis (ASH), and nonalcoholic steatohepatitis (NASH) compared with normal control liver biopsies. Mca1, Hsp104, Hsp40, Ydj1, Ssa1, VCP/p97, and p62 expressions were measured in three to six formalin-fixed paraffin embedded ASH and NASH liver biopsies and control normal liver specimens by immunofluorescence staining and quantified by immunofluorescence intensity. Mca1, Hsp104, Ydj1 and p62 were significantly upregulated compared to control (p<0.05) in ASH specimens. Hsp40 and VCP/p97 were also uptrending in ASH. In NASH, the only significant difference was the increased expression of Hsp104 compared to control (p<0.05). Ssa1 levels were uptrending in both ASH and NASH specimens. The upregulation of Mca1, Hsp104, Ydj1 and p62 in ASH may be elicited as a response to the chronic exposure of the hepatocytes to the toxicity of alcohol. Recruitment of Mca1, Hsp104, Ydj1 and p62 may indicate that autophagy, the ERAD, JUNQ, and IPOD systems are active in ASH. Whereas in NASH, elevated Hsp104 and uptrending Ssa1 levels may indicate that autophagy and IPOD may be the only active protein quality control systems involved.


Asunto(s)
Biomarcadores/metabolismo , Caspasas/metabolismo , Hígado Graso Alcohólico/metabolismo , Regulación de la Expresión Génica , Chaperonas Moleculares/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Autofagia , Degradación Asociada con el Retículo Endoplásmico , Hígado Graso Alcohólico/patología , Técnica del Anticuerpo Fluorescente , Humanos , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Pliegue de Proteína , Proteolisis
8.
J Biol Chem ; 288(25): 18506-20, 2013 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-23653356

RESUMEN

Accumulation of misfolded proteins in cellular compartments can result in stress-induced cell death. In the endoplasmic reticulum (ER), ER-associated degradation clears aberrant proteins from the secretory pathway. In the cytoplasm and nucleus, this job is left to the cytoplasmic quality control (CytoQC) machinery. Both processes utilize chaperones and the ubiquitin-proteasome system to aid in protein elimination. Previous studies in yeast have drawn comparisons between these processes using data from structurally and topologically different substrates. We sought to draw a direct comparison between ERAD and CytoQC by studying the elimination of a single misfolded domain that, depending on its residence, is disposed by either of these pathways. The truncated, second nucleotide binding domain (NBD2*) from a yeast ERAD substrate, Ste6p*, resides at the cytoplasmic face of the ER. We show that a soluble form of NBD2* is cytoplasmic and unlike wild-type NBD2 is targeted for proteasome-mediated degradation. In contrast to Ste6p*, which employs the ER-localized Doa10p ubiquitin ligase, NBD2* is ubiquitinated by a nuclear E3 ligase San1p, a factor that is also required for its degradation. Although the yeast cytoplasmic Hsp70 chaperone, Ssa1p, has been thought to facilitate the nuclear import or to maintain the solubility of most CytoQC substrates, we discovered that Ssa1p facilitates the interaction between San1p and NBD2*, demonstrating that chaperones can aid in substrate recognition and San1p-dependent protein degradation. These results emphasize the diverse action of molecular chaperones during CytoQC.


Asunto(s)
Citoplasma/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Transporte Activo de Núcleo Celular , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Sitios de Unión/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Retículo Endoplásmico/metabolismo , Degradación Asociada con el Retículo Endoplásmico , Proteínas HSP70 de Choque Térmico/genética , Immunoblotting , Microscopía Fluorescente , Mutación , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Especificidad por Sustrato , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Proteína que Contiene Valosina
9.
Cells ; 13(2)2024 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-38247818

RESUMEN

Candida albicans is an opportunistic pathogenic yeast that can survive in both normoxic and hypoxic environments. The involvement of C. albicans secretome on host biological processes has been demonstrated. However, the immunoregulatory function of C. albicans secretome released under hypoxic condition remains unclear. This study demonstrated the differences in cytokine responses and protein profiles between secretomes prepared under normoxic and hypoxic conditions. Furthermore, the immunoregulatory effects of heat shock protein SSA1(Ssa1), a protein candidate enriched in the hypoxic secretome, were investigated. Stimulation of mouse bone marrow-derived macrophages (BMMs) with Ssa1 resulted in the significant production of interleukin (IL)-10, IL-6, and tumor necrosis factor (TNF)-α as well as the significant expression of M2b macrophage markers (CD86, CD274 and tumor necrosis factor superfamily member 14), suggesting that C. albicans Ssa1 may promote macrophage polarization towards an M2b-like phenotype. Proteomic analysis of Ssa1-treated BMMs also revealed that Ssa1 reduced inflammation-related factors (IL-18-binding protein, IL-1 receptor antagonist protein, OX-2 membrane glycoprotein and cis-aconitate decarboxylase) and enhanced the proteins involved in anti-inflammatory response (CMRF35-like molecule 3 and macrophage colony-stimulating factor 1 receptor). Based on these results, we investigated the effect of Ssa1 on C. albicans infection and showed that Ssa1 inhibited the uptake of C. albicans by BMMs. Taken together, our results suggest that C. albicans alters its secretome, particularly by promoting the release of Ssa1, to modulate host immune response and survive under hypoxic conditions.


Asunto(s)
Candida albicans , Proteínas de Choque Térmico , Macrófagos , Animales , Ratones , Candida albicans/metabolismo , Candida albicans/fisiología , Proteínas de Choque Térmico/metabolismo , Hipoxia , Proteómica , Secretoma , Factores de Necrosis Tumoral , Interacciones Huésped-Parásitos , Macrófagos/inmunología , Macrófagos/metabolismo
10.
bioRxiv ; 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38915721

RESUMEN

Proteostasis, the maintenance of cellular protein balance, is essential for cell viability and is highly conserved across all organisms. Newly synthesized proteins, or "clients," undergo sequential processing by Hsp40, Hsp70, and Hsp90 chaperones to achieve proper folding and functionality. Despite extensive characterization of post-translational modifications (PTMs) on Hsp70 and Hsp90, the modifications on Hsp40 remain less understood. This study aims to elucidate the role of lysine acetylation on the yeast Hsp40, Ydj1. By mutating acetylation sites on Ydj1's J-domain to either abolish or mimic constitutive acetylation, we observed that preventing acetylation had no noticeable phenotypic impact, whereas acetyl-mimic mutants exhibited various defects indicative of impaired Ydj1 function. Proteomic analysis revealed several Ydj1 interactions affected by J-domain acetylation, notably with proteins involved in translation. Further investigation uncovered a novel role for Ydj1 acetylation in stabilizing ribosomal subunits and ensuring translational fidelity. Our data suggest that acetylation may facilitate the transfer of Ydj1 between Ssa1 and Hsp82. Collectively, this work highlights the critical role of Ydj1 acetylation in proteostasis and translational fidelity.

11.
Front Microbiol ; 14: 1182914, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37560525

RESUMEN

Introduction: Candida albicans is a commensal fungus that colonizes most healthy individuals' skin and mucosal surfaces but can also cause life-threatening invasive infections, particularly in immunocompromised patients. Despite antifungal treatment availability, drug resistance is increasing, and mortality rates remain unacceptably high. Heat shock protein Ssa1, a conserved member of the Hsp70 family in yeast, is a novel invasin that binds to host cell cadherins, induces host cell endocytosis, and enables C. albicans to cause maximal damage to host cells and induces disseminated and oropharyngeal disease. Result: Here we discovered a mouse monoclonal antibody (mAb 13F4) that targeting C. albicans Ssa1 with high affinity (EC50 = 39.78 ng/mL). mAb 13F4 prevented C. albicans from adhering to and invading human epithelial cells, displayed antifungal activity, and synergized with fluconazole in proof of concept in vivo studies. mAb 13F4 significantly prolonged the survival rate of the hematogenous disseminated candidiasis mice to 75%. We constructed a mAb 13F4 three-dimensional structure using homology modeling methods and found that the antigen-binding fragment (Fab) interacts with the Ssa1 N-terminus. Discussion: These results suggest that blocking Ssa1 cell surface function may effectively control invasive C. albicans infections and provide a potential new treatment strategy for invasive fungal infections.

12.
Biomolecules ; 13(1)2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36671396

RESUMEN

Whereas assembly of the 20S proteasome core particle (CP) in prokaryotes apparently occurs spontaneously, the efficiency of this process in eukaryotes relies on the dedicated assembly chaperones Ump1, Pba1-Pba2, and Pba3-Pba4. For mammals, it was reported that CP assembly initiates with formation of a complete α-ring that functions as a template for ß subunit incorporation. By contrast, we were not able to detect a ring composed only of a complete set of α subunits in S. cerevisiae. Instead, we found that the CP subunits α1, α2, and α4 each form independent small complexes. Purification of such complexes containing α4 revealed the presence of chaperones of the Hsp70/Ssa and Hsp110/Sse families. Consistently, certain small complexes containing α1, α2, and α4 were not formed in strains lacking these chaperones. Deletion of the SSE1 gene in combination with deletions of PRE9 (α3), PBA3, or UMP1 genes resulted in severe synthetic growth defects, high levels of ubiquitin-conjugates, and an accumulation of distinct small complexes with α subunits. Our study shows that Hsp70 and Hsp110 chaperones cooperate to promote the folding of individual α subunits and/or their assembly with other CP subunits, Ump1, and Pba1-Pba4 in subsequent steps.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo
13.
Ecol Evol ; 11(24): 18032-18041, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35003655

RESUMEN

A minimum of 13 diverse whitefly species belonging to the Bemisia tabaci (B. tabaci) species complex are known to infest cassava crops in sub-Saharan Africa (SSA), designated as SSA1-13. Of these, the SSA1 and SSA2 are the predominant species colonizing cassava crops in East Africa. The SSA species of B. tabaci harbor diverse bacterial endosymbionts, many of which are known to manipulate insect reproduction. One such symbiont, Arsenophonus, is known to drive its spread by inducing reproductive incompatibility in its insect host and are abundant in SSA species of B. tabaci. However, whether Arsenophonus affects the reproduction of SSA species is unknown. In this study, we investigated both the reproductive compatibility between Arsenophonus infected and uninfected whiteflies by inter-/intraspecific crossing experiments involving the sub-group three haplotypes of the SSA1 (SSA1-SG3), SSA2 species, and their microbial diversity. The number of eggs, nymphs, progenies produced, hatching rate, and survival rate were recorded for each cross. In intra-specific crossing trials, both male and female progenies were produced and thus demonstrated no reproductive incompatibility. However, the total number of eggs laid, nymphs hatched, and the emerged females were low in the intra-species crosses of SSA1-SG3A+, indicating the negative effect of Arsenophonus on whitefly fitness. In contrast, the inter-species crosses between the SSA1-SG3 and SSA2 produced no female progeny and thus demonstrated reproductive incompatibility. The relative frequency of other bacteria colonizing the whiteflies was also investigated using Illumina sequencing of 16S rDNA and diversity indices were recorded. Overall, SSA1-SG3 and SSA2 harbored high microbial diversity with more than 137 bacteria discovered. These results described for the first time the microbiome diversity and the reproductive behaviors of intra-/inter-species of Arsenophonus in whitefly reproduction, which is crucial for understanding the invasion abilities of cassava whiteflies.

14.
J Mol Biol ; 431(15): 2729-2746, 2019 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-31125567

RESUMEN

Members of the Hsp90 and Hsp70 families of molecular chaperones are imp\ortant for the maintenance of protein homeostasis and cellular recovery following environmental stresses, such as heat and oxidative stress. Moreover, the two chaperones can collaborate in protein remodeling and activation. In higher eukaryotes, Hsp90 and Hsp70 form a functionally active complex with Hop (Hsp90-Hsp70 organizing protein) acting as a bridge between the two chaperones. In bacteria, which do not contain a Hop homolog, Hsp90 and Hsp70, DnaK, directly interact during protein remodeling. Although yeast possesses a Hop-like protein, Sti1, Hsp90, and Hsp70 can directly interact in yeast in the absence of Sti1. Previous studies showed that residues in the middle domain of Escherichia coli Hsp90 are important for interaction with the J-protein binding region of DnaK. The results did not distinguish between the possibility that (i) these sites were involved in direct interaction and (ii) the residues in these sites participate in conformational changes which are transduced to other sites on Hsp90 and DnaK that are involved in the direct interaction. Here we show by crosslinking experiments that the direct interaction is between a site in the middle domain of Hsp90 and the J-protein binding site of Hsp70 in both E. coli and yeast. Moreover, J-protein promotes the Hsp70-Hsp90 interaction in the presence of ATP, likely by converting Hsp70 into the ADP-bound conformation. The identification of the protein-protein interaction site is anticipated to lead to a better understanding of the collaboration between the two chaperones in protein remodeling.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfato/metabolismo , Escherichia coli/química , Proteínas de Escherichia coli/química , Proteínas HSP70 de Choque Térmico/química , Proteínas HSP90 de Choque Térmico/química , Modelos Moleculares , Dominios y Motivos de Interacción de Proteínas , Mapas de Interacción de Proteínas , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/química
15.
Curr Genomics ; 9(5): 338-248, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-19471609

RESUMEN

Hsp70 molecular chaperones play a variety of functions in every organism, cell type and organelle, and their activities have been implicated in a number of human pathologies, ranging from cancer to neurodegenerative diseases. The functions, regulations and structure of Hsp70s were intensively studied for about three decades, yet much still remains to be learned about these essential folding enzymes. Genome sequencing efforts revealed that most genomes contain multiple members of the Hsp70 family, some of which co-exist in the same cellular compartment. For example, the human cytosol and nucleus contain six highly homologous Hsp70 proteins while the yeast Saccharomyces cerevisiae contains four canonical Hsp70s and three fungal-specific ribosome-associated and specialized Hsp70s. The reasons and significance of the requirement for multiple Hsp70s is still a subject of debate. It has been postulated for a long time that these Hsp70 isoforms are functionally redundant and differ only by their spatio-temporal expression patterns. However, several studies in yeast and higher eukaryotic organisms challenged this widely accepted idea by demonstrating functional specificity among Hsp70 isoforms. Another element of complexity is brought about by specific cofactors, such as Hsp40s or nucleotide exchange factors that modulate the activity of Hsp70s and their binding to client proteins. Hence, a dynamic network of chaperone/co-chaperone interactions has evolved in each organism to efficiently take advantage of the multiple cellular roles Hsp70s can play. We summarize here our current knowledge of the functions and regulations of these molecular chaperones, and shed light on the known functional specificities among isoforms.

16.
Mol Cell Biol ; 37(11)2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28289075

RESUMEN

Protein aggregation is intimately associated with cellular stress and is accelerated during aging, disease, and cellular dysfunction. Yeast cells rely on the ATP-consuming chaperone Hsp104 to disaggregate proteins together with Hsp70. Hsp110s are ancient and abundant chaperones that form complexes with Hsp70. Here we provide in vivo data showing that the Saccharomyces cerevisiae Hsp110s Sse1 and Sse2 are essential for Hsp104-dependent protein disaggregation. Following heat shock, complexes of Hsp110 and Hsp70 are recruited to protein aggregates and function together with Hsp104 in the disaggregation process. In the absence of Hsp110, targeting of Hsp70 and Hsp104 to the aggregates is impaired, and the residual Hsp104 that still reaches the aggregates fails to disaggregate. Thus, coordinated activities of both Hsp104 and Hsp110 are required to reactivate aggregated proteins. These findings have important implications for the understanding of how eukaryotic cells manage misfolded and amyloid proteins.


Asunto(s)
Proteínas del Choque Térmico HSP110/metabolismo , Proteínas de Choque Térmico/metabolismo , Agregado de Proteínas , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Compartimento Celular , Núcleo Celular/metabolismo , Citosol/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Respuesta al Choque Térmico , Luciferasas/metabolismo , Modelos Biológicos , Fenotipo , Unión Proteica , Temperatura
17.
Biomol NMR Assign ; 9(2): 329-32, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25682100

RESUMEN

Hsp70 chaperone proteins play crucial roles in the cell. Extensive structural and functional studies have been performed for bacterial and mammalian Hsp70s. Ssa1 from Saccharomyces cerevisiae is a member of the Hsp70 family. In vivo and biochemical studies on Ssa1 have revealed that it regulates prion propagation and the cell cycle. However, no structural data has been obtained for Ssa1 up to now. Here we report the almost complete (96 %) (1)H, (13)C, (15)N backbone and side chain NMR assignment of the 18.8 kDa Ssa1 substrate binding domain. The construct includes residues 382-554, which corresponds to the entire substrate binding domain and two following α-helices in homologous structures. The secondary structure predicted from the assigned chemical shifts is consistent with that of homologous Hsp70 substrate binding domains.


Asunto(s)
Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Proteínas HSP70 de Choque Térmico/química , Proteínas HSP70 de Choque Térmico/metabolismo , Espectroscopía de Protones por Resonancia Magnética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Isótopos de Nitrógeno , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Especificidad por Sustrato
18.
Translation (Austin) ; 1(2): e26574, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-26824024

RESUMEN

The cytoplasmic [PSI+] element of budding yeast represents the prion conformation of translation release factor eRF-3 (Sup35). Prions are transmissible agents caused by self-seeded highly ordered aggregates (amyloids). Much interest lies in understanding how prions are developed and transmitted. However, the cellular mechanism involved in the prion clearance is unknown. Recently we have reported that excess misfolded multi-transmembrane protein, Dip5ΔC-v82, eliminates yeast prion [PSI+]. In this study, we showed that the prion loss was caused by enlargement of prion amyloids, unsuitable for transmission, and its efficiency was affected by the cellular balance between the chaperone Hsp70-Ssa1 and Sgt2, a small cochaperone known as a regulator of chaperone targeting to different types of aggregation-prone proteins. The present findings suggest that Sgt2 is titrated by excess Dip5ΔC-v82, and the shortage of Sgt2 led to non-productive binding of Ssa1 on [PSI+] amyloids. Clearance of prion [PSI+] by the imbalance between Ssa1 and Sgt2 might provide a novel array to regulate the release factor function in yeast.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA