Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 252
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Bioorg Med Chem Lett ; 111: 129902, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39059564

RESUMEN

Integrase strand transfer inhibitors (INSTIs) are the most prescribed anchor drug in antiretroviral therapy. Today, there is an increasing need for long-acting treatment of HIV-1 infection. Improving drug pharmacokinetics and anti-HIV-1 activity are key to developing more robust inhibitors suitable for long-acting formulations, but 2nd-generation INSTIs have chiral centers, making it difficult to conduct further exploration. In this study, we designed aza-tricyclic and aza-bicyclic carbamoyl pyridone scaffolds which are devoid of the problematic hemiaminal stereocenter present in dolutegravir (DTG). This scaffold hopping made it easy to introduce several substituents, and evolving structure-activity studies using these scaffolds resulted in several leads with promising properties.


Asunto(s)
Diseño de Fármacos , Inhibidores de Integrasa VIH , Integrasa de VIH , VIH-1 , Piridonas , Humanos , Compuestos Aza/química , Compuestos Aza/farmacología , Compuestos Aza/síntesis química , Relación Dosis-Respuesta a Droga , Integrasa de VIH/metabolismo , Inhibidores de Integrasa VIH/farmacología , Inhibidores de Integrasa VIH/química , Inhibidores de Integrasa VIH/síntesis química , VIH-1/efectos de los fármacos , Estructura Molecular , Piridonas/química , Piridonas/farmacología , Piridonas/síntesis química , Relación Estructura-Actividad , Integrasas/química , Integrasas/metabolismo , Integrasas/farmacocinética
2.
Bioorg Med Chem Lett ; 104: 129710, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38518997

RESUMEN

A novel series of benzo[6,7]indolo[3,4-c]isoquinolines 3a-3f was designed by scaffold hopping of topoisomerase I inhibitor benzo[g][1]benzopyrano[4,3-b]indol-6(13H)-ones (BBPIs), which were developed by structural modification of the natural marine product lamellarin. The unconventional pentacycle was constructed by Bischler-Napieralski-type condensation of amide 11 and subsequent intramolecular Heck reaction. In vitro anticancer activity of the synthesized benzo[6,7]indolo[3,4-c]isoquinolines was evaluated on a panel of 39 human cancer cell lines (JFCR39). Among the compounds tested, N-(3-morpholinopropyl) derivative 3e showed the most potent antiproliferative activity, with a mean GI50 value of 39 nM. This compound inhibited topoisomerase I activity by stabilizing the enzyme-DNA complex.


Asunto(s)
Antineoplásicos , Cumarinas , Compuestos Heterocíclicos de 4 o más Anillos , Isoquinolinas , Inhibidores de Topoisomerasa I , Humanos , Antineoplásicos/síntesis química , Antineoplásicos/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , ADN-Topoisomerasas de Tipo I/metabolismo , Ensayos de Selección de Medicamentos Antitumorales , Isoquinolinas/síntesis química , Isoquinolinas/química , Isoquinolinas/farmacología , Relación Estructura-Actividad , Inhibidores de Topoisomerasa I/síntesis química , Inhibidores de Topoisomerasa I/química , Inhibidores de Topoisomerasa I/farmacología , Diseño de Fármacos , Cumarinas/síntesis química , Cumarinas/química , Cumarinas/farmacología , Compuestos Heterocíclicos de 4 o más Anillos/síntesis química , Compuestos Heterocíclicos de 4 o más Anillos/química , Compuestos Heterocíclicos de 4 o más Anillos/farmacología
3.
Bioorg Med Chem ; 99: 117608, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38271867

RESUMEN

Tropomyosin receptor kinases (TRKs), the superfamily of transmembrane receptor tyrosine kinases, have recently become an attractive method for precision anticancer therapies since the approval of Larotrectinib and Entrectinib by FDA. Herein, we reported the discovery of a series of novel indazolylaminoquinazoline and indazolylaminoindazole as TRK inhibitors. The representative compound 30f exhibited good inhibitory activity against TRKWT, TRKG595R and TRKG667C with IC50 values of 0.55 nM, 25.1 nM and 5.4 nM, respectively. The compound also demonstrated potent superior to Larotrectinib antiproliferative activity against a panel of Ba/F3 cell lines transformed with both NTRK wild type and mutant fusions (IC50 = 10-200 nM). In addition, compound 30f exhibited good in vitro metabolic stability (T1/2 = 73.0 min), indicating that the quinazoline derivatives may have better metabolic stability. Finally, the binding mode of compound 30f predicted by molecular docking well explained the good enzyme inhibitory activity of indazolylaminoquinazoline compounds as TRK inhibitor. Thus, compound 30f can be used as a promising lead molecule for further structural optimization.


Asunto(s)
Neoplasias , Humanos , Tropomiosina , Simulación del Acoplamiento Molecular , Proteínas Tirosina Quinasas Receptoras , Inhibidores de Proteínas Quinasas/farmacología
4.
Bioorg Med Chem ; 112: 117882, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39167978

RESUMEN

The bromodomain-containing protein 4 (BRD4), which is a key epigenetic regulator in cancer, has emerged as an attractive target for the treatment of melanoma. In this study, we investigate 7-phenoxy-benzimidazole derivative 12, which is a novel BRD4 inhibitor for the treatment of melanoma, by performing scaffold hopping on the previously reported benzimidazole derivative 1. Despite their good oral and intravenous exposure, the compounds obtained by modifying derivate 1 exhibit mutagenicity, which was confirmed by the positive Ames test results. Based on our hypothesis that the cause of the Ames test positivity is the metabolic intermediates generated from those chemical series, we implemented a scaffold hopping strategy to avoid the N-benzyl moiety by relocating the substituent groups to preserve the essential interaction. Based on this strategy, we successfully obtained compound 12; the Ames test results of this compound were negative. Notably, compound 12 not only exhibited a favorable pharmacokinetic (PK) profile but also significant tumor growth inhibition in a mouse melanoma xenograft model, indicating its potential as a therapeutic agent for the treatment of melanoma.


Asunto(s)
Antineoplásicos , Bencimidazoles , Proteínas de Ciclo Celular , Melanoma , Factores de Transcripción , Animales , Bencimidazoles/química , Bencimidazoles/farmacología , Bencimidazoles/síntesis química , Ratones , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Melanoma/tratamiento farmacológico , Melanoma/patología , Humanos , Administración Oral , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/metabolismo , Relación Estructura-Actividad , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/metabolismo , Estructura Molecular , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Relación Dosis-Respuesta a Droga , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/metabolismo , Proteínas que Contienen Bromodominio
5.
Bioorg Med Chem ; 109: 117791, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38870715

RESUMEN

The flavonoid family is a set of well-known bioactive natural molecules, with a wide range of potential therapeutic applications. Despite the promising results obtained in preliminary in vitro/vivo studies, their pharmacokinetic and pharmacodynamic profiles are severely compromised by chemical instability. To address this issue, the scaffold-hopping approach is a promising strategy for the structural optimization of natural leads to discover more potent analogues. In this scenario, this Perspective provides a critical analysis on how the replacement of the chromon-4-one flavonoid core with other bioisosteric nitrogen/sulphur heterocycles might affect the chemical, pharmaceutical and biological properties of the resulting new chemical entities. The investigated derivatives were classified on the basis of their biological activity and potential therapeutic indications. For each session, the target(s), the specific mechanism of action, if available, and the key pharmacophoric moieties were highlighted, as revealed by X-ray crystal structures and in silico structure-based studies. Biological activity data, in vitro/vivo studies, were examined: a particular focus was given on the improvements observed with the new heterocyclic analogues compared to the natural flavonoids. This overview of the scaffold-hopping advantages in flavonoid compounds is of great interest to the medicinal chemistry community to better exploit the vast potential of these natural molecules and to identify new bioactive molecules.


Asunto(s)
Flavonoides , Compuestos Heterocíclicos , Flavonoides/química , Flavonoides/farmacología , Flavonoides/síntesis química , Humanos , Compuestos Heterocíclicos/química , Compuestos Heterocíclicos/farmacología , Compuestos Heterocíclicos/síntesis química , Química Farmacéutica , Productos Biológicos/química , Productos Biológicos/farmacología , Productos Biológicos/síntesis química , Estructura Molecular , Relación Estructura-Actividad , Animales
6.
Bioorg Chem ; 144: 107092, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38271825

RESUMEN

KRAS is the most frequently mutated oncogene and drives the development and progression of malignancies, most notably non-small cell lung cancer (NSCLS), pancreatic ductal adenocarcinoma (PDAC) and colorectal cancer (CRC). However, KRAS proteins have maintained the reputation of being "undruggable" due to the lack of suitable deep pockets on its surface. One major milestone for KRAS inhibition was the discovery of the covalent inhibitors bond to the allosteric switch-II pocket of the KRASG12C protein. To date, the FDA has approved two KRASG12C inhibitors, sotorasib and adagrasib, for the treatment of patients with KRASG12C-driven cancers. Researchers have paid close attention to the development of inhibitors for other KRAS mutations and upstream regulatory factors. The KRAS targeted drug discovery has entered a state of rapid development. This article has aimed to present the current state of the art of drug development in the KRAS field. We systematically summarize recent advances in the discovery and optimization processes of direct KRAS inhibitors (including KRASG12C, KRASG12D, KRASG12A and KRASG12R inhibitors), indirect KRAS inhibitors (SOS1 and SHP2 inhibitors), pan-KRAS inhibitors, as well as proteolysis-targetingchimeras degrades and molecular chaperone modulators from the perspective of medicinal chemistry. We also discuss the current challenges and opportunities of KRAS inhibition and hope to shed light on future KRAS drug discovery.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Química Farmacéutica , Proteínas Proto-Oncogénicas p21(ras)/genética , Desarrollo de Medicamentos , Mutación
7.
Mar Drugs ; 22(2)2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38393054

RESUMEN

PLK1 is found to be highly expressed in various types of cancers, but the development of inhibitors for it has been slow. Most inhibitors are still in clinical stages, and many lack the necessary selectivity and anti-tumor effects. This study aimed to create new inhibitors for the PLK1-PBD by focusing on the PBD binding domain, which has the potential for greater selectivity. A 3D QSAR model was developed using a dataset of 112 compounds to evaluate 500 molecules. ADMET prediction was then used to select three molecules with strong drug-like characteristics. Scaffold hopping was employed to reconstruct 98 new compounds with improved drug-like properties and increased activity. Molecular docking was used to compare the efficient compound abbapolin, confirming the high-activity status of [(14S)-14-hydroxy-14-(pyridin-2-yl)tetradecyl]ammonium,[(14S)-15-(2-furyl)-14-hydroxypentadecyl]ammonium and [(14S)-14-hydroxy-14-phenyltetradecyl]ammonium. Molecular dynamics simulations and MMPBSA were conducted to evaluate the stability of the compounds in the presence of proteins. An in-depth analysis of [(14S)-15-(2-furyl)-14-hydroxypentadecyl]ammonium and [(14S)-14-hydroxy-14-phenyltetradecyl]ammonium identified them as potential candidates for PLK1 inhibitors.


Asunto(s)
Compuestos de Amonio , Productos Biológicos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Relación Estructura-Actividad Cuantitativa , Farmacóforo , Productos Biológicos/farmacología
8.
Pestic Biochem Physiol ; 204: 106109, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39277414

RESUMEN

Isoxazoline insecticides have shown broad-spectrum insecticidal activity against a variety of insect pests. However, the high toxicity of isoxazoline compounds towards honeybees restricts their application in crop protection. To mitigate this issue, a series of isoxazoline derivatives containing 2-phenyloxazoline were designed and synthesized. Bioassays revealed that several compounds exhibited promising insecticidal activities against Plutella xylostella, with G28 showing particularly excellent insecticidal activity, reflected by an LC50 value of 0.675 mg/L, which is comparable to that of fluxametamide (LC50 = 0.593 mg/L). Furthermore, G28 also exhibited effective insecticidal activity against Solenopsis invicta. Importantly, bee toxicity experiments indicated that G28 had significantly lower acute oral toxicity (LD50 = 2.866 µg/adult) compared to fluxametamide (LD50 = 1.083 µg/adult) and fluralaner (LD50 = 0.022 µg/adult), positioning it as a promising candidate with reduced toxicity to bees. Theoretical simulation further elucidated the reasons for the selective differences in the ability of isoxazoline to achieve higher insecticidal activity while maintaining lower bee toxicity. This research suggests that isoxazoline compounds containing 2-phenyloxazoline group hold potential as new insecticide candidates and offers insights into the development of novel isoxazoline insecticides with both high efficacy and environmental safety.


Asunto(s)
Diseño de Fármacos , Insecticidas , Isoxazoles , Mariposas Nocturnas , Oxazoles , Insecticidas/síntesis química , Insecticidas/química , Insecticidas/farmacología , Insecticidas/toxicidad , Animales , Oxazoles/química , Oxazoles/toxicidad , Isoxazoles/farmacología , Isoxazoles/química , Mariposas Nocturnas/efectos de los fármacos , Abejas/efectos de los fármacos , Relación Estructura-Actividad
9.
Chem Biodivers ; 21(8): e202302048, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38263380

RESUMEN

Today, the bacterial infections caused by multidrug-resistant pathogens seriously threaten human health. Thereby, there is an urgent need to discover antibacterial drugs with novel mechanism. Here, novel psoralen derivatives had been designed and synthesized by a scaffold hopping strategy. Among these targeted twenty-five compounds, compound ZM631 showed the best antibacterial activity against methicillin-resistant S. aureus (MRSA) with the low MIC of 1 µg/mL which is 2-fold more active than that of the positive drug gepotidacin. Molecular docking study revealed that compound ZM631 fitted well in the active pockets of bacterial S. aureus DNA gyrase and formed a key hydrogen bond binding with the residue ASP-1083. These findings demonstrated that the psoralen scaffold could serve as an antibacterial lead compound for further drug development against multidrug-resistant bacterial infections.


Asunto(s)
Antibacterianos , Staphylococcus aureus Resistente a Meticilina , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Relación Estructura-Actividad , Estructura Molecular , Girasa de ADN/metabolismo , Ficusina/farmacología , Ficusina/química , Ficusina/síntesis química , Relación Dosis-Respuesta a Droga , Humanos
10.
Chem Biodivers ; : e202401767, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39185921

RESUMEN

Insect transient receptor potential vanilloid (TRPV) channels are critical targets for insecticides. In this study, various scaffold-hopping strategies were employed in the rational design of pyridylhydrazono derivatives as potential insect TRPV channels modulators. Insecticidal bioassay demonstrated that the initial target compounds exhibited lower insecticidal activity compared to pymetrozine, with the optimal compound B3 exhibiting a mortality rate of 53.3% against Aphis craccivora at 400 mg·L-1. Conformation analysis indicated that the high energy barrier required for the transition from the lowest-energy conformation to the active conformation may be a key factor contributing to the reduced insecticidal activities of the target compounds. Further structural optimizations aimed at reducing this energy barrier through binding mode-based conformation regulation led to the identification of optimal target 4-(3'-pyridylhydrazono)pyrazol-5-one derivatives C1 and C2. These compounds exhibited reduced transition energy barriers and improved insecticidal activity, with moderate mortality rate of 66.3% and 75.7% against A. craccivora at 400 mg·L-1, respectively. These findings provide valuable insights for future research on the discovery of insect TRPV modulators and have significant implications for the development of more effective agricultural insecticides.

11.
Int J Mol Sci ; 25(13)2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-39000539

RESUMEN

Isocitrate dehydrogenase 1 (IDH1) is a necessary enzyme for cellular respiration in the tricarboxylic acid cycle. Mutant isocitrate dehydrogenase 1 (mIDH1) has been detected overexpressed in a variety of cancers. mIDH1 inhibitor ivosidenib (AG-120) was only approved by the Food and Drug Administration (FDA) for marketing, nevertheless, a range of resistance has been frequently reported. In this study, several mIDH1 inhibitors with the common backbone pyridin-2-one were explored using the three-dimensional structure-activity relationship (3D-QSAR), scaffold hopping, absorption, distribution, metabolism, excretion (ADME) prediction, and molecular dynamics (MD) simulations. Comparative molecular field analysis (CoMFA, R2 = 0.980, Q2 = 0.765) and comparative molecular similarity index analysis (CoMSIA, R2 = 0.997, Q2 = 0.770) were used to build 3D-QSAR models, which yielded notably decent predictive ability. A series of novel structures was designed through scaffold hopping. The predicted pIC50 values of C3, C6, and C9 were higher in the model of 3D-QSAR. Additionally, MD simulations culminated in the identification of potent mIDH1 inhibitors, exhibiting strong binding interactions, while the analyzed parameters were free energy landscape (FEL), radius of gyration (Rg), solvent accessible surface area (SASA), and polar surface area (PSA). Binding free energy demonstrated that C2 exhibited the highest binding free energy with IDH1, which was -93.25 ± 5.20 kcal/mol. This research offers theoretical guidance for the rational design of novel mIDH1 inhibitors.


Asunto(s)
Isocitrato Deshidrogenasa , Simulación de Dinámica Molecular , Relación Estructura-Actividad Cuantitativa , Isocitrato Deshidrogenasa/antagonistas & inhibidores , Isocitrato Deshidrogenasa/química , Isocitrato Deshidrogenasa/metabolismo , Isocitrato Deshidrogenasa/genética , Humanos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Piridonas/química , Piridonas/farmacología
12.
Molecules ; 29(17)2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39274997

RESUMEN

By using a scaffold hopping/ring equivalent and intermediate derivatization strategies, a series of compounds of 2,5-diphenyl-1,3-oxazoline with substituent changes at the 5-phenyl position were prepared, and their acaricidal activity was studied. However, the synthesized 2,5-diphenyl-1,3-oxazolines showed lower activity against mite eggs and larvae compared to the 2,4-diphenyl-1,3-oxazolines with the same substituents. We speculate that there is a significant difference in the spatial extension direction of the substituents between the two skeletons of compounds, resulting in differences in their ability to bind to the potential target chitin synthase 1. This work is helpful in inferring the internal structure of chitin synthase binding pockets.


Asunto(s)
Acaricidas , Oxazoles , Acaricidas/química , Acaricidas/farmacología , Acaricidas/síntesis química , Animales , Oxazoles/química , Oxazoles/síntesis química , Oxazoles/farmacología , Diseño de Fármacos , Relación Estructura-Actividad , Ácaros/efectos de los fármacos , Estructura Molecular , Larva/efectos de los fármacos , Quitina Sintasa/antagonistas & inhibidores , Quitina Sintasa/metabolismo
13.
Molecules ; 29(2)2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38257244

RESUMEN

Thirty-eight new 4-amino-3,5-dicholo-6-(1H-indazolyl)-2-picolinic acids and 4-amino-3,5-dicholo-6-(2H-indazolyl)-2-picolinic acids were designed by scaffold hopping and synthesized to discover potential herbicidal molecules. All the new compounds were tested to determine their inhibitory activities against Arabidopsis thaliana and the root growth of five weeds. In general, the synthesized compounds exhibited excellent inhibition properties and showed good inhibitory effects on weed root growth. In particular, compound 5a showed significantly greater root inhibitory activity than picloram in Brassica napus and Abutilon theophrasti Medicus at the concentration of 10 µM. The majority of compounds exhibited a 100% post-emergence herbicidal effect at 250 g/ha against Amaranthus retroflexus and Chenopodium album. We also found that 6-indazolyl-2-picolinic acids could induce the up-regulation of auxin genes ACS7 and NCED3, while auxin influx, efflux and auxin response factor were down-regulated, indicating that 6-indazolyl-2-picolinic acids promoted ethylene release and ABA production to cause plant death in a short period, which is different in mode from other picolinic acids.


Asunto(s)
Arabidopsis , Herbicidas , Herbicidas/farmacología , Ácidos Picolínicos/farmacología , Picloram , Transporte Biológico , Ácidos Indolacéticos/farmacología
14.
Molecules ; 29(12)2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38930878

RESUMEN

Aurones, particular polyphenolic compounds belonging to the class of minor flavonoids and overlooked for a long time, have gained significative attention in medicinal chemistry in recent years. Indeed, considering their unique and outstanding biological properties, they stand out as an intriguing reservoir of new potential lead compounds in the drug discovery context. Nevertheless, several physicochemical, pharmacokinetic, and pharmacodynamic (P3) issues hinder their progression in more advanced phases of the drug discovery pipeline, making lead optimization campaigns necessary. In this context, scaffold hopping has proven to be a valuable approach in the optimization of natural products. This review provides a comprehensive and updated picture of the scaffold-hopping approaches directed at the optimization of natural and synthetic aurones. In the literature analysis, a particular focus is given to nitrogen and sulfur analogues. For each class presented, general synthetic procedures are summarized, highlighting the key advantages and potential issues. Furthermore, the biological activities of the most representative scaffold-hopped compounds are presented, emphasizing the improvements achieved and the potential for further optimization compared to the aurone class.


Asunto(s)
Nitrógeno , Azufre , Nitrógeno/química , Humanos , Azufre/química , Benzofuranos/química , Benzofuranos/síntesis química , Benzofuranos/farmacología , Productos Biológicos/química , Productos Biológicos/farmacología , Relación Estructura-Actividad , Descubrimiento de Drogas/métodos , Animales , Estructura Molecular
15.
Angew Chem Int Ed Engl ; : e202411555, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39219402

RESUMEN

We report a strategy for the C-N cross-coupling of tertiary amines via the in situ generation and displacement of N-acyl ammonium species. Specifically, treatment of diverse tertiary amines with TFAA or choroformates in the presence of NaI leads to the efficient generation of alkyl iodides, which can be engaged directly in Ni-catalyzed cross-couplings. The protocol is applicable to acyclic and cyclic systems, including highly hindered variants. Applications to the late-stage modification of complex heterocycles are presented.

16.
Beilstein J Org Chem ; 20: 1880-1893, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39109294

RESUMEN

The concept of bioisostere replacement is of paramount importance in medicinal chemistry, as it can be employed as a rational to expand bioactive chemical space to tackle lead optimization issues like lack of potency, efficacy, and selectivity or pharmacokinetic/dynamic issues. One of the most important building blocks (in the sense of participating in a vast area of chemical space of biological importance) in medicinal chemistry is the 2-phenethyl moiety, a key component of diverse drug-like entities. Although the core 2-phenethylamine structure has been recognized by the drug discovery community, little attention has been given to the various ring-based rescaffolding procedures that can be conducted with this unit. In this regard, a review on the use of 2-heteroarylethylamines displaying pharmacological activity is reported. A detailed description of flexible, amine-opened motifs is provided, that describes therapeutic targets and other potent bioactive examples, which will be a valuable repository of phenyl, heteroaryl, and other replacement units of high value to the drug discovery community.

17.
Brief Bioinform ; 22(6)2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-34151363

RESUMEN

Three-dimensional (3D) molecular similarity, one major ligand-based virtual screening (VS) method, has been widely used in the drug discovery process. A variety of 3D molecular similarity tools have been developed in recent decades. In this study, we assessed a panel of 15 3D molecular similarity programs against the DUD-E and LIT-PCBA datasets, including commercial ROCS and Phase, in terms of screening power and scaffold-hopping power. The results revealed that (1) SHAFTS, LS-align, Phase Shape_Pharm and LIGSIFT showed the best VS capability in terms of screening power. Some 3D similarity tools available to academia can yield relatively better VS performance than commercial ROCS and Phase software. (2) Current 3D similarity VS tools exhibit a considerable ability to capture actives with new chemotypes in terms of scaffold hopping. (3) Multiple conformers relative to single conformations will generally improve VS performance for most 3D similarity tools, with marginal improvement observed in area under the receiving operator characteristic curve values, enrichment factor in the top 1% and hit rate in the top 1% values showed larger improvement. Moreover, redundancy and complementarity analyses of hit lists from different query seeds and different 3D similarity VS tools showed that the combination of different query seeds and/or different 3D similarity tools in VS campaigns retrieved more (and more diverse) active molecules. These findings provide useful information for guiding choices of the optimal 3D molecular similarity tools for VS practices and designing possible combination strategies to discover more diverse active compounds.


Asunto(s)
Descubrimiento de Drogas/métodos , Modelos Moleculares , Conformación Molecular , Programas Informáticos , Área Bajo la Curva , Benchmarking , Bases de Datos Farmacéuticas , Diseño de Fármacos , Evaluación Preclínica de Medicamentos/métodos , Ligandos , Estructura Molecular , Curva ROC , Navegador Web
18.
Bioorg Med Chem ; 87: 117312, 2023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-37167712

RESUMEN

Wee1 has emerged as a potential target in cancer therapy due to its critical role in the regulation of the cell cycle. Here, we describe a series of Wee1 inhibitors with a novel scaffold that are potent inhibitors of this kinase (IC50 = 19-1485 nM). These inhibitors demonstrated robust cytotoxicity in MV-4-11 and T47D cell lines (MV-4-11 IC50 = 660-2690 nM, T47D IC50 = 2670-20,000 nM) and displayed good stability in mouse liver microsomes in vitro. Additionally, compound 34 showed remarkable selectivity (more than 500-fold) over the other 9 kinases. Further mechanistic studies demonstrated that compound 34 displayed measurable effects on downstream biomarkers and induced cancer cell apoptosis and cell cycle arrest in the G0/G1 phase. Taken together, these results show that compound 34, potentially a leading Wee1 inhibitor, warrants further investigation.


Asunto(s)
Antineoplásicos , Pirimidinonas , Animales , Ratones , Pirimidinonas/farmacología , Pirimidinas/farmacología , Línea Celular Tumoral , Ciclo Celular , Proteínas de Ciclo Celular , Inhibidores de Proteínas Quinasas/farmacología , Apoptosis , Proliferación Celular , Antineoplásicos/farmacología
19.
Bioorg Med Chem ; 93: 117455, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37643500

RESUMEN

Human sirtuin 5 (SIRT5) participates in a variety of metabolic disorder-associated diseases, including cancer. Inhibition of SIRT5 has been confirmed to provide a new strategy for treatment of related diseases. Previously, we discovered a pyrimidine skeleton inhibitor XIV, which showed low micromolar inhibitory activity against SIRT5. Herein, we utilized the scaffold-hopping strategy to design and synthesize a series of 2,4,6- trisubstituted triazine derivatives. The SAR analysis led to the discovery of several new SIRT5 inhibitors with low micromolar inhibition levels. The most potent compounds 10 (IC50 = 5.38 µM), and 14 (IC50 = 4.07 µM) were further confirmed to be the substrate-competitive SIRT5 inhibitors through enzyme kinetic assays, which is consistent with the molecular docking analyses. Fluorescence-based thermal shift assays proved that these compounds may stabilize SIRT5 by binding withprotein.. In addition, compounds 10 and 14 were also revealed to have moderate selectivity to SIRT5 over SIRT1-3. This study will aid further efforts to develop highly potent and selective SIRT5 inhibitors for the treatment of cancer and other related diseases.


Asunto(s)
Radiofármacos , Sirtuinas , Humanos , Simulación del Acoplamiento Molecular , Bioensayo , Pruebas de Enzimas , Triazinas/farmacología
20.
Bioorg Med Chem ; 93: 117461, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37659219

RESUMEN

The epigenetic regulation of the protein bromodomain-containing protein 4 (BRD4) has emerged as a compelling target for cancer treatment. In this study, we outline the discovery of a novel BRD4 inhibitor for melanoma therapy. Our initial finding was that benzimidazole derivative 1, sourced from our library, was a powerful BRD4 inhibitor. However, it exhibited a poor pharmacokinetic (PK) profile. To address this, we conducted a scaffold-hopping procedure with derivative 1, which resulted in the creation of benzimidazolinone derivative 5. This new derivative displayed an improved PK profile. To further enhance the BRD4 inhibitory activity, we attempted to introduce hydrogen bond acceptors. This indeed improved the activity, but at the cost of decreased membrane permeability. Our search for a potent inhibitor with desirable permeability led to the development of tricyclic 18. This compound demonstrated powerful inhibitory activity and a favorable PK profile. More significantly, tricyclic 18 showed antitumor efficacy in a mouse melanoma xenograft model, suggesting that it holds potential as a therapeutic agent for melanoma treatment.


Asunto(s)
Melanoma , Proteínas Nucleares , Animales , Ratones , Humanos , Epigénesis Genética , Factores de Transcripción , Melanoma/tratamiento farmacológico , Permeabilidad de la Membrana Celular , Proteínas de Ciclo Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA