Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 73(2): 212-223.e7, 2019 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-30554942

RESUMEN

Cohesin subunits are frequently mutated in cancer, but how they function as tumor suppressors is unknown. Cohesin mediates sister chromatid cohesion, but this is not always perturbed in cancer cells. Here, we identify a previously unknown role for cohesin. We find that cohesin is required to repress transcription at DNA double-strand breaks (DSBs). Notably, cohesin represses transcription at DSBs throughout interphase, indicating that this is distinct from its known role in mediating DNA repair through sister chromatid cohesion. We identified a cancer-associated SA2 mutation that supports sister chromatid cohesion but is unable to repress transcription at DSBs. We further show that failure to repress transcription at DSBs leads to large-scale genome rearrangements. Cancer samples lacking SA2 display mutational patterns consistent with loss of this pathway. These findings uncover a new function for cohesin that provides insights into its frequent loss in cancer.


Asunto(s)
Neoplasias Óseas/genética , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , Roturas del ADN de Doble Cadena , Inestabilidad Genómica , Interfase , Osteosarcoma/genética , Transcripción Genética , Antígenos Nucleares/genética , Antígenos Nucleares/metabolismo , Neoplasias Óseas/metabolismo , Neoplasias Óseas/patología , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Proteínas Cromosómicas no Histona/metabolismo , Segregación Cromosómica , Reparación del ADN , Regulación hacia Abajo , Fase G1 , Fase G2 , Regulación Neoplásica de la Expresión Génica , Humanos , Osteosarcoma/metabolismo , Osteosarcoma/patología , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Cohesinas
2.
J Biol Chem ; 300(6): 107341, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38705393

RESUMEN

Inactivating mutations of genes encoding the cohesin complex are common in a wide range of human cancers. STAG2 is the most commonly mutated subunit. Here we report the impact of stable correction of endogenous, naturally occurring STAG2 mutations on gene expression, 3D genome organization, chromatin loops, and Polycomb signaling in glioblastoma multiforme (GBM). In two GBM cell lines, correction of their STAG2 mutations significantly altered the expression of ∼10% of all expressed genes. Virtually all the most highly regulated genes were negatively regulated by STAG2 (i.e., expressed higher in STAG2-mutant cells), and one of them-HEPH-was regulated by STAG2 in uncultured GBM tumors as well. While STAG2 correction had little effect on large-scale features of 3D genome organization (A/B compartments, TADs), STAG2 correction did alter thousands of individual chromatin loops, some of which controlled the expression of adjacent genes. Loops specific to STAG2-mutant cells, which were regulated by STAG1-containing cohesin complexes, were very large, supporting prior findings that STAG1-containing cohesin complexes have greater loop extrusion processivity than STAG2-containing cohesin complexes and suggesting that long loops may be a general feature of STAG2-mutant cancers. Finally, STAG2 mutation activated Polycomb activity leading to increased H3K27me3 marks, identifying Polycomb signaling as a potential target for therapeutic intervention in STAG2-mutant GBM tumors. Together, these findings illuminate the landscape of STAG2-regulated genes, A/B compartments, chromatin loops, and pathways in GBM, providing important clues into the largely still unknown mechanism of STAG2 tumor suppression.


Asunto(s)
Proteínas de Ciclo Celular , Cromatina , Regulación Neoplásica de la Expresión Génica , Glioblastoma , Mutación , Proteínas del Grupo Polycomb , Transducción de Señal , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Cromatina/genética , Proteínas del Grupo Polycomb/metabolismo , Proteínas del Grupo Polycomb/genética , Línea Celular Tumoral , Antígenos Nucleares/genética , Antígenos Nucleares/metabolismo , Genoma Humano , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Cohesinas
3.
Cell Mol Life Sci ; 81(1): 100, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38388697

RESUMEN

Cell division is a crucial process, and one of its essential steps involves copying the genetic material, which is organized into structures called chromosomes. Before a cell can divide into two, it needs to ensure that each newly copied chromosome is paired tightly with its identical twin. This pairing is maintained by a protein complex known as cohesin, which is conserved in various organisms, from single-celled ones to humans. Cohesin essentially encircles the DNA, creating a ring-like structure to handcuff, to keep the newly synthesized sister chromosomes together in pairs. Therefore, chromosomal cohesion and separation are fundamental processes governing the attachment and segregation of sister chromatids during cell division. Metaphase-to-anaphase transition requires dissolution of cohesins by the enzyme Separase. The tight regulation of these processes is vital for safeguarding genomic stability. Dysregulation in chromosomal cohesion and separation resulting in aneuploidy, a condition characterized by an abnormal chromosome count in a cell, is strongly associated with cancer. Aneuploidy is a recurring hallmark in many cancer types, and abnormalities in chromosomal cohesion and separation have been identified as significant contributors to various cancers, such as acute myeloid leukemia, myelodysplastic syndrome, colorectal, bladder, and other solid cancers. Mutations within the cohesin complex have been associated with these cancers, as they interfere with chromosomal segregation, genome organization, and gene expression, promoting aneuploidy and contributing to the initiation of malignancy. In summary, chromosomal cohesion and separation processes play a pivotal role in preserving genomic stability, and aberrations in these mechanisms can lead to aneuploidy and cancer. Gaining a deeper understanding of the molecular intricacies of chromosomal cohesion and separation offers promising prospects for the development of innovative therapeutic approaches in the battle against cancer.


Asunto(s)
Proteínas de Ciclo Celular , Neoplasias , Humanos , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Cohesinas , Cromátides/genética , Cromátides/metabolismo , Carcinogénesis/genética , Transformación Celular Neoplásica , Neoplasias/genética , Segregación Cromosómica , Aneuploidia , Inestabilidad Genómica
4.
Int J Mol Sci ; 25(2)2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38279279

RESUMEN

The human STAG2 protein is an essential component of the cohesin complex involved in cellular processes of gene expression, DNA repair, and genomic integrity. Somatic mutations in the STAG2 sequence have been associated with various types of cancer, while congenital variants have been linked to developmental disorders such as Mullegama-Klein-Martinez syndrome, X-linked holoprosencephaly-13, and Cornelia de Lange syndrome. In the cohesin complex, the direct interaction of STAG2 with DNA and with NIPBL, RAD21, and CTCF proteins has been described. The function of STAG2 within the complex is still unknown, but it is related to its DNA binding capacity and is modulated by its binding to the other three proteins. Every missense variant described for STAG2 is located in regions involved in one of these interactions. In the present work, we model the structure of 12 missense variants described for STAG2, as well as two other variants of NIPBl and two of RAD21 located at STAG2 interaction zone, and then analyze their behavior through molecular dynamic simulations, comparing them with the same simulation of the wild-type protein. This will allow the effects of variants to be rationalized at the atomic level and provide clues as to how STAG2 functions in the cohesin complex.


Asunto(s)
Cohesinas , Discapacidades del Desarrollo , Humanos , Factor de Unión a CCCTC/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cohesinas/genética , Síndrome de Cornelia de Lange/genética , ADN , Mutación , Mutación Missense , Discapacidades del Desarrollo/genética
5.
J Obstet Gynaecol ; 43(1): 2161352, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36708516

RESUMEN

Adenomyosis is a condition characterised by the invasion of endometrial tissues into the uterine myometrium, the molecular pathogenesis of which remains incompletely elucidated. Lesion profiling with next-generation sequencing (NGS) can lead to the identification of previously unanticipated causative genes and the detection of therapeutically actionable genetic changes. Using an NGS panel that included 275 cancer susceptibility genes, this study examined the occurrence and frequency of somatic mutations in adenomyotic tissue specimens collected from 17 women. Extracted DNA was enriched using targeted formalin-fixed paraffin-embedded tissue cores prior to the identification of lesion-specific variants. The results revealed that KRAS and AT-rich interactive domain 1A (ARID1A) were the two most frequently mutated genes (mutation frequencies: 24% and 12%, respectively). Notably, endometrial atypical hyperplasia did not involve adenomyotic areas. We also identified, for the first time, two potentially pathogenic mutations in the F-box/WD repeat-containing protein 7 (FBXW7) and cohesin subunit SA-2 (STAG2) genes. These findings indicate that mutations in the KRAS, ARID1A, FBXW7 and STAG2 genes may play a critical role in the pathogenesis of adenomyosis. Additional studies are needed to assess whether the utilisation of oncogenic driver mutations can inform the surveillance of patients with adenomyosis who had not undergone hysterectomy.Impact statementWhat is already known on this subject? Although somatic point mutations in the KRAS oncogene have been recently detected in adenomyosis, the molecular underpinnings of this condition remains incompletely elucidated. Lesion profiling with next-generation sequencing (NGS) can lead to the identification of previously unanticipated causative genes and the detection of therapeutically actionable genetic changes.What do the results of this study add? The results of NGS revealed that KRAS and AT-rich interactive domain 1A (ARID1A) were the two most frequently mutated genes (mutation frequencies: 24% and 12%, respectively). We also identified, for the first time, two potentially pathogenic mutations in the F-box/WD repeat-containing protein 7 (FBXW7) and cohesin subunit SA-2 (STAG2) genes.What are the implications of these findings for clinical practice and/or further research? The utilisation of oncogenic driver mutations has the potential to inform the surveillance of patients with adenomyosis who had not undergone hysterectomy.


Asunto(s)
Adenomiosis , Neoplasias Pulmonares , Humanos , Femenino , Proteína 7 que Contiene Repeticiones F-Box-WD/genética , Adenomiosis/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Mutación , Secuenciación de Nucleótidos de Alto Rendimiento
6.
J Biol Chem ; 294(22): 8760-8772, 2019 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-31010829

RESUMEN

The cohesin complex regulates sister chromatid cohesion, chromosome organization, gene expression, and DNA repair. Cohesin is a ring complex composed of four core subunits and seven regulatory subunits. In an effort to comprehensively identify additional cohesin-interacting proteins, we used gene editing to introduce a dual epitope tag into the endogenous allele of each of 11 known components of cohesin in cultured human cells, and we performed MS analyses on dual-affinity purifications. In addition to reciprocally identifying all known components of cohesin, we found that cohesin interacts with a panoply of splicing factors and RNA-binding proteins (RBPs). These included diverse components of the U4/U6.U5 tri-small nuclear ribonucleoprotein complex and several splicing factors that are commonly mutated in cancer. The interaction between cohesin and splicing factors/RBPs was RNA- and DNA-independent, occurred in chromatin, was enhanced during mitosis, and required RAD21. Furthermore, cohesin-interacting splicing factors and RBPs followed the cohesin cycle and prophase pathway of cell cycle-regulated interactions with chromatin. Depletion of cohesin-interacting splicing factors and RBPs resulted in aberrant mitotic progression. These results provide a comprehensive view of the endogenous human cohesin interactome and identify splicing factors and RBPs as functionally significant cohesin-interacting proteins.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Mitosis , Proteómica , Factores de Empalme de ARN/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Microscopía Fluorescente , Unión Proteica , Mapas de Interacción de Proteínas , Interferencia de ARN , Factores de Empalme de ARN/antagonistas & inhibidores , Factores de Empalme de ARN/genética , ARN Interferente Pequeño/metabolismo , Proteínas de Unión al ARN/antagonistas & inhibidores , Proteínas de Unión al ARN/genética , Cohesinas
7.
J Transl Med ; 18(1): 339, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32883299

RESUMEN

BACKGROUND: The cohesin complex plays a major role in folding the human genome into 3D structural domains. Mutations in members of the cohesin complex are known early drivers of myelodysplastic syndromes (MDS) and acute myeloid leukaemia (AML), with STAG2 the most frequently mutated complex member. METHODS: Here we use functional genomics (RNA-seq, ChIP-seq and HiChIP) to investigate the impact of chronic STAG2 loss on three-dimensional genome structure and transcriptional programming in a clinically relevant model of chronic STAG2 loss. RESULTS: The chronic loss of STAG2 led to loss of smaller loop domains and the maintenance/formation of large domains that, in turn, led to altered genome compartmentalisation. These changes in genome structure resulted in altered gene expression, including deregulation of the HOXA locus and the MAPK signalling pathway, resulting in increased sensitivity to MEK inhibition. CONCLUSIONS: The altered genomic architecture driven by the chronic loss of STAG2 results in altered gene expression that may contribute to leukaemogenesis and may be therapeutically targeted.


Asunto(s)
Leucemia Mieloide Aguda , Síndromes Mielodisplásicos , Proteínas de Ciclo Celular/genética , Cromatina/genética , Humanos , Leucemia Mieloide Aguda/genética , Mutación
8.
BMC Cancer ; 20(1): 3, 2020 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-31898537

RESUMEN

BACKGROUND: Ewing sarcoma is a malignancy of primitive cells, possibly of mesenchymal origin. It is probable that genetic perturbations other than EWS-FLI1 cooperate with it to produce the tumor. Sequencing studies identified STAG2 mutations in approximately 15% of cases in humans. In the present study, we hypothesize that loss of Stag2 cooperates with EWS-FLI1 in generating sarcomas derived from murine mesenchymal stem cells (MSCs). METHODS: Mice bearing an inducible EWS-FLI1 transgene were crossed to p53-/- mice in pure C57/Bl6 background. MSCs were derived from the bone marrow of the mice. EWS-FLI1 induction and Stag2 knockdown were achieved in vitro by adenovirus-Cre and shRNA-bearing pGIPZ lentiviral infection, respectively. The cells were then treated with ionizing radiation to 10 Gy. Anchorage independent growth in vitro was assessed by soft agar assays. Cellular migration and invasion were evaluated by transwell assays. Cells were injected with Matrigel intramuscularly into C57/Bl6 mice to test for tumor formation. RESULTS: Primary murine MSCs with the genotype EWS-FLI1 p53-/- were resistant to transformation and did not form tumors in syngeneic mice without irradiation. Stag2 inhibition increased the efficiency and speed of sarcoma formation significantly in irradiated EWS-FLI1 p53-/- MSCs. The efficiency of tumor formation was 91% for cells in mice injected with Stag2-repressed cells and 22% for mice receiving cells without Stag2 inhibition (p < .001). Stag2 knockdown reduced survival of mice in Kaplan-Meier analysis (p < .001). It also increased MSC migration and invasion in vitro but did not affect proliferation rate or aneuploidy. CONCLUSION: Loss of Stag2 has a synergistic effect with EWS-FLI1 in the production of sarcomas from murine MSCs, but the mechanism may not relate to increased proliferation or chromosomal instability. Primary murine MSCs are resistant to transformation, and the combination of p53 null mutation, EWS-FLI1, and Stag2 inhibition does not confer immediate conversion of MSCs to sarcomas. Irradiation is necessary in this model, suggesting that perturbations of other genes beside Stag2 and p53 are likely to be essential in the development of EWS-FLI1-driven sarcomas from MSCs.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Células Madre Mesenquimatosas/metabolismo , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Proteína Proto-Oncogénica c-fli-1/genética , Proteína Proto-Oncogénica c-fli-1/metabolismo , Proteína EWS de Unión a ARN/genética , Proteína EWS de Unión a ARN/metabolismo , Animales , Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular , Aberraciones Cromosómicas , Modelos Animales de Enfermedad , Expresión Génica , Genes p53 , Ratones , Ratones Noqueados , Ratones Transgénicos , Interferencia de ARN , Sarcoma de Ewing/etiología , Sarcoma de Ewing/metabolismo , Sarcoma de Ewing/patología
9.
J Biol Chem ; 293(3): 1054-1069, 2018 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-29175904

RESUMEN

Proper chromosome alignment and segregation during mitosis depend on cohesion between sister chromatids, mediated by the cohesin protein complex, which also plays crucial roles in diverse genome maintenance pathways. Current models attribute DNA binding by cohesin to entrapment of dsDNA by the cohesin ring subunits (SMC1, SMC3, and RAD21 in humans). However, the biophysical properties and activities of the fourth core cohesin subunit SA2 (STAG2) are largely unknown. Here, using single-molecule atomic force and fluorescence microscopy imaging as well as fluorescence anisotropy measurements, we established that SA2 binds to both dsDNA and ssDNA, albeit with a higher binding affinity for ssDNA. We observed that SA2 can switch between the 1D diffusing (search) mode on dsDNA and stable binding (recognition) mode at ssDNA gaps. Although SA2 does not specifically bind to centromeric or telomeric sequences, it does recognize DNA structures often associated with DNA replication and double-strand break repair, such as a double-stranded end, single-stranded overhang, flap, fork, and ssDNA gap. SA2 loss leads to a defect in homologous recombination-mediated DNA double-strand break repair. These results suggest that SA2 functions at intermediate DNA structures during DNA transactions in genome maintenance pathways. These findings have important implications for understanding the function of cohesin in these pathways.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Proteínas de Ciclo Celular/química , Proteínas Cromosómicas no Histona/química , Reparación del ADN/genética , Reparación del ADN/fisiología , Replicación del ADN/fisiología , Polarización de Fluorescencia , Inestabilidad Genómica/genética , Inestabilidad Genómica/fisiología , Microscopía de Fuerza Atómica , Microscopía Fluorescente , Unión Proteica/genética , Unión Proteica/fisiología , Cohesinas
10.
Cancer ; 125(8): 1357-1364, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30602061

RESUMEN

BACKGROUND: Up to one-third of patients with localized Ewing sarcoma (ES) develop recurrent disease, but current biomarkers do not accurately identify this high-risk group. Therefore, the objective of this study was to determine the utility of mutational burden in predicting outcomes in patients with localized ES. METHODS: Clinical and genomic data from 99 patients with ES, of whom 63 had localized disease at diagnosis, were obtained from the cBioPortal for Cancer Genomics. Genomic data included the type and number of somatic mutations using cBioPortal mutation calling. Primary endpoints were overall survival (OS) and the time to progression (TTP). RESULTS: Patients had a median number of 11 somatic mutations. Patients were stratified according to whether they had a lower or higher mutational burden if they had ≤11 or >11 mutations, respectively. Higher mutational burden was significantly associated with inferior OS and TTP, a finding that was confirmed by univariate and multivariable analyses. In patients who had localized disease at diagnosis, higher mutational burden was the only variable significantly associated with inferior OS and TTP. The presence of a mutation in either stromal antigen 2 (STAG2) or tumor protein 53 (TP53), both of which were correlated previously with shorter OS in patients with ES, were significantly associated with higher mutational burden. Upon stratifying patients who had localized disease based on a standard panel of cancer genes, higher risk stratification was correlated significantly with inferior TTP and trended toward significance with inferior OS. CONCLUSIONS: Patients who have localized ES and a higher mutational burden have inferior OS and TTP compared with those who have lower mutation burden. The current findings suggest that the somatic mutation burden can be used to better risk stratify these patients and to guide clinical decision making.


Asunto(s)
Neoplasias Óseas/genética , Proteínas de Ciclo Celular/genética , Mutación , Sarcoma de Ewing/genética , Proteína p53 Supresora de Tumor/genética , Adolescente , Biomarcadores de Tumor/genética , Femenino , Humanos , Masculino , Pronóstico , Medición de Riesgo , Análisis de Supervivencia
11.
Genet Med ; 21(3): 663-675, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30158690

RESUMEN

PURPOSE: Defects in the cohesin pathway are associated with cohesinopathies, notably Cornelia de Lange syndrome (CdLS). We aimed to delineate pathogenic variants in known and candidate cohesinopathy genes from a clinical exome perspective. METHODS: We retrospectively studied patients referred for clinical exome sequencing (CES, N = 10,698). Patients with causative variants in novel or recently described cohesinopathy genes were enrolled for phenotypic characterization. RESULTS: Pathogenic or likely pathogenic single-nucleotide and insertion/deletion variants (SNVs/indels) were identified in established disease genes including NIPBL (N = 5), SMC1A (N = 14), SMC3 (N = 4), RAD21 (N = 2), and HDAC8 (N = 8). The phenotypes in this genetically defined cohort skew towards the mild end of CdLS spectrum as compared with phenotype-driven cohorts. Candidate or recently reported cohesinopathy genes were supported by de novo SNVs/indels in STAG1 (N = 3), STAG2 (N = 5), PDS5A (N = 1), and WAPL (N = 1), and one inherited SNV in PDS5A. We also identified copy-number deletions affecting STAG1 (two de novo, one of unknown inheritance) and STAG2 (one of unknown inheritance). Patients with STAG1 and STAG2 variants presented with overlapping features yet without characteristic facial features of CdLS. CONCLUSION: CES effectively identified disease-causing alleles at the mild end of the cohensinopathy spectrum and enabled characterization of candidate disease genes.


Asunto(s)
Variación Biológica Poblacional/genética , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , Adolescente , Alelos , Antígenos Nucleares/genética , Proteínas Portadoras/genética , Niño , Preescolar , Estudios de Cohortes , Síndrome de Cornelia de Lange/diagnóstico , Síndrome de Cornelia de Lange/genética , Exoma/genética , Femenino , Frecuencia de los Genes/genética , Heterogeneidad Genética , Humanos , Mutación INDEL/genética , Masculino , Mutación , Proteínas Nucleares/genética , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Proteínas Proto-Oncogénicas/genética , Estudios Retrospectivos , Secuenciación del Exoma/métodos , Cohesinas
12.
Rinsho Ketsueki ; 59(3): 315-322, 2018.
Artículo en Japonés | MEDLINE | ID: mdl-29618691

RESUMEN

An 18-year-old man was diagnosed with Epstein-Barr virus (EBV) -associated hemophagocytic syndrome (HPS) and treated with prednisolone (PSL) at a previous hospital. During PSL tapering, the HPS symptoms reappeared, and the patient was referred to our hospital. Increased PSL improved the symptoms, but the EBV infection remained unresolved. At age 20, he was admitted to our hospital for newly developed pneumonia and diagnosed with myelodysplastic syndrome (refractory cytopenia with multilineage dysplasia) (MDS-RCMD; normal karyotype, IPSS: Int-1) by bone marrow examination. MDS remission was achieved following bone marrow transplantation from an unrelated donor, and he is currently alive without relapse. The patient's father had also been diagnosed with MDS when he was young and died from leukoencephalopathy at approximately 50 years old. These observations support a diagnosis of familial MDS. GATA2 mutation p.R230Hfs*44 was identified in both bone marrow and control cells (buccal swab) at MDS diagnosis, and he was diagnosed with monocytopenia and mycobacterial infection (MonoMAC) syndrome. Furthermore, an acquired STAG2 mutation (splicing site change, c.820-2A>G) in the bone marrow cells was also identified, which might contribute to MDS progression.


Asunto(s)
Infecciones por Virus de Epstein-Barr/complicaciones , Deficiencia GATA2/complicaciones , Síndromes Mielodisplásicos/etiología , Adolescente , Médula Ósea , Trasplante de Médula Ósea , Análisis Mutacional de ADN , Factor de Transcripción GATA2/genética , Humanos , Masculino , Persona de Mediana Edad , Síndromes Mielodisplásicos/terapia , Inducción de Remisión , Adulto Joven
13.
Biochim Biophys Acta ; 1866(1): 1-11, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27207471

RESUMEN

Cohesin is a highly-conserved protein complex that plays important roles in sister chromatid cohesion, chromatin structure, gene expression, and DNA repair. In humans, cohesin is a ubiquitously expressed, multi-subunit protein complex composed of core subunits SMC1A, SMC3, RAD21, STAG1/2 and regulatory subunits WAPL, PDS5A/B, CDCA5, NIPBL, and MAU2. Recent studies have demonstrated that genes encoding cohesin subunits are somatically mutated in a wide range of human cancers. STAG2 is the most commonly mutated subunit, and in a recent analysis was identified as one of only 12 genes that are significantly mutated in four or more cancer types. In this review we summarize the findings reported to date and comment on potential functional implications of cohesin mutation in the pathogenesis of human cancer.


Asunto(s)
Antígenos Nucleares/genética , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , Complejos Multiproteicos/genética , Neoplasias/genética , Reparación del ADN/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Mutación/genética , Neoplasias/patología , Intercambio de Cromátides Hermanas/genética , Cohesinas
15.
Am J Med Genet A ; 173(5): 1319-1327, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28296084

RESUMEN

The cohesin complex is an evolutionarily conserved multi-subunit protein complex which regulates sister chromatid cohesion during mitosis and meiosis. Additionally, the cohesin complex regulates DNA replication, DNA repair, and transcription. The core of the complex consists of four subunits: SMC1A, SMC3, RAD21, and STAG1/2. Loss-of-function mutations in many of these proteins have been implicated in human developmental disorders collectively termed "cohesinopathies." Through clinical exome sequencing (CES) of an 8-year-old girl with a clinical history of global developmental delay, microcephaly, microtia with hearing loss, language delay, ADHD, and dysmorphic features, we describe a heterozygous de novo variant (c.205C>T; p.(Arg69*)) in the integral cohesin structural protein, STAG2. This variant is associated with decreased STAG2 protein expression. The analyses of metaphase spreads did not exhibit premature sister chromatid separation; however, delayed sister chromatid cohesion was observed. To further support the pathogenicity of STAG2 variants, we identified two additional female cases from the DECIPHER research database with mutations in STAG2 and phenotypes similar to our patient. Interestingly, the clinical features of these three cases are remarkably similar to those observed in other well-established cohesinopathies. Herein, we suggest that STAG2 is a dosage-sensitive gene and that heterozygous loss-of-function variants lead to a cohesinopathy.


Asunto(s)
Antígenos Nucleares/genética , Anomalías Congénitas/genética , Discapacidades del Desarrollo/genética , Microcefalia/genética , Antígenos Nucleares/biosíntesis , Proteínas de Ciclo Celular/genética , Niño , Proteínas Cromosómicas no Histona/genética , Anomalías Congénitas/fisiopatología , Discapacidades del Desarrollo/fisiopatología , Femenino , Regulación de la Expresión Génica , Heterocigoto , Humanos , Microcefalia/fisiopatología , Cohesinas
16.
J Oral Pathol Med ; 46(3): 188-193, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27341316

RESUMEN

BACKGROUND: Cohesin complex is responsible for sister chromatid cohesion. STAG1/STAG2 is part of the complex, which is regulated by PDS5B. Alterations in these genes were described in tumors. PDS5B is a negative regulator of cell proliferation. We aimed to assess molecular alterations in these genes in oral squamous cell carcinoma (OSCC) and predict their expression by the expression of 84 cell cycle genes. In addition, we investigated whether pds5b protein expression impacted ki-67 and p53 immunopositivity. METHODS: We assessed loss of heterozygosity (LOH) at STAG1 and STAG2 loci in 15 OSCC using three polymorphic markers. Associations between the immunoexpression of pds5b and ki-67 and p53 were tested in 62 samples. Differences between transcriptional levels of STAG1, STAG2, and PDS5B between OSCC and normal oral mucosa (NM) were evaluated by qPCR. An 84 cell cycle genes qPCR array was carried with OSCC samples, and STAG1, STAG2, and PDS5B were independently used as response variables in multiple linear regression models. RESULTS: Loss of heterozygosity in at least one marker was observed in three samples. pds5b, p53, and ki-67 were highly expressed, and no association was found between pds5b immunoexpression and ki-67 or p53 (P > 0.05). OSCC and NM showed similar transcriptional levels of STAG1, STAG2, and PDS5B. STAG1 and CUL3 expression seem to be related (P = 0.004). CONCLUSIONS: There is LOH at STAG1 and STAG2 loci in OSCC, but OSCC and NM showed similar transcriptional levels of STAG1, STAG2, and PDS5B. pds5b immunoexpression in OSCC was high, but it was not associated with proliferation cell index.


Asunto(s)
Antígenos Nucleares/genética , Biomarcadores de Tumor/genética , Carcinoma de Células Escamosas/genética , Proteínas de Unión al ADN/metabolismo , Neoplasias de la Boca/genética , Proteínas Nucleares/genética , Factores de Transcripción/metabolismo , Antígenos Nucleares/metabolismo , Biomarcadores de Tumor/metabolismo , Carcinoma de Células Escamosas/metabolismo , Proteínas de Ciclo Celular , Humanos , Inmunohistoquímica , Antígeno Ki-67/metabolismo , Pérdida de Heterocigocidad , Neoplasias de la Boca/metabolismo , Proteínas Nucleares/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteína p53 Supresora de Tumor/metabolismo
17.
J Cell Sci ; 127(Pt 19): 4225-33, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-25074805

RESUMEN

Mutations in the STAG2 gene are present in ∼20% of tumors from different tissues of origin. STAG2 encodes a subunit of the cohesin complex, and tumors with loss-of-function mutations are usually aneuploid and display elevated frequencies of lagging chromosomes during anaphase. Lagging chromosomes are a hallmark of chromosomal instability (CIN) arising from persistent errors in kinetochore-microtubule (kMT) attachment. To determine whether the loss of STAG2 increases the rate of formation of kMT attachment errors or decreases the rate of their correction, we examined mitosis in STAG2-deficient cells. STAG2 depletion does not impair bipolar spindle formation or delay mitotic progression. Instead, loss of STAG2 permits excessive centromere stretch along with hyperstabilization of kMT attachments. STAG2-deficient cells display mislocalization of Bub1 kinase, Bub3 and the chromosome passenger complex. Importantly, strategically destabilizing kMT attachments in tumor cells harboring STAG2 mutations by overexpression of the microtubule-destabilizing enzymes MCAK (also known as KIF2C) and Kif2B decreased the rate of lagging chromosomes and reduced the rate of chromosome missegregation. These data demonstrate that STAG2 promotes the correction of kMT attachment errors to ensure faithful chromosome segregation during mitosis.


Asunto(s)
Antígenos Nucleares/metabolismo , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Mitosis/fisiología , Aneuploidia , Antígenos Nucleares/genética , Proteínas de Ciclo Celular , Inestabilidad Cromosómica , Humanos
18.
Clin Genet ; 89(1): 68-73, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25677961

RESUMEN

The Xq25 duplications syndrome has recently emerged as a distinct clinical entity. We report here on six new patients belonging to two unrelated families and harbouring an Xq25 microduplication detected by array CGH. Similarly to previously reported cases, the phenotype of our patients is characterized by delayed milestones, speech disturbance, intellectual disability, abnormal behaviours and a characteristic facial dysmorphism. The common duplicated interval allowed further refinement of the shortest region of overlap to 173 kb, including only one gene, STAG2, which encodes a component of the cohesin complex. We suggest that increased STAG2 gene copy number and dysregulation of its downstream target genes may be responsible for the specific clinical findings of this syndrome. Therefore, the Xq25 microduplication could be considered as a novel cohesinopathy, thus increasing the group of these disorders.


Asunto(s)
Antígenos Nucleares/genética , Fenotipo , Trisomía/diagnóstico , Trisomía/genética , Adolescente , Adulto , Encéfalo/metabolismo , Encéfalo/fisiopatología , Proteínas de Ciclo Celular , Niño , Preescolar , Cromosomas Humanos X/genética , Hibridación Genómica Comparativa , Electroencefalografía , Facies , Femenino , Humanos , Hibridación Fluorescente in Situ , Lactante , Imagen por Resonancia Magnética , Masculino , Aberraciones Cromosómicas Sexuales , Inactivación del Cromosoma X , Adulto Joven
19.
Am J Med Genet A ; 164A(8): 1923-30, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24733578

RESUMEN

Typical Xq25 duplications are large and associated with heterogeneous phenotypes. Recently, small duplications involving this genomic region and encompassing the GRIA3 and STAG2 genes have been reported. These Xq25 microduplications are associated with a recognizable syndrome including intellectual disability and distinctive facial appearance. We report on Xq25 microduplications in two unrelated families identified by array comparative genomic hybridization. In both families, the genomic imbalances segregated with the disease in male individuals, while the phenotypes of the heterozygous females appeared to be modulated by their X-inactivation pattern. These rearrangements of about 600 kb involved only three genes: THOC2, XIAP, and STAG2. Further characterization by FISH analyses showed tandem duplication in the Xq25 locus of these genes. These data refine the Xq25 candidate region, identifying a minimal duplicated region of about 270 kb encompassing the XIAP and STAG2 genes. We discuss the function of the genes in the rearrangements and their involvement in the pathogenesis of this disorder.


Asunto(s)
Antígenos Nucleares/genética , Duplicación Cromosómica , Trisomía/diagnóstico , Trisomía/genética , Proteína Inhibidora de la Apoptosis Ligada a X/genética , Adolescente , Adulto , Anciano , Encéfalo/patología , Proteínas de Ciclo Celular , Niño , Preescolar , Puntos de Rotura del Cromosoma , Mapeo Cromosómico , Cromosomas Humanos X/genética , Hibridación Genómica Comparativa , Exones , Facies , Femenino , Estudios de Asociación Genética , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Linaje , Fenotipo , Aberraciones Cromosómicas Sexuales , Síndrome , Adulto Joven
20.
Artículo en Inglés | MEDLINE | ID: mdl-38963118

RESUMEN

BACKGROUND: Platinum-based compounds are commonly used as an initial treatment for colorectal cancer (CRC). However, the development of drug resistance in patients with CRC necessitates the administration of high drug concentrations during clinical treatment, thereby augmenting the toxicity of platinum-based compounds and increasing the mortality rate. STAG2 is a significantly associated drug-resistance gene in many cancers, but it has not been studied in colorectal cancer. Therefore, the present study aimed to investigate the role and drug sensitivity of the cisplatin-resistant gene STAG2. METHODS: The effects of STAG2 on drug resistance and survival rates of patients with CRC were examined using the Genomics of Drug Sensitivity in Cancer (GDSC) and Kaplan-Meier (KM) plotter databases. Subsequently, a sh-STAG2-HT-29 cell line was generated using a knockdown test of STAG2, and the half-maximal inhibitory concentration (IC50) of the two cell lines was determined using a cell viability test. We then used various techniques, including the Cell Counting Kit-8 (CCK-8), plate cloning, 5-ethynyl-2'-deoxyuridine (EdU) fluorescence staining, flow cytometry for cell cycle detection, the scar assay, the Transwell invasion assay, and Annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI) fluorescence staining for apoptosis detection, to investigate the functionality of the four subgroups of cancer cell lines. Additionally, Western blotting (WB) was used to identify the potential pathways associated with the observed functional alterations. Finally, the phenotype, tumor weight, mouse weight, tumor volume, and tumor tissue structure of the developed tumors were assessed using the subcutaneous tumor formation method. RESULTS: Database analysis indicated that STAG2 plays a role in facilitating drug resistance among individuals with CRC. Furthermore, mutations in this gene lead to increased sensitivity to cisplatin, and its overexpression was associated with an unfavorable prognosis. Following the successful development of STAG2 knockdown cells, differences in IC50 concentrations were observed between HT-29 and sh-STAG2-HT-29 cells. A treatment concentration of 10 µM cisplatin was selected, and the proliferation, migration, and invasion capabilities of cancer cells decreased after STAG2 knockdown. Additionally, the sensitivity of the cells to cisplatin therapy was increased, which was potentially mediated by the epithelial-mesenchymal transition (EMT) pathway. In mice, the tumorigenic potential of HT-29 cells was reduced by STAG2 knockdown, accompanied by a decrease in resistance to cisplatin therapy. CONCLUSION: STAG2 acts as a proto-oncogene in CRC, and its resistance to cisplatin therapy is more prominent. This study confirmed the role of STAG2 in CRC and provided a theoretical basis for the further development of STAG2 as an auxiliary criterion for determining dosage when patients are treated with platinum drugs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA