Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.219
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 187(17): 4690-4712.e30, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39142281

RESUMEN

Electrical excitability-the ability to fire and propagate action potentials-is a signature feature of neurons. How neurons become excitable during development and whether excitability is an intrinsic property of neurons remain unclear. Here, we demonstrate that Schwann cells, the most abundant glia in the peripheral nervous system, promote somatosensory neuron excitability during development. We find that Schwann cells secrete prostaglandin E2, which is necessary and sufficient to induce developing somatosensory neurons to express normal levels of genes required for neuronal function, including voltage-gated sodium channels, and to fire action potential trains. Inactivating this signaling pathway in Schwann cells impairs somatosensory neuron maturation, causing multimodal sensory defects that persist into adulthood. Collectively, our studies uncover a neurodevelopmental role for prostaglandin E2 distinct from its established role in inflammation, revealing a cell non-autonomous mechanism by which glia regulate neuronal excitability to enable the development of normal sensory functions.


Asunto(s)
Potenciales de Acción , Dinoprostona , Células de Schwann , Células Receptoras Sensoriales , Animales , Células de Schwann/metabolismo , Dinoprostona/metabolismo , Ratones , Células Receptoras Sensoriales/metabolismo , Transducción de Señal
2.
Annu Rev Neurosci ; 45: 561-580, 2022 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-35440141

RESUMEN

Schwann cells in the peripheral nervous system (PNS) are essential for the support and myelination of axons, ensuring fast and accurate communication between the central nervous system and the periphery. Schwann cells and related glia accompany innervating axons in virtually all tissues in the body, where they exhibit remarkable plasticity and the ability to modulate pathology in extraordinary, and sometimes surprising, ways. Here, we provide a brief overview of the various glial cell types in the PNS and describe the cornerstone cellular and molecular processes that enable Schwann cells to perform their canonical functions. We then dive into discussing exciting noncanonical functions of Schwann cells and related PNS glia, which include their role in organizing the PNS, in regulating synaptic activity and pain, in modulating immunity, in providing a pool of stem cells for different organs, and, finally, in influencing cancer.


Asunto(s)
Sistema Nervioso Periférico , Células de Schwann , Axones/metabolismo , Sistema Nervioso Central/fisiología , Neuroglía/fisiología , Sistema Nervioso Periférico/fisiología , Células de Schwann/metabolismo
3.
Genes Dev ; 36(3-4): 133-148, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35086862

RESUMEN

The regeneration of peripheral nerves is guided by regeneration tracks formed through an interplay of many cell types, but the underlying signaling pathways remain unclear. Here, we demonstrate that macrophages are mobilized ahead of Schwann cells in the nerve bridge after transection injury to participate in building regeneration tracks. This requires the function of guidance receptor Plexin-B2, which is robustly up-regulated in infiltrating macrophages in injured nerves. Conditional deletion of Plexin-B2 in myeloid lineage resulted in not only macrophage misalignment but also matrix disarray and Schwann cell disorganization, leading to misguided axons and delayed functional recovery. Plexin-B2 is not required for macrophage recruitment or activation but enables macrophages to steer clear of colliding axons, in particular the growth cones at the tip of regenerating axons, leading to parallel alignment postcollision. Together, our studies unveil a novel reparative function of macrophages and the importance of Plexin-B2-mediated collision-dependent contact avoidance between macrophages and regenerating axons in forming regeneration tracks during peripheral nerve regeneration.


Asunto(s)
Regeneración Nerviosa , Nervios Periféricos , Axones/fisiología , Moléculas de Adhesión Celular , Macrófagos/metabolismo , Regeneración Nerviosa/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Nervios Periféricos/metabolismo , Células de Schwann/metabolismo
4.
Annu Rev Neurosci ; 44: 197-219, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-33722070

RESUMEN

Myelination of axons provides the structural basis for rapid saltatory impulse propagation along vertebrate fiber tracts, a well-established neurophysiological concept. However, myelinating oligodendrocytes and Schwann cells serve additional functions in neuronal energy metabolism that are remarkably similar to those of axon-ensheathing glial cells in unmyelinated invertebrates. Here we discuss myelin evolution and physiological glial functions, beginning with the role of ensheathing glia in preventing ephaptic coupling, axoglial metabolic support, and eliminating oxidative radicals. In both vertebrates and invertebrates, axoglial interactions are bidirectional, serving to regulate cell fate, nerve conduction, and behavioral performance. One key step in the evolution of compact myelin in the vertebrate lineage was the emergence of the open reading frame for myelin basic protein within another gene. Several other proteins were neofunctionalized as myelin constituents and help maintain a healthy nervous system. Myelination in vertebrates became a major prerequisite of inhabiting new ecological niches.


Asunto(s)
Axones , Vaina de Mielina , Animales , Neuroglía , Neuronas , Oligodendroglía
5.
Annu Rev Cell Dev Biol ; 30: 503-33, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25288117

RESUMEN

Myelination of axons in the nervous system of vertebrates enables fast, saltatory impulse propagation, one of the best-understood concepts in neurophysiology. However, it took a long while to recognize the mechanistic complexity both of myelination by oligodendrocytes and Schwann cells and of their cellular interactions. In this review, we highlight recent advances in our understanding of myelin biogenesis, its lifelong plasticity, and the reciprocal interactions of myelinating glia with the axons they ensheath. In the central nervous system, myelination is also stimulated by axonal activity and astrocytes, whereas myelin clearance involves microglia/macrophages. Once myelinated, the long-term integrity of axons depends on glial supply of metabolites and neurotrophic factors. The relevance of this axoglial symbiosis is illustrated in normal brain aging and human myelin diseases, which can be studied in corresponding mouse models. Thus, myelinating cells serve a key role in preserving the connectivity and functions of a healthy nervous system.


Asunto(s)
Vaina de Mielina/fisiología , Adenosina Trifosfato/metabolismo , Animales , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Axones/fisiología , Sistema Nervioso Central/metabolismo , Enfermedad de Charcot-Marie-Tooth/metabolismo , Enfermedad de Charcot-Marie-Tooth/patología , Citoesqueleto/ultraestructura , Enfermedades Desmielinizantes/metabolismo , Enfermedades Desmielinizantes/patología , Glucosa/metabolismo , Humanos , Inflamación , Leucoencefalopatías/metabolismo , Leucoencefalopatías/patología , Ratones , Microscopía Electrónica , Proteínas de la Mielina/fisiología , Plasticidad Neuronal , Oligodendroglía/fisiología , Sistema Nervioso Periférico/metabolismo , Células de Schwann/fisiología , Transmisión Sináptica/fisiología
6.
Development ; 151(15)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39092608

RESUMEN

Melanocytes evolved to produce the melanin that gives colour to our hair, eyes and skin. The melanocyte lineage also gives rise to melanoma, the most lethal form of skin cancer. The melanocyte lineage differentiates from neural crest cells during development, and most melanocytes reside in the skin and hair, where they are replenished by melanocyte stem cells. Because the molecular mechanisms necessary for melanocyte specification, migration, proliferation and differentiation are co-opted during melanoma initiation and progression, studying melanocyte development is directly relevant to human disease. Here, through the lens of advances in cellular omic and genomic technologies, we review the latest findings in melanocyte development and differentiation, and how these developmental pathways become dysregulated in disease.


Asunto(s)
Diferenciación Celular , Linaje de la Célula , Melanocitos , Melanoma , Melanocitos/metabolismo , Melanocitos/citología , Humanos , Animales , Melanoma/patología , Melanoma/metabolismo , Melanoma/genética , Cresta Neural/metabolismo , Proliferación Celular , Neoplasias Cutáneas/patología , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/genética
7.
Annu Rev Genomics Hum Genet ; 24: 203-223, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37624665

RESUMEN

While the neural crest cell population gives rise to an extraordinary array of derivatives, including elements of the craniofacial skeleton, skin pigmentation, and peripheral nervous system, it is today increasingly recognized that Schwann cell precursors are also multipotent. Two mammalian paralogs of the SWI/SNF (switch/sucrose nonfermentable) chromatin-remodeling complexes, BAF (Brg1-associated factors) and PBAF (polybromo-associated BAF), are critical for neural crest specification during normal mammalian development. There is increasing evidence that pathogenic variants in components of the BAF and PBAF complexes play central roles in the pathogenesis of neural crest-derived tumors. Transgenic mouse models demonstrate a temporal window early in development where pathogenic variants in Smarcb1 result in the formation of aggressive, poorly differentiated tumors, such as rhabdoid tumors. By contrast, later in development, homozygous inactivation of Smarcb1 requires additional pathogenic variants in tumor suppressor genes to drive the development of differentiated adult neoplasms derived from the neural crest, which have a comparatively good prognosis in humans.


Asunto(s)
Agresión , Cresta Neural , Adulto , Animales , Ratones , Humanos , Diferenciación Celular/genética , Homocigoto , Ratones Transgénicos , Mamíferos
8.
EMBO J ; 41(17): e108780, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35815410

RESUMEN

Schwann cell precursors (SCPs) are nerve-associated progenitors that can generate myelinating and non-myelinating Schwann cells but also are multipotent like the neural crest cells from which they originate. SCPs are omnipresent along outgrowing peripheral nerves throughout the body of vertebrate embryos. By using single-cell transcriptomics to generate a gene expression atlas of the entire neural crest lineage, we show that early SCPs and late migratory crest cells have similar transcriptional profiles characterised by a multipotent "hub" state containing cells biased towards traditional neural crest fates. SCPs keep diverging from the neural crest after being primed towards terminal Schwann cells and other fates, with different subtypes residing in distinct anatomical locations. Functional experiments using CRISPR-Cas9 loss-of-function further show that knockout of the common "hub" gene Sox8 causes defects in neural crest-derived cells along peripheral nerves by facilitating differentiation of SCPs towards sympathoadrenal fates. Finally, specific tumour populations found in melanoma, neurofibroma and neuroblastoma map to different stages of SCP/Schwann cell development. Overall, SCPs resemble migrating neural crest cells that maintain multipotency and become transcriptionally primed towards distinct lineages.


Asunto(s)
Cresta Neural , Células de Schwann , Diferenciación Celular/fisiología , Neurogénesis/fisiología , Nervios Periféricos , Células de Schwann/metabolismo
9.
Development ; 150(9)2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37170957

RESUMEN

The peripheral nervous system (PNS) represents a highly heterogeneous entity with a broad range of functions, ranging from providing communication between the brain and the body to controlling development, stem cell niches and regenerative processes. According to the structure and function, the PNS can be subdivided into sensory, motor (i.e. the nerve fibers of motor neurons), autonomic and enteric domains. Different types of neurons correspond to these domains and recent progress in single-cell transcriptomics has enabled the discovery of new neuronal subtypes and improved the previous cell-type classifications. The developmental mechanisms generating the domains of the PNS reveal a range of embryonic strategies, including a variety of cell sources, such as migratory neural crest cells, placodal neurogenic cells and even recruited nerve-associated Schwann cell precursors. In this article, we discuss the diversity of roles played by the PNS in our body, as well as the origin, wiring and heterogeneity of every domain. We place a special focus on the most recent discoveries and concepts in PNS research, and provide an outlook of future perspectives and controversies in the field.


Asunto(s)
Neurogénesis , Sistema Nervioso Periférico , Cresta Neural , Células de Schwann , Neuronas Motoras
10.
Mol Cell ; 72(3): 457-468.e5, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30344099

RESUMEN

Successful regeneration of severed peripheral nerves requires the breakdown and subsequent clearance of myelin, tightly packed membrane sheaths of Schwann cells that protect nerve fibers and harbor nerve growth-inhibitory proteins. How Schwann cells initiate myelin breakdown in response to injury is still largely unknown. Here we report that, following sciatic nerve injury, MLKL, a pseudokinase known to rupture cell membranes during necroptotic cell death, is induced and targets the myelin sheath membrane of Schwann cells to promote myelin breakdown. The function of MLKL in disrupting myelin sheaths requires injury-induced phosphorylation of serine 441, an activation signal distinct from the necroptosis-inducing phosphorylation by RIP3 kinase. Mice with Mlkl specifically knocked out in Schwann cells showed delayed myelin sheath breakdown. Lack of MLKL reduced nerve regeneration following injury, whereas overexpression of MLKL accelerated myelin breakdown and promoted the regeneration of axons.


Asunto(s)
Traumatismos de los Nervios Periféricos/metabolismo , Proteínas Quinasas/fisiología , Células de Schwann/fisiología , Animales , Apoptosis , Membrana Celular , Células HEK293 , Células HeLa , Humanos , Ratones , Ratones Endogámicos C57BL , Vaina de Mielina/metabolismo , Necrosis , Regeneración Nerviosa/fisiología , Traumatismos de los Nervios Periféricos/fisiopatología , Fosforilación , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo
11.
Proc Natl Acad Sci U S A ; 120(4): e2216941120, 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36669102

RESUMEN

In inflammatory neuropathies, oxidative stress results in neuronal and Schwann cell (SC) death promoting early neurodegeneration and clinical disability. Treatment with the short-chain fatty acid propionate showed a significant immunoregulatory and neuroprotective effect in multiple sclerosis patients. Similar effects have been described for patients with chronic inflammatory demyelinating polyneuropathy (CIDP). Therefore, Schwann cell's survival and dorsal root ganglia (DRG) outgrowth were evaluated in vitro after propionate treatment and application of H2O2 or S-nitroso-N-acetyl-D-L-penicillamine (SNAP) to evaluate neuroprotection. In addition, DRG resistance was evaluated by the application of oxidative stress by SNAP ex vivo after in vivo propionate treatment. Propionate treatment secondary to SNAP application on DRG served as a neuroregeneration model. Histone acetylation as well as expression of the free fatty acid receptor (FFAR) 2 and 3, histone deacetylases, neuroregeneration markers, and antioxidative mediators were investigated. ß-hydroxybutyrate was used as a second FFAR3 ligand, and pertussis toxin was used as an FFAR3 antagonist. FFAR3, but not FFAR2, expression was evident on SC and DRG. Propionate-mediated activation of FFAR3 and histone 3 hyperacetylation resulted in increased catalase expression and increased resistance to oxidative stress. In addition, propionate treatment resulted in enhanced neuroregeneration with concomitant growth-associated protein 43 expression. We were able to demonstrate an antioxidative and neuroregenerative effect of propionate on SC and DRG mediated by FFAR3-induced histone acetylases expression. Our results describe a pathway to achieve neuroprotection/neuroregeneration relevant for patients with immune-mediated neuropathies.


Asunto(s)
Histonas , Propionatos , Humanos , Propionatos/farmacología , Histonas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Neuroprotección , Peróxido de Hidrógeno/farmacología , Peróxido de Hidrógeno/metabolismo , Ganglios Espinales/metabolismo
12.
Genes Dev ; 32(9-10): 645-657, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29748249

RESUMEN

Cholesterol is a major constituent of myelin membranes, which insulate axons and allow saltatory conduction. Therefore, Schwann cells, the myelinating glia of the peripheral nervous system, need to produce large amounts of cholesterol. Here, we define a crucial role of the transcription factor Maf in myelination and cholesterol biosynthesis and show that Maf acts downstream from Neuregulin1 (Nrg1). Maf expression is induced when Schwann cells begin myelination. Genetic ablation of Maf resulted in hypomyelination that resembled mice with defective Nrg1 signaling. Importantly, loss of Maf or Nrg1 signaling resulted in a down-regulation of the cholesterol synthesis program, and Maf directly binds to enhancers of cholesterol synthesis genes. Furthermore, we identified the molecular mechanisms by which Nrg1 signaling regulates Maf levels. Transcription of Maf depends on calmodulin-dependent kinases downstream from Nrg1, whereas Nrg1-MAPK signaling stabilizes Maf protein. Our results delineate a novel signaling cascade regulating cholesterol synthesis in myelinating Schwann cells.


Asunto(s)
Colesterol/biosíntesis , Vaina de Mielina/metabolismo , Neurregulina-1/metabolismo , Proteínas Proto-Oncogénicas c-maf/metabolismo , Células de Schwann/metabolismo , Transducción de Señal , Animales , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Línea Celular , Colesterol/genética , Regulación de la Expresión Génica , Histona Desacetilasas/metabolismo , Ratones , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Estabilidad Proteica , Proteínas Proto-Oncogénicas c-maf/genética , Ratas , Ratas Wistar
13.
J Neurosci ; 44(35)2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39054068

RESUMEN

TFEB and TFE3 (TFEB/3), key regulators of lysosomal biogenesis and autophagy, play diverse roles depending on cell type. This study highlights a hitherto unrecognized role of TFEB/3 crucial for peripheral nerve repair. Specifically, they promote the generation of progenitor-like repair Schwann cells after axonal injury. In Schwann cell-specific TFEB/3 double knock-out mice of either sex, the TFEB/3 loss disrupts the transcriptomic reprogramming that is essential for the formation of repair Schwann cells. Consequently, mutant mice fail to populate the injured nerve with repair Schwann cells and exhibit defects in axon regrowth, target reinnervation, and functional recovery. TFEB/3 deficiency inhibits the expression of injury-responsive repair Schwann cell genes, despite the continued expression of c-jun, a previously identified regulator of repair Schwann cell function. TFEB/3 binding motifs are enriched in the enhancer regions of injury-responsive genes, suggesting their role in repair gene activation. Autophagy-dependent myelin breakdown is not impaired despite TFEB/3 deficiency. These findings underscore a unique role of TFEB/3 in adult Schwann cells that is required for proper peripheral nerve regeneration.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Ratones Noqueados , Regeneración Nerviosa , Traumatismos de los Nervios Periféricos , Células de Schwann , Células de Schwann/metabolismo , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Ratones , Traumatismos de los Nervios Periféricos/metabolismo , Regeneración Nerviosa/fisiología , Regeneración Nerviosa/genética , Masculino , Femenino , Autofagia/fisiología , Ratones Endogámicos C57BL , Nervio Ciático/lesiones
14.
Hum Mol Genet ; 32(10): 1698-1710, 2023 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-36645183

RESUMEN

Age-related macular degeneration (AMD) is the most prevalent cause of blindness in the developed world. Vision loss in the advanced stages of the disease is caused by atrophy of retinal photoreceptors, overlying retinal pigment epithelium (RPE) and choroidal endothelial cells. The molecular events that underline the development of these cell types from in utero to adult as well as the progression to intermediate and advanced stages AMD are not yet fully understood. We performed single-cell RNA-sequencing (RNA-Seq) of human fetal and adult RPE-choroidal tissues, profiling in detail all the cell types and elucidating cell type-specific proliferation, differentiation and immunomodulation events that occur up to midgestation. Our data demonstrate that progression from the fetal to adult state is characterized by an increase in expression of genes involved in the oxidative stress response and detoxification from heavy metals, suggesting a better defence against oxidative stress in the adult RPE-choroid tissue. Single-cell comparative transcriptional analysis between a patient with intermediate AMD and an unaffected subject revealed a reduction in the number of RPE cells and melanocytes in the macular region of the AMD patient. Together these findings may suggest a macular loss of RPE cells and melanocytes in the AMD patients, but given the complex processing of tissues required for single-cell RNA-Seq that is prone to technical artefacts, these findings need to be validated by additional techniques in a larger number of AMD patients and controls.


Asunto(s)
Degeneración Macular , Epitelio Pigmentado de la Retina , Humanos , Adulto , Epitelio Pigmentado de la Retina/metabolismo , Células Endoteliales/metabolismo , Coroides/metabolismo , Degeneración Macular/genética , Degeneración Macular/metabolismo , Desarrollo Fetal , Análisis de Secuencia de ARN
15.
J Cell Sci ; 136(18)2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37642648

RESUMEN

Myelinating Schwann cell (SC)-dorsal root ganglion (DRG) neuron cocultures are an important technique for understanding cell-cell signalling and interactions during peripheral nervous system (PNS) myelination, injury, and regeneration. Although methods using rat SCs and neurons or mouse DRG explants are commonplace, there are no established protocols for compartmentalised myelinating cocultures with dissociated mouse cells. There consequently is a need for a coculture protocol that allows separate genetic manipulation of mouse SCs or neurons, or use of cells from different transgenic animals to complement in vivo mouse experiments. However, inducing myelination of dissociated mouse SCs in culture is challenging. Here, we describe a new method to coculture dissociated mouse SCs and DRG neurons in microfluidic chambers and induce robust myelination. Cocultures can be axotomised to study injury and used for drug treatments, and cells can be lentivirally transduced for live imaging. We used this model to investigate axon degeneration after traumatic axotomy and find that SCs, irrespective of myelination status, are axo-protective. At later timepoints after injury, live imaging of cocultures shows that SCs break up, ingest and clear axonal debris.


Asunto(s)
Neuronas , Células de Schwann , Animales , Ratones , Ratas , Técnicas de Cocultivo , Axones , Animales Modificados Genéticamente
16.
Development ; 149(23)2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36355066

RESUMEN

Most invertebrate axons and small-caliber axons in mammalian peripheral nerves are unmyelinated but still ensheathed by glia. Here, we use Drosophila wrapping glia to study the development and function of non-myelinating axon ensheathment, which is poorly understood. Selective ablation of these glia from peripheral nerves severely impaired larval locomotor behavior. In an in vivo RNA interference screen to identify glial genes required for axon ensheathment, we identified the conserved receptor tyrosine kinase Discoidin domain receptor (Ddr). In larval peripheral nerves, loss of Ddr resulted in severely reduced ensheathment of axons and reduced axon caliber, and we found a strong dominant genetic interaction between Ddr and the type XV/XVIII collagen Multiplexin (Mp), suggesting that Ddr functions as a collagen receptor to drive axon wrapping. In adult nerves, loss of Ddr decreased long-term survival of sensory neurons and significantly reduced axon caliber without overtly affecting ensheathment. Our data establish essential roles for non-myelinating glia in nerve development, maintenance and function, and identify Ddr as a key regulator of axon-glia interactions during ensheathment and establishment of axon caliber.


Asunto(s)
Axones , Proteínas de Drosophila , Animales , Receptores con Dominio Discoidina , Axones/fisiología , Neuroglía , Proteínas de Drosophila/genética , Nervios Periféricos , Drosophila , Mamíferos
17.
Development ; 149(17)2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35938454

RESUMEN

Schwann cells (SCs) migrate along peripheral axons and divide intensively to generate the right number of cells prior to axonal ensheathment; however, little is known regarding the temporal and molecular control of their division and its impact on myelination. We report that Sil, a spindle pole protein associated with autosomal recessive primary microcephaly, is required for temporal mitotic exit of SCs. In sil-deficient cassiopeia (csp-/-) mutants, SCs fail to radially sort and myelinate peripheral axons. Elevation of cAMP, but not Rac1 activity, in csp-/- restores myelin ensheathment. Most importantly, we show a significant decrease in laminin expression within csp-/- posterior lateral line nerve and that forcing Laminin 2 expression in csp-/- fully restores the ability of SCs to myelinate. Thus, we demonstrate an essential role for timely SC division in mediating laminin expression to orchestrate radial sorting and peripheral myelination in vivo.


Asunto(s)
Laminina , Células de Schwann , Axones/metabolismo , División Celular/genética , Células Cultivadas , Laminina/genética , Laminina/metabolismo , Vaina de Mielina/metabolismo , Células de Schwann/metabolismo
18.
Brain ; 147(9): 3113-3130, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-38743588

RESUMEN

Charcot-Marie-Tooth disease type 1A (CMT1A) is the most common inherited peripheral neuropathy caused by a 1.5 Mb tandem duplication of chromosome 17 harbouring the PMP22 gene. This dose-dependent overexpression of PMP22 results in disrupted Schwann cell myelination of peripheral nerves. To obtain better insights into the underlying pathogenic mechanisms in CMT1A, we investigated the role of PMP22 duplication in cellular homeostasis in CMT1A mouse models and in patient-derived induced pluripotent stem cells differentiated into Schwann cell precursors (iPSC-SCPs). We performed lipidomic profiling and bulk RNA sequencing (RNA-seq) on sciatic nerves of two developing CMT1A mouse models and on CMT1A patient-derived iPSC-SCPs. For the sciatic nerves of the CMT1A mice, cholesterol and lipid metabolism was downregulated in a dose-dependent manner throughout development. For the CMT1A iPSC-SCPs, transcriptional analysis unveiled a strong suppression of genes related to autophagy and lipid metabolism. Gene ontology enrichment analysis identified disturbances in pathways related to plasma membrane components and cell receptor signalling. Lipidomic analysis confirmed the severe dysregulation in plasma membrane lipids, particularly sphingolipids, in CMT1A iPSC-SCPs. Furthermore, we identified reduced lipid raft dynamics, disturbed plasma membrane fluidity and impaired cholesterol incorporation and storage, all of which could result from altered lipid storage homeostasis in the patient-derived CMT1A iPSC-SCPs. Importantly, this phenotype could be rescued by stimulating autophagy and lipolysis. We conclude that PMP22 duplication disturbs intracellular lipid storage and leads to a more disordered plasma membrane owing to an alteration in the lipid composition, which might ultimately lead to impaired axo-glial interactions. Moreover, targeting lipid handling and metabolism could hold promise for the treatment of patients with CMT1A.


Asunto(s)
Membrana Celular , Enfermedad de Charcot-Marie-Tooth , Homeostasis , Células Madre Pluripotentes Inducidas , Metabolismo de los Lípidos , Proteínas de la Mielina , Células de Schwann , Animales , Humanos , Ratones , Membrana Celular/metabolismo , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/metabolismo , Enfermedad de Charcot-Marie-Tooth/patología , Duplicación de Gen , Homeostasis/fisiología , Células Madre Pluripotentes Inducidas/metabolismo , Metabolismo de los Lípidos/fisiología , Proteínas de la Mielina/metabolismo , Proteínas de la Mielina/genética , Células de Schwann/metabolismo , Nervio Ciático/metabolismo
19.
Exp Cell Res ; 438(1): 114049, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38642790

RESUMEN

BACKGROUND: Acellular nerve allografts (ANAs) have been successfully applied to bridge facial nerve defects, and transplantation of stem cells may enhance the regenerative results. Up to now, application of hair follicle epidermal neural crest stem cell-derived Schwann cell-like cells (EPI-NCSC-SCLCs) combined with ANAs for bridging facial nerve defects has not been reported. METHODS: The effect of ANAs laden with green fluorescent protein (GFP)-labeled EPI-NCSC-SCLCs (ANA + cells) on bridging rat facial nerve trunk defects (5-mm-long) was detected by functional and morphological examination, as compared with autografts and ANAs, respectively. RESULTS: (1) EPI-NCSC-SCLCs had good compatibility with ANAs in vitro. (2) In the ANA + cells group, the GFP signals were observed by in vivo imaging system for small animals within 8 weeks, and GFP-labeled EPI-NCSC-SCLCs were detected in the tissue slices at 16 weeks postoperatively. (3) The facial symmetry at rest after surgery in the ANA + cells group was better than that in the ANA group (p < 0.05), and similar to that in the autograft group (p > 0.05). The initial recovery time of vibrissal and eyelid movement in the ANA group was 2 weeks later than that in the other two groups. (4) The myelinated fibers, myelin sheath thickness and diameter of the axons of the buccal branches in the ANA group were significantly worse than those in the other two groups (P < 0.05), and the results in the ANA + cells group were similar to those in the autograft group (p > 0.05). CONCLUSIONS: EPI-NCSC-SCLCs could promote functional and morphological recovery of rat facial nerve defects, and GFP labeling could track the transplanted EPI-NCSC-SCLCs in vivo for a certain period of time. These may provide a novel choice for clinical treatment of peripheral nerve defects.


Asunto(s)
Aloinjertos , Nervio Facial , Proteínas Fluorescentes Verdes , Folículo Piloso , Regeneración Nerviosa , Cresta Neural , Células de Schwann , Animales , Células de Schwann/trasplante , Folículo Piloso/trasplante , Folículo Piloso/citología , Cresta Neural/citología , Cresta Neural/trasplante , Ratas , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Fluorescentes Verdes/genética , Regeneración Nerviosa/fisiología , Células-Madre Neurales/trasplante , Células-Madre Neurales/citología , Ratas Sprague-Dawley , Traumatismos del Nervio Facial/terapia , Traumatismos del Nervio Facial/patología , Traumatismos del Nervio Facial/cirugía , Masculino
20.
Cell Mol Life Sci ; 81(1): 47, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38236305

RESUMEN

Type 2 diabetes mellitus is a global epidemic that due to its increasing prevalence worldwide will likely become the most common debilitating health condition. Even if diabetes is primarily a metabolic disorder, it is now well established that key aspects of the pathogenesis of diabetes are associated with nervous system alterations, including deleterious chronic inflammation of neural tissues, referred here as neuroinflammation, along with different detrimental glial cell responses to stress conditions and neurodegenerative features. Moreover, diabetes resembles accelerated aging, further increasing the risk of developing age-linked neurodegenerative disorders. As such, the most common and disabling diabetic comorbidities, namely diabetic retinopathy, peripheral neuropathy, and cognitive decline, are intimately associated with neurodegeneration. As described in aging and other neurological disorders, glial cell alterations such as microglial, astrocyte, and Müller cell increased reactivity and dysfunctionality, myelin loss and Schwann cell alterations have been broadly described in diabetes in both human and animal models, where they are key contributors to chronic noxious inflammation of neural tissues within the PNS and CNS. In this review, we aim to describe in-depth the common and unique aspects underlying glial cell changes observed across the three main diabetic complications, with the goal of uncovering shared glial cells alterations and common pathological mechanisms that will enable the discovery of potential targets to limit neuroinflammation and prevent neurodegeneration in all three diabetic complications. Diabetes and its complications are already a public health concern due to its rapidly increasing incidence, and thus its health and economic impact. Hence, understanding the key role that glial cells play in the pathogenesis underlying peripheral neuropathy, retinopathy, and cognitive decline in diabetes will provide us with novel therapeutic approaches to tackle diabetic-associated neurodegeneration.


Asunto(s)
Diabetes Mellitus Tipo 2 , Retinopatía Diabética , Enfermedades del Sistema Nervioso Periférico , Animales , Humanos , Enfermedades Neuroinflamatorias , Neuroglía , Inflamación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA