Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 598
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(7): 1757-1774.e14, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33761328

RESUMEN

The central pathogen-immune interface in tuberculosis is the granuloma, a complex host immune structure that dictates infection trajectory and physiology. Granuloma macrophages undergo a dramatic transition in which entire epithelial modules are induced and define granuloma architecture. In tuberculosis, relatively little is known about the host signals that trigger this transition. Using the zebrafish-Mycobacterium marinum model, we identify the basis of granuloma macrophage transformation. Single-cell RNA-sequencing analysis of zebrafish granulomas and analysis of Mycobacterium tuberculosis-infected macaques reveal that, even in the presence of robust type 1 immune responses, countervailing type 2 signals associate with macrophage epithelialization. We find that type 2 immune signaling, mediated via stat6, is absolutely required for epithelialization and granuloma formation. In mixed chimeras, stat6 acts cell autonomously within macrophages, where it is required for epithelioid transformation and incorporation into necrotic granulomas. These findings establish the signaling pathway that produces the hallmark structure of mycobacterial infection.


Asunto(s)
Granuloma/patología , Inmunidad/fisiología , Infecciones por Mycobacterium no Tuberculosas/patología , Animales , Animales Modificados Genéticamente/genética , Animales Modificados Genéticamente/metabolismo , Cadherinas/genética , Cadherinas/metabolismo , Diferenciación Celular , Modelos Animales de Enfermedad , Células Epitelioides/citología , Células Epitelioides/inmunología , Células Epitelioides/metabolismo , Granuloma/inmunología , Granuloma/metabolismo , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Interferón gamma/metabolismo , Interleucina-12/metabolismo , Macrófagos/citología , Macrófagos/inmunología , Macrófagos/metabolismo , Infecciones por Mycobacterium no Tuberculosas/inmunología , Mycobacterium marinum/aislamiento & purificación , Mycobacterium marinum/fisiología , Necrosis , ARN Guía de Kinetoplastida/metabolismo , Receptores de Interleucina-4/antagonistas & inhibidores , Receptores de Interleucina-4/genética , Receptores de Interleucina-4/metabolismo , Factor de Transcripción STAT6/antagonistas & inhibidores , Factor de Transcripción STAT6/genética , Factor de Transcripción STAT6/metabolismo , Transducción de Señal , Pez Cebra/crecimiento & desarrollo , Pez Cebra/metabolismo
2.
Immunity ; 57(3): 513-527.e6, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38262419

RESUMEN

Accumulation of senescent cells in organs and tissues is a hallmark of aging and known to contribute to age-related diseases. Although aging-associated immune dysfunction, or immunosenescence, is known to contribute to this process, the underlying mechanism remains elusive. Here, we report that type 2 cytokine signaling deficiency accelerated aging and, conversely, that the interleukin-4 (IL-4)-STAT6 pathway protected macrophages from senescence. Mechanistically, activated STAT6 promoted the expression of genes involved in DNA repair both via homologous recombination and Fanconi anemia pathways. Conversely, STAT6 deficiency induced release of nuclear DNA into the cytoplasm to promote tissue inflammation and organismal aging. Importantly, we demonstrate that IL-4 treatment prevented macrophage senescence and improved the health span of aged mice to an extent comparable to senolytic treatment, with further additive effects when combined. Together, our findings support that type 2 cytokine signaling protects macrophages from immunosenescence and thus hold therapeutic potential for improving healthy aging.


Asunto(s)
Senescencia Celular , Interleucina-4 , Animales , Ratones , Interleucina-4/metabolismo , Envejecimiento/genética , Macrófagos , Inflamación
3.
Immunity ; 57(5): 1087-1104.e7, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38640930

RESUMEN

Macrophages are critical to turn noninflamed "cold tumors" into inflamed "hot tumors". Emerging evidence indicates abnormal cholesterol metabolites in the tumor microenvironment (TME) with unclear function. Here, we uncovered the inducible expression of cholesterol-25-hydroxylase (Ch25h) by interleukin-4 (IL-4) and interleukin-13 (IL-13) via the transcription factor STAT6, causing 25-hydroxycholesterol (25HC) accumulation. scRNA-seq analysis confirmed that CH25Hhi subsets were enriched in immunosuppressive macrophage subsets and correlated to lower survival rates in pan-cancers. Targeting CH25H abrogated macrophage immunosuppressive function to enhance infiltrating T cell numbers and activation, which synergized with anti-PD-1 to improve anti-tumor efficacy. Mechanically, lysosome-accumulated 25HC competed with cholesterol for GPR155 binding to inhibit the kinase mTORC1, leading to AMPKα activation and metabolic reprogramming. AMPKα also phosphorylated STAT6 Ser564 to enhance STAT6 activation and ARG1 production. Together, we propose CH25H as an immunometabolic checkpoint, which manipulates macrophage fate to reshape CD8+ T cell surveillance and anti-tumor response.


Asunto(s)
Hidroxicolesteroles , Lisosomas , Macrófagos , Microambiente Tumoral , Animales , Hidroxicolesteroles/metabolismo , Ratones , Macrófagos/inmunología , Macrófagos/metabolismo , Humanos , Lisosomas/metabolismo , Microambiente Tumoral/inmunología , Factor de Transcripción STAT6/metabolismo , Adenilato Quinasa/metabolismo , Ratones Endogámicos C57BL , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Transducción de Señal , Reprogramación Metabólica
4.
Immunity ; 55(4): 623-638.e5, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35385697

RESUMEN

The epithelium is an integral component of mucosal barrier and host immunity. Following helminth infection, the intestinal epithelial cells secrete "alarmin" cytokines, such as interleukin-25 (IL-25) and IL-33, to initiate the type 2 immune responses for helminth expulsion and tolerance. However, it is unknown how helminth infection and the resulting cytokine milieu drive epithelial remodeling and orchestrate alarmin secretion. Here, we report that epithelial O-linked N-Acetylglucosamine (O-GlcNAc) protein modification was induced upon helminth infections. By modifying and activating the transcription factor STAT6, O-GlcNAc transferase promoted the transcription of lineage-defining Pou2f3 in tuft cell differentiation and IL-25 production. Meanwhile, STAT6 O-GlcNAcylation activated the expression of Gsdmc family genes. The membrane pore formed by GSDMC facilitated the unconventional secretion of IL-33. GSDMC-mediated IL-33 secretion was indispensable for effective anti-helminth immunity and contributed to induced intestinal inflammation. Protein O-GlcNAcylation can be harnessed for future treatment of type 2 inflammation-associated human diseases.


Asunto(s)
Alarminas , Mucosa Intestinal , Acilación , Alarminas/inmunología , Antihelmínticos/inmunología , Biomarcadores de Tumor , Citocinas , Proteínas de Unión al ADN , Helmintiasis/inmunología , Humanos , Hiperplasia , Inflamación , Interleucina-33 , Mucosa Intestinal/inmunología , Mebendazol , N-Acetilglucosaminiltransferasas/inmunología , Proteínas Citotóxicas Formadoras de Poros , Factor de Transcripción STAT6/inmunología
5.
Immunity ; 55(11): 2006-2026.e6, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36323312

RESUMEN

Prior exposure to microenvironmental signals could fundamentally change the response of macrophages to subsequent stimuli. It is believed that T helper-2 (Th2)-cell-type cytokine interleukin-4 (IL-4) and Toll-like receptor (TLR) ligand-activated transcriptional programs mutually antagonize each other, and no remarkable convergence has been identified between them. In contrast, here, we show that IL-4-polarized macrophages established a hyperinflammatory gene expression program upon lipopolysaccharide (LPS) exposure. This phenomenon, which we termed extended synergy, was supported by IL-4-directed epigenomic remodeling, LPS-activated NF-κB-p65 cistrome expansion, and increased enhancer activity. The EGR2 transcription factor contributed to the extended synergy in a macrophage-subtype-specific manner. Consequently, the previously alternatively polarized macrophages produced increased amounts of immune-modulatory factors both in vitro and in vivo in a murine Th2 cell-type airway inflammation model upon LPS exposure. Our findings establish that IL-4-induced epigenetic reprogramming is responsible for the development of inflammatory hyperresponsiveness to TLR activation and contributes to lung pathologies.


Asunto(s)
Interleucina-4 , Lipopolisacáridos , Ratones , Animales , Interleucina-4/metabolismo , Lipopolisacáridos/metabolismo , Ligandos , Epigenómica , Macrófagos/metabolismo , Receptores Toll-Like/metabolismo , Epigénesis Genética , FN-kappa B/metabolismo
6.
Immunity ; 51(2): 298-309.e6, 2019 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-31399281

RESUMEN

T-helper (Th) cell differentiation drives specialized gene programs that dictate effector T cell function at sites of infection. Here, we have shown Th cell differentiation also imposes discrete motility gene programs that shape Th1 and Th2 cell navigation of the inflamed dermis. Th1 cells scanned a smaller tissue area in a G protein-coupled receptor (GPCR) and chemokine-dependent fashion, while Th2 cells scanned a larger tissue area independent of GPCR signals. Differential chemokine reliance for interstitial migration was linked to STAT6 transcription-factor-dependent programming of integrin αVß3 expression: Th2 cell differentiation led to high αVß3 expression relative to Th1 cells. Th1 and Th2 cell modes of motility could be switched simply by manipulating the amount of αVß3 on the cell surface. Deviating motility modes from those established during differentiation impaired effector function. Thus, programmed expression of αVß3 tunes effector T cell reliance on environmental cues for optimal exploration of inflamed tissues.


Asunto(s)
Inflamación/inmunología , Células TH1/inmunología , Células Th2/inmunología , Traslado Adoptivo , Animales , Diferenciación Celular , Movimiento Celular , Células Cultivadas , Técnicas de Reprogramación Celular , Quimiocinas/metabolismo , Humanos , Integrina alfaVbeta3/metabolismo , Activación de Linfocitos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Factor de Transcripción STAT6/metabolismo
7.
Trends Immunol ; 45(2): 138-153, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38238227

RESUMEN

Signal transducer and activator of transcription (STAT)-6 is a transcription factor central to pro-allergic immune responses, although the function of human STAT6 at the whole-organism level has long remained unknown. Germline heterozygous gain-of-function (GOF) rare variants in STAT6 have been recently recognized to cause a broad and severe clinical phenotype of early-onset, multi-system allergic disease. Here, we provide an overview of the clinical presentation of STAT6-GOF disease, discussing how dysregulation of the STAT6 pathway causes severe allergic disease, and identifying possible targeted treatment approaches. Finally, we explore the mechanistic overlap between STAT6-GOF disease and other monogenic atopic disorders, and how this group of inborn errors of immunity (IEIs) powerfully inform our fundamental understanding of common human allergic disease.


Asunto(s)
Hipersensibilidad , Linfoma , Humanos , Mutación con Ganancia de Función , Hipersensibilidad/genética , Regulación de la Expresión Génica , Células Germinativas , Factor de Transcripción STAT6/genética
8.
Immunity ; 48(1): 75-90.e6, 2018 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-29343442

RESUMEN

The molecular basis of signal-dependent transcriptional activation has been extensively studied in macrophage polarization, but our understanding remains limited regarding the molecular determinants of repression. Here we show that IL-4-activated STAT6 transcription factor is required for the direct transcriptional repression of a large number of genes during in vitro and in vivo alternative macrophage polarization. Repression results in decreased lineage-determining transcription factor, p300, and RNA polymerase II binding followed by reduced enhancer RNA expression, H3K27 acetylation, and chromatin accessibility. The repressor function of STAT6 is HDAC3 dependent on a subset of IL-4-repressed genes. In addition, STAT6-repressed enhancers show extensive overlap with the NF-κB p65 cistrome and exhibit decreased responsiveness to lipopolysaccharide after IL-4 stimulus on a subset of genes. As a consequence, macrophages exhibit diminished inflammasome activation, decreased IL-1ß production, and pyroptosis. Thus, the IL-4-STAT6 signaling pathway establishes an alternative polarization-specific epigenenomic signature resulting in dampened macrophage responsiveness to inflammatory stimuli.


Asunto(s)
Interleucina-4/metabolismo , Macrófagos/metabolismo , Factor de Transcripción STAT6/metabolismo , Animales , Western Blotting , Línea Celular , Elementos de Facilitación Genéticos , Citometría de Flujo , Regulación de la Expresión Génica , Inflamasomas/metabolismo , Citometría de Barrido por Láser , Lipopolisacáridos/farmacología , Macrófagos/fisiología , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena de la Polimerasa , Piroptosis/genética , Transducción de Señal/genética , Transducción de Señal/fisiología
9.
Immunol Rev ; 317(1): 152-165, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37074820

RESUMEN

Our laboratory has a long-standing research interest in understanding how lipid-activated transcription factors, nuclear hormone receptors, contribute to dendritic cell and macrophage gene expression regulation, subtype specification, and responses to a changing extra and intracellular milieu. This journey in the last more than two decades took us from identifying target genes for various RXR heterodimers to systematically mapping nuclear receptor-mediated pathways in dendritic cells to identifying hierarchies of transcription factors in alternative polarization in macrophages to broaden the role of nuclear receptors beyond strictly ligand-regulated gene expression. We detail here the milestones of the road traveled and draw conclusions regarding the unexpectedly broad role of nuclear hormone receptors as epigenomic components of dendritic cell and macrophage gene regulation as we are getting ready for the next challenges.


Asunto(s)
Epigenómica , Receptores Citoplasmáticos y Nucleares , Humanos , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Regulación de la Expresión Génica , Macrófagos/metabolismo , Factores de Transcripción
10.
Eur J Immunol ; 54(1): e2350558, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37855177

RESUMEN

Airway epithelial cells contribute to a variety of lung diseases including allergic asthma, where IL-4 and IL-13 promote activation of the transcription factor STAT6. This leads to goblet cell hyperplasia and the secretion of effector molecules by epithelial cells. However, the specific effect of activated STAT6 in lung epithelial cells is only partially understood. Here, we created a mouse strain to selectively investigate the role of constitutively active STAT6 in Club cells, a subpopulation of airway epithelial cells. CCSP-Cre_STAT6vt mice and bronchiolar organoids derived from these show an enhanced expression of the chitinase-like protein Chil4 (Ym2) and resistin-like molecules (Relm-α, -ß, -γ). In addition, goblet cells of these mice spontaneously secrete mucus into the bronchi. However, the activated epithelium resulted neither in impaired lung function nor conferred a protective effect against the migrating helminth Nippostrongylus brasiliensis. Moreover, CCSP-Cre_STAT6vt mice showed similar allergic airway inflammation induced by live conidia of the fungus Aspergillus fumigatus and similar recovery after influenza A virus infection compared to control mice. Together these results highlight that STAT6 signaling in Club cells induces the secretion of Relm proteins and mucus without impairing lung function, but this is not sufficient to confer protection against helminth or viral infections.


Asunto(s)
Asma , Resistina , Animales , Ratones , Asma/metabolismo , Células Epiteliales/metabolismo , Pulmón , Moco/metabolismo , Resistina/metabolismo , Factor de Transcripción STAT6/genética , Factor de Transcripción STAT6/metabolismo
11.
J Biol Chem ; 299(5): 104703, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37059181

RESUMEN

The conversion of signal transducer and activator of transcription (STAT) proteins from latent to active transcription factors is central to cytokine signaling. Triggered by their signal-induced tyrosine phosphorylation, it is the assembly of a range of cytokine-specific STAT homo- and heterodimers that marks a key step in the transition of hitherto latent proteins to transcription activators. In contrast, the constitutive self-assembly of latent STATs and how it relates to the functioning of activated STATs is understood less well. To provide a more complete picture, we developed a co-localization-based assay and tested all 28 possible combinations of the seven unphosphorylated STAT (U-STAT) proteins in living cells. We identified five U-STAT homodimers-STAT1, STAT3, STAT4, STAT5A, and STAT5B-and two heterodimers-STAT1:STAT2 and STAT5A:STAT5B-and performed semi-quantitative assessments of the forces and characterizations of binding interfaces that support them. One STAT protein-STAT6-was found to be monomeric. This comprehensive analysis of latent STAT self-assembly lays bare considerable structural and functional diversity in the ways that link STAT dimerization before and after activation.


Asunto(s)
Regulación de la Expresión Génica , Factores de Transcripción STAT , Transactivadores , Citocinas/metabolismo , Fosforilación , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT1/metabolismo , Factor de Transcripción STAT2/genética , Factor de Transcripción STAT2/metabolismo , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT4/genética , Factor de Transcripción STAT4/metabolismo , Factor de Transcripción STAT5/genética , Factor de Transcripción STAT5/metabolismo , Transactivadores/metabolismo , Factores de Transcripción STAT/genética , Factores de Transcripción STAT/metabolismo , Multimerización de Proteína
12.
Mol Cancer ; 23(1): 49, 2024 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459596

RESUMEN

Circular RNAs (circRNAs) play important roles in gastric cancer progression but the regulatory role of circRNAs in controlling macrophage function remains elusive. Exosomes serve as cargo for circRNAs and play a crucial role as mediators in facilitating communication between cancer cells and the tumor microenvironment. In this study, we found that circATP8A1, a previously unreported circular RNA, is highly expressed in both gastric cancer tissues and exosomes derived from plasma. Increased circATP8A1 was associated with advanced TNM stage and worse prognosis in patients with gastric cancer. We showed that  the circATP8A1 knockdown significantly inhibited gastric cancer proliferation and invasion in vitro and in vivo. Functionally, exosome circATP8A1 induced the M2 polarization of macrophages through the STAT6 pathway instead of the STAT3 pathway. Mechanistically, circATP8A1 was shown to activate the STAT6 pathway through competitive binding to miR-1-3p, as confirmed by Fluorescence In Situ Hybridization (FISH), RNA immunoprecipitation, RNA pulldown, and Luciferase reporter assays. The reversal of circATP8A1-induced STAT6 pathway activation and macrophage polarization was observed upon blocking miR-1-3p. Macrophages treated with exosomes from gastric cancer cells overexpressing circATP8A1 were able to promote gastric cancer migration, while knockdown of circATP8A1 reversed these effects in vivo. In summary, exosome-derived circATP8A1 from gastric cancer cells induce macrophages M2 polarization via the circATP8A1/miR-1-3p/STAT6 axis, and tumor progression. Our results highlight circATP8A1 as a potential prognostic biomarker and therapeutic target in gastric cancer.


Asunto(s)
Exosomas , MicroARNs , Neoplasias Gástricas , Humanos , Línea Celular Tumoral , Proliferación Celular , Exosomas/genética , Hibridación Fluorescente in Situ , Macrófagos , MicroARNs/genética , ARN Circular/genética , Factor de Transcripción STAT6/genética , Neoplasias Gástricas/genética , Microambiente Tumoral
13.
Curr Issues Mol Biol ; 46(2): 1467-1484, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38392213

RESUMEN

The orbital manifestation of a solitary fibrous tumor (SFT) is exceptionally rare and poses specific challenges in diagnosis and treatment. Its rather exceptional behavior among all SFTs comprises a high tendency towards local recurrence, but it rarely culminates in metastatic disease. This raises the question of prognostic factors in orbital SFTs (oSFTs). Telomerase reverse transcriptase (TERT)-promoter mutations have previously been linked to an unfavorable prognosis in SFTs of other locations. We analyzed the prevalence of TERT promoter mutations of SFTs in the orbital compartment. We performed a retrospective, descriptive clinico-histopathological analysis of nine cases of oSFTs between the years of 2017 and 2021. A TERT promoter mutation was present in one case, which was classified with intermediate metastatic risk. Local recurrence or progress occurred in six cases after primary resection; no distant metastases were reported. Multimodal imaging repeatedly showed particular morphologic patterns, including tubular vascular structures and ADC reduction. The prevalence of the TERT promoter mutation in oSFT was 11%, which is similar to the prevalence of extra-meningeal SFTs of the head and neck and lower than that in other extra-meningeal compartments. In the present study, the TERT promoter mutation in oSFT manifested in a case with an unfavorable prognosis, comprising aggressive local tumor growth, local recurrence, and eye loss.

14.
BMC Immunol ; 25(1): 1, 2024 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172698

RESUMEN

BACKGROUND: Macrophages play significant roles in innate immune responses and are heterogeneous cells that can be polarized into M1 or M2 phenotypes. PRMT2 is one of the type I protein arginine methyltransferases involved in inflammation. However, the role of PRMT2 in M1/M2 macrophage polarization remains unclear. Our study revealed the effect and mechanism of PRMT2 in macrophage polarization. METHODS: Bone marrow-derived macrophages (BMDMs) were polarized to M1 or M2 state by LPS plus murine recombinant interferon-γ (IFN-γ) or interleukin-4 (IL-4). Quantitative polymerase chain reaction (qPCR), western blot and flow cytometry (FCM) assay were performed and analyzed markers and signaling pathways of macrophage polarization. RESULTS: We found that PRMT2 was obviously upregulated in LPS/IFN-γ-induced M1 macrophages, but it was little changed in IL-4-induced M2 macrophages. Furthermore, PRMT2 konckdown increased the expression of M1 macrophages markers through activation of STAT1 and decreased the expression of M2 macrophages markers through inhibition of STAT6. CONCLUSIONS: PRMT2 silencing modulates macrophage polarization by activating STAT1 to promote M1 and inhibiting STAT6 to attenuate the M2 state.


Asunto(s)
Interleucina-4 , Lipopolisacáridos , Animales , Ratones , Inflamación/metabolismo , Interferón gamma/metabolismo , Interleucina-4/metabolismo , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo , Activación de Macrófagos , Macrófagos , Transducción de Señal , Factor de Transcripción STAT6/metabolismo
15.
Eur J Immunol ; 53(5): e2250128, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36785881

RESUMEN

Signal transducer and activator of transcription 6 (STAT6) promotes tumorigenesis by decreasing the Forkhead box P3+ (Foxp3+) cell frequency allowing for the infiltration of inflammatory cells during the early stages of colitis-associated cancer (CAC). In this study, we dissected the role of STAT6 in the generation of inducible in vitro regulatory T cells (iTregs) and peripheral in vivo Tregs (pTregs) under inflammatory conditions. In in vitro assays, when STAT6 was lacking, iTregs preserved a stable phenotype and expressed high levels of Foxp3 and CD25 during long expansion periods, even in the presence of IL-6. This effect was associated with increased in vitro suppressive ability, over-expression of programmed death-1 (PD-1), CTLA-4, and Foxp3, and decreased IFN-γ expression. Furthermore, iTregs developed during STAT6 deficiency showed a higher demethylation status for the FOXP3 Treg-specific demethylated region (TSDR), coupled with lower DNA methyltransferase 1 (DNMT1) mRNA expression, suggesting that STAT6 may lead to Foxp3 silencing. Using a mouse model of CAC, the STAT6-/- pTregs expressed a more activated phenotype at the intestine, had higher suppressive capacity, and expressed more significant levels of PD-1 and latency-associated peptide of TGF-ß (LAP) associated with their ability to attenuate tumor development. These data suggest that STAT6 signaling impairs the induction, stability, and suppressive capacity of Tregs developed in vitro or in vivo during gut inflammation.


Asunto(s)
Receptor de Muerte Celular Programada 1 , Linfocitos T Reguladores , Linfocitos T Reguladores/metabolismo , Factor de Transcripción STAT6/genética , Factor de Transcripción STAT6/metabolismo , Receptor de Muerte Celular Programada 1/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Factores de Transcripción Forkhead/metabolismo
16.
Eur J Immunol ; 53(10): e2350475, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37452620

RESUMEN

Alveolar macrophages (alvMs) play an important role for maintenance of lung function by constant removal of cellular debris in the alveolar space. They further contribute to defense against microbial or viral infections and limit tissue damage during acute lung injury. alvMs arise from embryonic progenitor cells, seed the alveoli before birth, and have life-long self-renewing capacity. However, recruited monocytes may also help to restore the alvM population after depletion caused by toxins or influenza virus infection. At present, the population dynamics and cellular plasticity of alvMs during allergic lung inflammation is poorly defined. To address this point, we used a mouse model of Aspergillus fumigatus-induced allergic lung inflammation and observed that Th2-derived IL-4 and IL-13 caused almost complete disappearance of alvMs. This effect required STAT6 expression in alvMs and also occurred in various other settings of type 2 immunity-mediated lung inflammation or administration of IL-4 complexes to the lung. In addition, Th2 cells promoted conversion of alvMs to alternatively activated macrophages and multinucleated giant cells. Given the well-established role of alvMs for maintenance of lung function, this process may have implications for resolution of inflammation and tissue homeostasis in allergic asthma.


Asunto(s)
Asma , Neumonía , Eosinofilia Pulmonar , Ratones , Animales , Macrófagos Alveolares , Interleucina-4/metabolismo , Pulmón/metabolismo , Asma/metabolismo , Inflamación/metabolismo , Neumonía/metabolismo
17.
Cancer Immunol Immunother ; 73(5): 83, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38554148

RESUMEN

Macrophage polarization is closely associated with the inflammatory processes involved in the development and chemoresistance of colorectal cancer (CRC). M2 macrophages, the predominant subtype of tumor-associated macrophages (TAMs) in a wide variety of malignancies, have been demonstrated to promote the resistance of CRC to multiple chemotherapeutic drugs, such as 5-fluorouracil (5-FU). In our study, we investigated the potential of 23-Hydroxybetulinic Acid (23-HBA), a significant active component of Pulsatilla chinensis (P. chinensis), to inhibit the polarization of M2 macrophages induced by IL-4. Our results showed that 23-HBA reduced the expression of M2 specific marker CD206, while downregulating the mRNA levels of M2 related genes (CD206, Arg1, IL-10, and CCL2). Additionally, 23-HBA effectively attenuated the inhibitory effects of the conditioned medium from M2 macrophages on apoptosis in colorectal cancer SW480 cells. Mechanistically, 23-HBA prevented the phosphorylation and nuclear translocation of the STAT6 protein, resulting in the inhibition of IL-10 release in M2 macrophages. Moreover, it interfered with the activation of the IL-10/STAT3/Bcl-2 signaling pathway in SW480 cells, ultimately reducing M2 macrophage-induced resistance to 5-FU. Importantly, depleting STAT6 expression in macrophages abolished the suppressive effect of 23-HBA on M2 macrophage polarization, while also eliminating its ability to decrease M2 macrophage-induced 5-FU resistance in cancer cells. Furthermore, 23-HBA significantly diminished the proportion of M2 macrophages in the tumor tissues of colorectal cancer mice, simultaneously enhancing the anti-cancer efficacy of 5-FU. The findings presented in this study highlight the capacity of 23-HBA to inhibit M2 macrophage polarization, a process that contributes to reduced 5-FU resistance in colorectal cancer.


Asunto(s)
Ácido Betulínico , Neoplasias Colorrectales , Interleucina-10 , Piperidinas , Triterpenos , Ratones , Animales , Factor de Transcripción STAT6/metabolismo , Factor de Transcripción STAT6/farmacología , Interleucina-10/metabolismo , Fluorouracilo/farmacología , Fluorouracilo/uso terapéutico , Macrófagos/metabolismo , Transducción de Señal , Neoplasias Colorrectales/patología
18.
Clin Exp Allergy ; 54(6): 412-424, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38639267

RESUMEN

BACKGROUND: SERPINB2, a biomarker of Type-2 (T2) inflammatory processes, has been described in the context of asthma. Chronic rhinosinusitis with nasal polyps (CRSwNP) is also correlated with T2 inflammation and elevated 15LO1 induced by IL-4/13 in nasal epithelial cells. The aim of this study was to evaluate the expression and location of SERPINB2 in nasal epithelial cells (NECs) and determine whether SERPINB2 regulates 15LO1 and downstream T2 markers in NECs via STAT6 signalling. METHODS: SERPINB2 gene expression in bulk and single-cell RNAseq database was analysed by bioinformatics analysis. SERPINB2, 15LO1 and other T2 markers were evaluated from CRSwNP and HCs NECs. The colocalization of SERPINB2 and 15LO1 was evaluated by immunofluorescence. Fresh NECs were cultured at an air-liquid interface with or without IL-13, SERPINB2 Dicer-substrate short interfering RNAs (DsiRNAs) transfection, exogenous SERPINB2, 15-HETE recombinant protein and pSTAT6 inhibitors. 15LO1, 15-HETE and downstream T2 markers were analysed by qRT-PCR, western blot and ELISA. RESULTS: SERPINB2 expression was increased in eosinophilic nasal polyps compared with that in noneosinophilic nasal polyps and control tissues and positively correlated with 15LO1 and other downstream T2 markers. SERPINB2 was predominantly expressed by epithelial cells in NP tissue and was colocalized with 15LO1. In primary NECs in vitro, SERPINB2 expression was induced by IL-13. Knockdown or overexpression SERPINB2 decreased or enhanced expression of 15LO1 and 15-HETE in NECs, respectively, in a STAT6-dependent manner. SERPINB2 siRNA also inhibited the expression of the 15LO1 downstream genes, such as CCL26, POSTN and NOS2. STAT6 inhibition similarly decreased SERPINB2-induced 15LO1. CONCLUSIONS: SERPINB2 is increased in NP epithelial cells of eosinophilic CRSwNP (eCRSwNP) and contributes to T2 inflammation via STAT6 signalling. SERPINB2 could be considered a novel therapeutic target for eCRSwNP.


Asunto(s)
Células Epiteliales , Pólipos Nasales , Rinitis , Factor de Transcripción STAT6 , Transducción de Señal , Sinusitis , Humanos , Factor de Transcripción STAT6/metabolismo , Factor de Transcripción STAT6/genética , Pólipos Nasales/metabolismo , Pólipos Nasales/patología , Pólipos Nasales/inmunología , Sinusitis/metabolismo , Sinusitis/patología , Sinusitis/inmunología , Rinitis/metabolismo , Rinitis/patología , Enfermedad Crónica , Células Epiteliales/metabolismo , Inhibidor 2 de Activador Plasminogénico/metabolismo , Inhibidor 2 de Activador Plasminogénico/genética , Femenino , Masculino , Quimiocina CCL26/metabolismo , Quimiocina CCL26/genética , Adulto , Persona de Mediana Edad , Eosinofilia/metabolismo , Eosinofilia/patología , Mucosa Nasal/metabolismo , Mucosa Nasal/patología , Mucosa Nasal/inmunología , Regulación de la Expresión Génica , Rinosinusitis
19.
Stem Cells ; 41(12): 1171-1184, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-37659098

RESUMEN

Acute-on-chronic liver failure (ACLF) is a severe disease with a high mortality. Macrophage-related inflammation plays a crucial role in ACLF development. Mesenchymal stem cells (MSCs) treatment was demonstrated to be beneficial in ACLF in our previous study; however, the underlying mechanisms remain unknown. Therefore, mouse bone marrow-derived MSCs were used to treat an ACLF mouse model or cocultured with RAW264.7/J774A.1 macrophages that were stimulated with LPS. Histological and serological parameters and survival were analyzed to evaluate efficacy. We detected changes of Mer tyrosine kinase (Mertk), JAK1/STAT6, inflammatory cytokines, and markers of macrophage polarization in vitro and in vivo. In ACLF mice, MSCs improved liver function and 48-h survival of ACLF mice and alleviated inflammatory injury by promoting M2 macrophage polarization and elevated Mertk expression levels in macrophages. This is significant, as Mertk regulates M2 macrophage polarization via the JAK1/STAT6 signaling pathway.


Asunto(s)
Insuficiencia Hepática Crónica Agudizada , Células Madre Mesenquimatosas , Ratones , Animales , Insuficiencia Hepática Crónica Agudizada/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Macrófagos/metabolismo , Transducción de Señal , Células Madre Mesenquimatosas/metabolismo , Tirosina Quinasa c-Mer/genética , Tirosina Quinasa c-Mer/metabolismo
20.
FASEB J ; 37(2): e22761, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36629780

RESUMEN

Fibrosis of the skin and internal organs is a hallmark of systemic sclerosis (SSc). Although the pathogenesis of SSc is poorly understood, increasing evidence suggests that interleukins (IL)-4 and - 13 contribute to the pathogenesis of skin fibrosis by promoting collagen production and myofibroblast differentiation. Signal transducers and activators of transcription 6 (STAT6) is one of the most important downstream transcription factors activated by both IL-4 and IL-13. However, it is not completely understood whether STAT6 plays a role during the pathogenesis of skin fibrosis in SSc. In this study, we observed increased STAT6 phosphorylation in fibrotic skin samples collected from SSc patients as well as bleomycin-injected murine mice. Knockout of Stat6 in mice significantly (1) suppressed the expression of fibrotic cytokines including Il13, Il17, Il22, Ccl2, and the alternatively activated macrophage marker Cd206; (2) reduced the production of collagen and fibronectin, and (3) attenuated late-stage skin fibrosis and inflammation induced by bleomycin. Consistently, mice treated with STAT6 inhibitor AS1517499 also attenuated skin fibrosis on day 28. In addition, a co-culture experiment demonstrated that skin epithelial cells with STAT6 knockdown had reduced cytokine expression in response to IL-4/IL-13, and subsequently attenuated fibrotic protein expression in skin fibroblasts. On the other side, STAT6 depletion in skin fibroblasts attenuated IL-4/IL-13-induced cytokine and fibrotic marker expression, and reduced CXCL2 expression in co-cultured keratinocytes. In summary, our study highlighted an important yet not fully understood role of STAT6 in skin fibrosis by driving innate inflammation and differentiation of alternatively activated macrophages in response to injury.


Asunto(s)
Bleomicina , Esclerodermia Sistémica , Animales , Ratones , Bleomicina/toxicidad , Interleucina-4/genética , Interleucina-4/metabolismo , Interleucina-13/genética , Interleucina-13/metabolismo , Ratones Noqueados , Fibrosis , Esclerodermia Sistémica/inducido químicamente , Esclerodermia Sistémica/genética , Esclerodermia Sistémica/metabolismo , Colágeno/metabolismo , Fibroblastos/metabolismo , Inflamación/metabolismo , Piel/metabolismo , Modelos Animales de Enfermedad , Factor de Transcripción STAT6/genética , Factor de Transcripción STAT6/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA