Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 15.946
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 187(9): 2324-2335.e19, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38599211

RESUMEN

Microbial communities are resident to multiple niches of the human body and are important modulators of the host immune system and responses to anticancer therapies. Recent studies have shown that complex microbial communities are present within primary tumors. To investigate the presence and relevance of the microbiome in metastases, we integrated mapping and assembly-based metagenomics, genomics, transcriptomics, and clinical data of 4,160 metastatic tumor biopsies. We identified organ-specific tropisms of microbes, enrichments of anaerobic bacteria in hypoxic tumors, associations between microbial diversity and tumor-infiltrating neutrophils, and the association of Fusobacterium with resistance to immune checkpoint blockade (ICB) in lung cancer. Furthermore, longitudinal tumor sampling revealed temporal evolution of the microbial communities and identified bacteria depleted upon ICB. Together, we generated a pan-cancer resource of the metastatic tumor microbiome that may contribute to advancing treatment strategies.


Asunto(s)
Microbiota , Metástasis de la Neoplasia , Neoplasias , Humanos , Neoplasias/microbiología , Neoplasias/patología , Metagenómica/métodos , Neoplasias Pulmonares/microbiología , Neoplasias Pulmonares/patología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/farmacología , Neutrófilos/inmunología , Microambiente Tumoral , Bacterias/genética , Bacterias/clasificación
2.
Trends Biochem Sci ; 48(5): 437-449, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36566088

RESUMEN

Binding kinetic parameters can be correlated with drug efficacy, which in recent years led to the development of various computational methods for predicting binding kinetic rates and gaining insight into protein-drug binding paths and mechanisms. In this review, we introduce and compare computational methods recently developed and applied to two systems, trypsin-benzamidine and kinase-inhibitor complexes. Methods involving enhanced sampling in molecular dynamics simulations or machine learning can be used not only to predict kinetic rates, but also to reveal factors modulating the duration of residence times, selectivity, and drug resistance to mutations. Methods which require less computational time to make predictions are highlighted, and suggestions to reduce the error of computed kinetic rates are presented.


Asunto(s)
Simulación de Dinámica Molecular , Ligandos , Termodinámica , Unión Proteica , Cinética
3.
Proc Natl Acad Sci U S A ; 121(12): e2314813121, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38470917

RESUMEN

Potential Mycobacterium tuberculosis (Mtb) transmission during different pulmonary tuberculosis (TB) disease states is poorly understood. We quantified viable aerosolized Mtb from TB clinic attendees following diagnosis and through six months' follow-up thereafter. Presumptive TB patients (n=102) were classified by laboratory, radiological, and clinical features into Group A: Sputum-Xpert Ultra-positive TB (n=52), Group B: Sputum-Xpert Ultra-negative TB (n=20), or Group C: TB undiagnosed (n=30). All groups were assessed for Mtb bioaerosol release at baseline, and subsequently at 2 wk, 2 mo, and 6 mo. Groups A and B were notified to the national TB program and received standard anti-TB chemotherapy; Mtb was isolated from 92% and 90% at presentation, 87% and 74% at 2 wk, 54% and 44% at 2 mo and 32% and 20% at 6 mo, respectively. Surprisingly, similar numbers were detected in Group C not initiating TB treatment: 93%, 70%, 48% and 22% at the same timepoints. A temporal association was observed between Mtb bioaerosol release and TB symptoms in all three groups. Persistence of Mtb bioaerosol positivity was observed in ~30% of participants irrespective of TB chemotherapy. Captured Mtb bacilli were predominantly acid-fast stain-negative and poorly culturable; however, three bioaerosol samples yielded sufficient biomass following culture for whole-genome sequencing, revealing two different Mtb lineages. Detection of viable aerosolized Mtb in clinic attendees, independent of TB diagnosis, suggests that unidentified Mtb transmitters might contribute a significant attributable proportion of community exposure. Additional longitudinal studies with sputum culture-positive and -negative control participants are required to investigate this possibility.


Asunto(s)
Bacillus , Mycobacterium tuberculosis , Tuberculosis Pulmonar , Tuberculosis , Humanos , Esputo/microbiología , Tuberculosis Pulmonar/diagnóstico , Tuberculosis/microbiología , Firmicutes , Sensibilidad y Especificidad
4.
Proc Natl Acad Sci U S A ; 121(23): e2322040121, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38809704

RESUMEN

While RNA appears as a good candidate for the first autocatalytic systems preceding the emergence of modern life, the synthesis of RNA oligonucleotides without enzymes remains challenging. Because the uncatalyzed reaction is extremely slow, experimental studies bring limited and indirect information on the reaction mechanism, the nature of which remains debated. Here, we develop neural network potentials (NNPs) to study the phosphoester bond formation in water. While NNPs are becoming routinely applied to nonreactive systems or simple reactions, we demonstrate how they can systematically be trained to explore the reaction phase space for complex reactions involving several proton transfers and exchanges of heavy atoms. We then propagate at moderate computational cost hundreds of nanoseconds of a variety of enhanced sampling simulations with quantum accuracy in explicit solvent conditions. The thermodynamically preferred reaction pathway is a concerted, dissociative mechanism, with the transient formation of a metaphosphate transition state and direct participation of water solvent molecules that facilitate the exchange of protons through the nonbridging phosphate oxygens. Associative-dissociative pathways, characterized by a much tighter pentacoordinated phosphate, are higher in free energy. Our simulations also suggest that diprotonated phosphate, whose reactivity is never directly assessed in the experiments, is significantly less reactive than the monoprotonated species, suggesting that it is probably never the reactive species in normal pH conditions. These observations rationalize unexplained experimental results and the temperature dependence of the reaction rate, and they pave the way for the design of more efficient abiotic catalysts and activating groups.

5.
Proc Natl Acad Sci U S A ; 121(27): e2311810121, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38913892

RESUMEN

Recent years witnessed the development of powerful generative models based on flows, diffusion, or autoregressive neural networks, achieving remarkable success in generating data from examples with applications in a broad range of areas. A theoretical analysis of the performance and understanding of the limitations of these methods remain, however, challenging. In this paper, we undertake a step in this direction by analyzing the efficiency of sampling by these methods on a class of problems with a known probability distribution and comparing it with the sampling performance of more traditional methods such as the Monte Carlo Markov chain and Langevin dynamics. We focus on a class of probability distribution widely studied in the statistical physics of disordered systems that relate to spin glasses, statistical inference, and constraint satisfaction problems. We leverage the fact that sampling via flow-based, diffusion-based, or autoregressive networks methods can be equivalently mapped to the analysis of a Bayes optimal denoising of a modified probability measure. Our findings demonstrate that these methods encounter difficulties in sampling stemming from the presence of a first-order phase transition along the algorithm's denoising path. Our conclusions go both ways: We identify regions of parameters where these methods are unable to sample efficiently, while that is possible using standard Monte Carlo or Langevin approaches. We also identify regions where the opposite happens: standard approaches are inefficient while the discussed generative methods work well.

6.
Proc Natl Acad Sci U S A ; 121(7): e2318731121, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38315841

RESUMEN

Capturing rare yet pivotal events poses a significant challenge for molecular simulations. Path sampling provides a unique approach to tackle this issue without altering the potential energy landscape or dynamics, enabling recovery of both thermodynamic and kinetic information. However, despite its exponential acceleration compared to standard molecular dynamics, generating numerous trajectories can still require a long time. By harnessing our recent algorithmic innovations-particularly subtrajectory moves with high acceptance, coupled with asynchronous replica exchange featuring infinite swaps-we establish a highly parallelizable and rapidly converging path sampling protocol, compatible with diverse high-performance computing architectures. We demonstrate our approach on the liquid-vapor phase transition in superheated water, the unfolding of the chignolin protein, and water dissociation. The latter, performed at the ab initio level, achieves comparable statistical accuracy within days, in contrast to a previous study requiring over a year.

7.
Proc Natl Acad Sci U S A ; 121(19): e2318128121, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38687795

RESUMEN

Childhood maltreatment has been linked to adult somatic symptoms, although this has rarely been examined in daily life. Furthermore, the localization of somatization associated with childhood maltreatment and its subtypes is unknown. This large-scale experience sampling study used body maps to examine the relationships between childhood maltreatment, its subtypes, and the intensity and location of negative somatic sensations in daily life. Participants (N = 2,234; 33% female and 67% male) were part of MyBPLab 2.0, a study conducted using a bespoke mobile phone application. Four categories of childhood maltreatment (emotional abuse, emotional neglect, physical abuse, and physical neglect) were measured using the Childhood Trauma Questionnaire. Using gender-matched human silhouettes, participants indicated the location and intensity of feelings of negative activation in the body. Childhood maltreatment generally and its four measured subtypes were all positively associated with heightened negative activation on both the front and back body maps. For females, total childhood maltreatment was associated with negative activation in the abdomen and lower back, while for males, the association was localized to the lower back. Similarly, each of the four subscales had localized associations with negative activation in the abdomen and lower back in females and lower back in males, except for emotional abuse, which was also associated with negative activation in the abdomen in males. These associations likely reflect increased somatization in individuals exposed to childhood maltreatment, suggesting a role for psychotherapeutic interventions in alleviating associated distress.


Asunto(s)
Síntomas sin Explicación Médica , Humanos , Femenino , Masculino , Adulto , Trastornos Somatomorfos/psicología , Trastornos Somatomorfos/etiología , Maltrato a los Niños/psicología , Encuestas y Cuestionarios , Niño , Persona de Mediana Edad , Adultos Sobrevivientes del Maltrato a los Niños/psicología , Adulto Joven
8.
Trends Biochem Sci ; 47(5): 375-389, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34544655

RESUMEN

Recent years have seen an explosion of interest in understanding the physicochemical parameters that shape enzyme evolution, as well as substantial advances in computational enzyme design. This review discusses three areas where evolutionary information can be used as part of the design process: (i) using ancestral sequence reconstruction (ASR) to generate new starting points for enzyme design efforts; (ii) learning from how nature uses conformational dynamics in enzyme evolution to mimic this process in silico; and (iii) modular design of enzymes from smaller fragments, again mimicking the process by which nature appears to create new protein folds. Using showcase examples, we highlight the importance of incorporating evolutionary information to continue to push forward the boundaries of enzyme design studies.


Asunto(s)
Evolución Molecular , Proteínas , Biología Computacional , Proteínas/genética
9.
Am J Hum Genet ; 110(2): 349-358, 2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36702127

RESUMEN

The coefficient of determination (R2) is a well-established measure to indicate the predictive ability of polygenic scores (PGSs). However, the sampling variance of R2 is rarely considered so that 95% confidence intervals (CI) are not usually reported. Moreover, when comparisons are made between PGSs based on different discovery samples, the sampling covariance of R2 is required to test the difference between them. Here, we show how to estimate the variance and covariance of R2 values to assess the 95% CI and p value of the R2 difference. We apply this approach to real data calculating PGSs in 28,880 European participants derived from UK Biobank (UKBB) and Biobank Japan (BBJ) GWAS summary statistics for cholesterol and BMI. We quantify the significantly higher predictive ability of UKBB PGSs compared to BBJ PGSs (p value 7.6e-31 for cholesterol and 1.4e-50 for BMI). A joint model of UKBB and BBJ PGSs significantly improves the predictive ability, compared to a model of UKBB PGS only (p value 3.5e-05 for cholesterol and 1.3e-28 for BMI). We also show that the predictive ability of regulatory SNPs is significantly enriched over non-regulatory SNPs for cholesterol (p value 8.9e-26 for UKBB and 3.8e-17 for BBJ). We suggest that the proposed approach (available in R package r2redux) should be used to test the statistical significance of difference between pairs of PGSs, which may help to draw a correct conclusion about the comparative predictive ability of PGSs.


Asunto(s)
Herencia Multifactorial , Polimorfismo de Nucleótido Simple , Humanos , Estudio de Asociación del Genoma Completo
10.
Brief Bioinform ; 25(3)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38701419

RESUMEN

It is a vital step to recognize cyanobacteria promoters on a genome-wide scale. Computational methods are promising to assist in difficult biological identification. When building recognition models, these methods rely on non-promoter generation to cope with the lack of real non-promoters. Nevertheless, the factitious significant difference between promoters and non-promoters causes over-optimistic prediction. Moreover, designed for E. coli or B. subtilis, existing methods cannot uncover novel, distinct motifs among cyanobacterial promoters. To address these issues, this work first proposes a novel non-promoter generation strategy called phantom sampling, which can eliminate the factitious difference between promoters and generated non-promoters. Furthermore, it elaborates a novel promoter prediction model based on the Siamese network (SiamProm), which can amplify the hidden difference between promoters and non-promoters through a joint characterization of global associations, upstream and downstream contexts, and neighboring associations w.r.t. k-mer tokens. The comparison with state-of-the-art methods demonstrates the superiority of our phantom sampling and SiamProm. Both comprehensive ablation studies and feature space illustrations also validate the effectiveness of the Siamese network and its components. More importantly, SiamProm, upon our phantom sampling, finds a novel cyanobacterial promoter motif ('GCGATCGC'), which is palindrome-patterned, content-conserved, but position-shifted.


Asunto(s)
Cianobacterias , Regiones Promotoras Genéticas , Cianobacterias/genética , Biología Computacional/métodos , Algoritmos
11.
Brief Bioinform ; 25(4)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-39038932

RESUMEN

MOTIVATION: Drug repositioning, the identification of new therapeutic uses for existing drugs, is crucial for accelerating drug discovery and reducing development costs. Some methods rely on heterogeneous networks, which may not fully capture the complex relationships between drugs and diseases. However, integrating diverse biological data sources offers promise for discovering new drug-disease associations (DDAs). Previous evidence indicates that the combination of information would be conducive to the discovery of new DDAs. However, the challenge lies in effectively integrating different biological data sources to identify the most effective drugs for a certain disease based on drug-disease coupled mechanisms. RESULTS: In response to this challenge, we present MiRAGE, a novel computational method for drug repositioning. MiRAGE leverages a three-step framework, comprising negative sampling using hard negative mining, classification employing random forest models, and feature selection based on feature importance. We evaluate MiRAGE on multiple benchmark datasets, demonstrating its superiority over state-of-the-art algorithms across various metrics. Notably, MiRAGE consistently outperforms other methods in uncovering novel DDAs. Case studies focusing on Parkinson's disease and schizophrenia showcase MiRAGE's ability to identify top candidate drugs supported by previous studies. Overall, our study underscores MiRAGE's efficacy and versatility as a computational tool for drug repositioning, offering valuable insights for therapeutic discoveries and addressing unmet medical needs.


Asunto(s)
Algoritmos , Minería de Datos , Reposicionamiento de Medicamentos , Reposicionamiento de Medicamentos/métodos , Minería de Datos/métodos , Humanos , Biología Computacional/métodos , Esquizofrenia/tratamiento farmacológico , Enfermedad de Parkinson/tratamiento farmacológico , Descubrimiento de Drogas/métodos
12.
Brief Bioinform ; 25(2)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38366802

RESUMEN

Anti-coronavirus peptides (ACVPs) represent a relatively novel approach of inhibiting the adsorption and fusion of the virus with human cells. Several peptide-based inhibitors showed promise as potential therapeutic drug candidates. However, identifying such peptides in laboratory experiments is both costly and time consuming. Therefore, there is growing interest in using computational methods to predict ACVPs. Here, we describe a model for the prediction of ACVPs that is based on the combination of feature engineering (FE) optimization and deep representation learning. FEOpti-ACVP was pre-trained using two feature extraction frameworks. At the next step, several machine learning approaches were tested in to construct the final algorithm. The final version of FEOpti-ACVP outperformed existing methods used for ACVPs prediction and it has the potential to become a valuable tool in ACVP drug design. A user-friendly webserver of FEOpti-ACVP can be accessed at http://servers.aibiochem.net/soft/FEOpti-ACVP/.


Asunto(s)
Algoritmos , Péptidos , Humanos , Secuencia de Aminoácidos , Péptidos/farmacología , Aprendizaje Automático
13.
Proc Natl Acad Sci U S A ; 120(10): e2208661120, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36857342

RESUMEN

Do larger incomes make people happier? Two authors of the present paper have published contradictory answers. Using dichotomous questions about the preceding day, [Kahneman and Deaton, Proc. Natl. Acad. Sci. U.S.A. 107, 16489-16493 (2010)] reported a flattening pattern: happiness increased steadily with log(income) up to a threshold and then plateaued. Using experience sampling with a continuous scale, [Killingsworth, Proc. Natl. Acad. Sci. U.S.A. 118, e2016976118 (2021)] reported a linear-log pattern in which average happiness rose consistently with log(income). We engaged in an adversarial collaboration to search for a coherent interpretation of both studies. A reanalysis of Killingsworth's experienced sampling data confirmed the flattening pattern only for the least happy people. Happiness increases steadily with log(income) among happier people, and even accelerates in the happiest group. Complementary nonlinearities contribute to the overall linear-log relationship. We then explain why Kahneman and Deaton overstated the flattening pattern and why Killingsworth failed to find it. We suggest that Kahneman and Deaton might have reached the correct conclusion if they had described their results in terms of unhappiness rather than happiness; their measures could not discriminate among degrees of happiness because of a ceiling effect. The authors of both studies failed to anticipate that increased income is associated with systematic changes in the shape of the happiness distribution. The mislabeling of the dependent variable and the incorrect assumption of homogeneity were consequences of practices that are standard in social science but should be questioned more often. We flag the benefits of adversarial collaboration.


Asunto(s)
Emociones , Deficiencia Múltiple de Acil Coenzima A Deshidrogenasa , Humanos , Felicidad , Tristeza , Apoptosis , Análisis por Conglomerados
14.
Proc Natl Acad Sci U S A ; 120(7): e2216099120, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36757888

RESUMEN

Crystal nucleation is relevant across the domains of fundamental and applied sciences. However, in many cases, its mechanism remains unclear due to a lack of temporal or spatial resolution. To gain insights into the molecular details of nucleation, some form of molecular dynamics simulations is typically performed; these simulations, in turn, are limited by their ability to run long enough to sample the nucleation event thoroughly. To overcome the timescale limits in typical molecular dynamics simulations in a manner free of prior human bias, here, we employ the machine learning-augmented molecular dynamics framework "reweighted autoencoded variational Bayes for enhanced sampling (RAVE)." We study two molecular systems-urea and glycine-in explicit all-atom water, due to their enrichment in polymorphic structures and common utility in commercial applications. From our simulations, we observe multiple back-and-forth nucleation events of different polymorphs from homogeneous solution; from these trajectories, we calculate the relative ranking of finite-sized polymorph crystals embedded in solution, in terms of the free-energy difference between the finite-sized crystal polymorph and the original solution state. We further observe that the obtained reaction coordinates and transitions are highly nonclassical.

15.
Proc Natl Acad Sci U S A ; 120(9): e2215836120, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36802417

RESUMEN

Muscle contraction is performed by arrays of contractile proteins in the sarcomere. Serious heart diseases, such as cardiomyopathy, can often be results of mutations in myosin and actin. Direct characterization of how small changes in the myosin-actin complex impact its force production remains challenging. Molecular dynamics (MD) simulations, although capable of studying protein structure-function relationships, are limited owing to the slow timescale of the myosin cycle as well as a lack of various intermediate structures for the actomyosin complex. Here, employing comparative modeling and enhanced sampling MD simulations, we show how the human cardiac myosin generates force during the mechanochemical cycle. Initial conformational ensembles for different myosin-actin states are learned from multiple structural templates with Rosetta. This enables us to efficiently sample the energy landscape of the system using Gaussian accelerated MD. Key myosin loop residues, whose substitutions are related to cardiomyopathy, are identified to form stable or metastable interactions with the actin surface. We find that the actin-binding cleft closure is allosterically coupled to the myosin motor core transitions and ATP-hydrolysis product release from the active site. Furthermore, a gate between switch I and switch II is suggested to control phosphate release at the prepowerstroke state. Our approach demonstrates the ability to link sequence and structural information to motor functions.


Asunto(s)
Actinas , Actomiosina , Humanos , Actomiosina/metabolismo , Actinas/metabolismo , Miosinas/metabolismo , Citoesqueleto de Actina/metabolismo , Conformación Proteica , Adenosina Trifosfato/metabolismo
16.
Proc Natl Acad Sci U S A ; 120(30): e2218826120, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37463207

RESUMEN

Development of a simple, label-free screening technique capable of precisely and directly sensing interaction-in-solution over a size range from small molecules to large proteins such as antibodies could offer an important tool for researchers and pharmaceutical companies in the field of drug development. In this work, we present a thermostable Raman interaction profiling (TRIP) technique that facilitates low-concentration and low-dose screening of binding between protein and ligand in physiologically relevant conditions. TRIP was applied to eight protein-ligand systems, and produced reproducible high-resolution Raman measurements, which were analyzed by principal component analysis. TRIP was able to resolve time-depending binding between 2,4-dinitrophenol and transthyretin, and analyze biologically relevant SARS-CoV-2 spike-antibody interactions. Mixtures of the spike receptor-binding domain with neutralizing, nonbinding, or binding but nonneutralizing antibodies revealed distinct and reproducible Raman signals. TRIP holds promise for the future developments of high-throughput drug screening and real-time binding measurements between protein and drug.


Asunto(s)
COVID-19 , Microscopía , Humanos , SARS-CoV-2 , Evaluación Preclínica de Medicamentos , Ligandos , Anticuerpos Antivirales , Interacciones Farmacológicas , Glicoproteína de la Espiga del Coronavirus/metabolismo , Anticuerpos Neutralizantes
17.
Proc Natl Acad Sci U S A ; 120(50): e2313023120, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38060558

RESUMEN

Dynamics has long been recognized to play an important role in heterogeneous catalytic processes. However, until recently, it has been impossible to study their dynamical behavior at industry-relevant temperatures. Using a combination of machine learning potentials and advanced simulation techniques, we investigate the cleavage of the N[Formula: see text] triple bond on the Fe(111) surface. We find that at low temperatures our results agree with the well-established picture. However, if we increase the temperature to reach operando conditions, the surface undergoes a global dynamical change and the step structure of the Fe(111) surface is destabilized. The catalytic sites, traditionally associated with this surface, appear and disappear continuously. Our simulations illuminate the danger of extrapolating low-temperature results to operando conditions and indicate that the catalytic activity can only be inferred from calculations that take dynamics fully into account. More than that, they show that it is the transition to this highly fluctuating interfacial environment that drives the catalytic process.

18.
Proc Natl Acad Sci U S A ; 120(46): e2302468120, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37931100

RESUMEN

The chemical equilibrium between self-ionized and molecular water dictates the acid-base chemistry in aqueous solutions, yet understanding the microscopic mechanisms of water self-ionization remains experimentally and computationally challenging. Herein, Density Functional Theory (DFT)-based deep neural network (DNN) potentials are combined with enhanced sampling techniques and a global acid-base collective variable to perform extensive atomistic simulations of water self-ionization for model systems of increasing size. The explicit inclusion of long-range electrostatic interactions in the DNN potential is found to be crucial to accurately reproduce the DFT free energy profile of solvated water ion pairs in small (64 and 128 H2O) cells. The reversible work to separate the hydroxide and hydronium to a distance [Formula: see text] is found to converge for simulation cells containing more than 500 H2O, and a distance of [Formula: see text] 8 Å is the threshold beyond which the work to further separate the two ions becomes approximately zero. The slow convergence of the potential of mean force with system size is related to a restructuring of water and an increase of the local order around the water ions. Calculation of the dissociation equilibrium constant illustrates the key role of long-range electrostatics and entropic effects in the water autoionization process.

19.
J Virol ; 98(2): e0168323, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38226809

RESUMEN

Emerging and endemic zoonotic diseases continue to threaten human and animal health, our social fabric, and the global economy. Zoonoses frequently emerge from congregate interfaces where multiple animal species and humans coexist, including farms and markets. Traditional food markets are widespread across the globe and create an interface where domestic and wild animals interact among themselves and with humans, increasing the risk of pathogen spillover. Despite decades of evidence linking markets to disease outbreaks across the world, there remains a striking lack of pathogen surveillance programs that can relay timely, cost-effective, and actionable information to decision-makers to protect human and animal health. However, the strategic incorporation of environmental surveillance systems in markets coupled with novel pathogen detection strategies can create an early warning system capable of alerting us to the risk of outbreaks before they happen. Here, we explore the concept of "smart" markets that utilize continuous surveillance systems to monitor the emergence of zoonotic pathogens with spillover potential.IMPORTANCEFast detection and rapid intervention are crucial to mitigate risks of pathogen emergence, spillover and spread-every second counts. However, comprehensive, active, longitudinal surveillance systems at high-risk interfaces that provide real-time data for action remain lacking. This paper proposes "smart market" systems harnessing cutting-edge tools and a range of sampling techniques, including wastewater and air collection, multiplex assays, and metagenomic sequencing. Coupled with robust response pathways, these systems could better enable Early Warning and bolster prevention efforts.


Asunto(s)
Enfermedades Transmisibles Emergentes , Monitoreo Epidemiológico , Animales , Humanos , Animales Salvajes , Enfermedades Transmisibles Emergentes/epidemiología , Enfermedades Transmisibles Emergentes/prevención & control , Enfermedades Transmisibles Emergentes/veterinaria , Brotes de Enfermedades/prevención & control , Zoonosis/epidemiología , Zoonosis/prevención & control
20.
Brief Bioinform ; 24(4)2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37279464

RESUMEN

Major histocompatibility complex (MHC)-peptide binding is a critical step in enabling a peptide to serve as an antigen for T-cell recognition. Accurate prediction of this binding can facilitate various applications in immunotherapy. While many existing methods offer good predictive power for the binding affinity of a peptide to a specific MHC, few models attempt to infer the binding threshold that distinguishes binding sequences. These models often rely on experience-based ad hoc criteria, such as 500 or 1000nM. However, different MHCs may have different binding thresholds. As such, there is a need for an automatic, data-driven method to determine an accurate binding threshold. In this study, we proposed a Bayesian model that jointly infers core locations (binding sites), the binding affinity and the binding threshold. Our model provided the posterior distribution of the binding threshold, enabling accurate determination of an appropriate threshold for each MHC. To evaluate the performance of our method under different scenarios, we conducted simulation studies with varying dominant levels of motif distributions and proportions of random sequences. These simulation studies showed desirable estimation accuracy and robustness of our model. Additionally, when applied to real data, our results outperformed commonly used thresholds.


Asunto(s)
Algoritmos , Péptidos , Teorema de Bayes , Péptidos/química , Unión Proteica , Sitios de Unión , Proteínas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA