Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Nanobiotechnology ; 22(1): 92, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38443940

RESUMEN

BACKGROUND: Gold nanoparticles (GNPs) have been extensively recognized as an active candidate for a large variety of biomedical applications. However, the clinical conversion of specific types of GNPs has been hindered due to their potential liver toxicity. The origin of their hepatotoxicity and the underlying key factors are still ambiguous. Because the size, shape, and surfactant of GNPs all affect their properties and cytotoxicity. An effective and sensitive platform that can provide deep insights into the cause of GNPs' hepatotoxicity in vitro is therefore highly desired. METHODS: Here, hepatocyte organoid models (Hep-orgs) were constructed to evaluate the shape-dependent hepatotoxicity of GNPs. Two types of GNPs with different nanomorphology, gold nanospheres (GNSs) and spiny gold nanobranches (GNBs), were synthesized as the representative samples. Their shape-dependent effects on mice Hep-orgs' morphology, cellular cytoskeletal structure, mitochondrial structure, oxidative stress, and metabolism were carefully investigated. RESULTS: The results showed that GNBs with higher spikiness and tip curvature exhibited more significant cytotoxicity compared to the rounded GNSs. The spike structure of GNBs leads to a mitochondrial damage, oxidative stress, and metabolic disorder in Hep-orgs. Meanwhile, similar trends can be observed in HepG2 cells and mice models, demonstrating the reliability of the Hep-orgs. CONCLUSIONS: Hep-orgs can serve as an effective platform for exploring the interactions between GNPs and liver cells in a 3D perspective, filling the gap between 2D cell models and animal models. This work further revealed that organoids can be used as an indispensable tool to rapidly screen and explore the toxic mechanism of nanomaterials before considering their biomedical functionalities.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Nanopartículas del Metal , Animales , Ratones , Oro/toxicidad , Nanopartículas del Metal/toxicidad , Reproducibilidad de los Resultados , Modelos Animales de Enfermedad , Hepatocitos , Organoides
2.
Nano Lett ; 21(3): 1400-1411, 2021 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-33522822

RESUMEN

Metastatic progression is mediated by complex interactions between deregulated extracellular matrix (ECM) and cancer cells and remains a major challenge in cancer management. To investigate the role of ECM dynamics in promoting metastasis development, we developed an artificial microenvironment (AME) platform comprised of nanodot arrays of increasing diameter. Cells cultured on the platform showed increasing signs of mesenchymal-like cell transition as AME diameter increased, suggesting accurate simulation of ECM-mediated gene regulation. Gene expression was analyzed to determine genes significant to transition, which were then used to select appropriate small molecule drugs for time course treatments. Our results suggest that the platform can identify critical target genes as well as possible drug candidates. Overall, the AME platform allows for the study of intricate ECM-induced gene expression trends across metastasis development that would otherwise be difficult to visualize in vivo and may open new avenues toward successful personalized cancer management.


Asunto(s)
Neoplasias , Microambiente Tumoral , Matriz Extracelular , Humanos , Metástasis de la Neoplasia , Neoplasias/tratamiento farmacológico , Neoplasias/genética
3.
Int J Mol Sci ; 23(2)2022 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-35054773

RESUMEN

Proton beam therapy (PBT) is a critical treatment modality for head and neck squamous cell carcinoma (HNSCC). However, not much is known about drug combinations that may improve the efficacy of PBT. This study aimed to test the feasibility of a three-dimensional (3D) tumor-spheroid-based high-throughput screening platform that could assess cellular sensitivity against PBT. Spheroids of two HNSCC cell lines-Fadu and Cal27-cultured with a mixture of Matrigel were arrayed on a 384-pillar/well plate, followed by exposure to graded doses of protons or targeted drugs including olaparib at various concentrations. Calcein staining of HNSCC spheroids revealed a dose-dependent decrease in cell viability for proton irradiation or multiple targeted drugs, and provided quantitative data that discriminated the sensitivity between the two HNSCC cell lines. The combined effect of protons and olaparib was assessed by calculating the combination index from the survival rates of 4 × 4 matrices, showing that Cal27 spheroids had greater synergy with olaparib than Fadu spheroids. In contrast, adavosertib did not synergize with protons in both spheroids. Taken together, we demonstrated that the 3D pillar/well array platform was a useful tool that provided rapid, quantitative data for evaluating sensitivity to PBT and drug combinations. Our results further supported that administration of the combination of PBT and olaparib may be an effective treatment strategy for HNSCC patients.


Asunto(s)
Quimioradioterapia , Ensayos de Selección de Medicamentos Antitumorales/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Terapia de Protones , Esferoides Celulares , Carcinoma de Células Escamosas de Cabeza y Cuello/terapia , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Humanos
4.
Int J Mol Sci ; 23(6)2022 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-35328681

RESUMEN

Restoring the control of food intake is the key to obesity management and prevention. The arcuate nucleus (ARC) of the hypothalamus is extensively being studied as a potential anti-obesity target. Animal studies showed that neuropeptide FF (NPFF) reduces food intake by its action in neuropeptide Y (NPY) neurons of the hypothalamic ARC, but the detailed mode of action observed in human neurons is missing, due to the lack of a human-neuron-based model for pharmacology testing. Here, we validated and utilized a human-neural-stem-cell-based (hNSC) model of ARC to test the effects of NPFF on cellular pathways and neuronal activity. We found that in the human neurons, decreased cAMP levels by NPFF resulted in a reduced rate of cytoplasmic calcium oscillations, indicating an inhibition of ARC NPY neurons. This suggests the therapeutic potential of NPFFR2 in obesity. In addition, we demonstrate the use of human-stem-cell-derived neurons in pharmacological applications and the potential of this model to address functional aspects of human hypothalamic neurons.


Asunto(s)
Neuropéptido Y , Oligopéptidos , Animales , Núcleo Arqueado del Hipotálamo/metabolismo , Humanos , Neuronas/metabolismo , Neuropéptido Y/metabolismo , Neuropéptido Y/farmacología , Obesidad/metabolismo , Oligopéptidos/farmacología
5.
Anal Bioanal Chem ; 413(28): 6951-6962, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34676432

RESUMEN

Epithelial-mesenchymal transition (EMT) is implicated in the pathological processes of cancer metastasis and drug resistance. Anti-cancer drugs may also potentially lead to EMT, resulting in their reduced therapeutic effect. Therefore, the combination of these anti-cancer drugs with anti-EMT agents has been promoted in clinic. Screening anti-EMT drugs and evaluation of EMT process are highly dependent on EMT biomarkers on cell membrane. At present, the detection of EMT biomarker is mainly by Western blot method, which is time-consuming and complicated. In this work, for effectively screening anti-EMT drugs by evaluation of the EMT process, a type of aptamer probe based on aggregation-induced emission (AIE) was designed. The aptamer SYL3C was employed to target the EMT biomarker EpCAM on cell membrane. Two fluorophores, FAM and tetraphenylethene (TPE, an AIE dye), were modified at the two ends of SYL3C, respectively. This aptamer probe (TPE-SYL3C-FAM) can monitor the EpCAM expression, which can be recovered by anti-EMT drugs. By observation of the change in TPE emission intensity, the anti-EMT effect of drugs can be evaluated. The FAM emission was used as internal reference to reduce environmental interferences. This probe can be potentially used to screen anti-EMT agents as anti-cancer adjuvant drugs with high throughput.


Asunto(s)
Antineoplásicos/metabolismo , Aptámeros de Nucleótidos/metabolismo , Transición Epitelial-Mesenquimal/efectos de los fármacos , Antineoplásicos/farmacología , Biomarcadores/metabolismo , Línea Celular Tumoral , Colorantes Fluorescentes/química , Humanos
6.
Int J Mol Sci ; 22(9)2021 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-34066491

RESUMEN

Poor efficiency of chemotherapeutics in the eradication of Cancer Stem Cells (CSCs) has been driving the search for more active and specific compounds. In this work, we show how cell density-dependent stage culture profiles can be used in drug development workflows to achieve more robust drug activity (IC50 and EC50) results. Using flow cytometry and light microscopy, we characterized the cytological stage profiles of the HL-60-, A-549-, and HEK-293-derived sublines with a focus on their primitive cell content. We then used a range of cytotoxic substances-C-123, bortezomib, idarubicin, C-1305, doxorubicin, DMSO, and ethanol-to highlight typical density-related issues accompanying drug activity determination. We also showed that drug EC50 and selectivity indices normalized to primitive cell content are more accurate activity measurements. We tested our approach by calculating the corrected selectivity index of a novel chemotherapeutic candidate, C-123. Overall, our study highlights the usefulness of accounting for primitive cell fractions in the assessment of drug efficiency.


Asunto(s)
Antineoplásicos/farmacología , Recuento de Células , Línea Celular Tumoral , Transformación Celular Neoplásica/efectos de los fármacos , Transformación Celular Neoplásica/patología , Humanos , Concentración 50 Inhibidora , Estadificación de Neoplasias , Especies Reactivas de Oxígeno/metabolismo
7.
Biotechnol Bioeng ; 116(1): 65-75, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30199096

RESUMEN

A new disposable, multiphase, microbioreactor (MBR; with a working volume of 550 µl) equipped with online sensors is presented for biotechnological screening research purposes owing to its high-throughput potential. Its design and fabrication, online sensor integration, and operation are described. During aerobic cultivation, sufficient oxygen supply is the most important factor that influences growth and product formation. The MBR is a microbubble column bioreactor (µBC), and the oxygen supply was realized by active pneumatic bubble aeration, ensuring sufficient volumetric liquid-phase mass transfer (k L a) and proper homogenization of the cultivation broth. The µBC was equipped with miniaturized sensors for the pH, dissolved oxygen, optical density and glucose concentration that allowed real-time online monitoring of these process variables during cultivation. The challenge addressed here was the integration of sensors in the limited available space. The MBR was shown to be a suitable screening platform for the cultivation of biological systems. Batch cultivations of Saccharomyces cerevisiae were performed to observe the variation in the process variables over time and to show the robustness and operability of all the online sensors in the MBR.


Asunto(s)
Productos Biológicos/metabolismo , Reactores Biológicos/microbiología , Biotecnología/métodos , Tamizaje Masivo/métodos , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Aerobiosis , Medios de Cultivo/química , Glucosa/análisis , Concentración de Iones de Hidrógeno , Oxígeno/análisis , Espectrofotometría
8.
Int J Mol Sci ; 19(10)2018 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-30308944

RESUMEN

Recently, the concept of prebiotics has been revisited to expand beyond non-digestible oligosaccharides, and the requirements for selective stimulation were extended to include microbial groups other than, and additional to, bifidobacteria and lactobacilli. Here, the gut microbiota-modulating effects of well-known and novel prebiotics were studied. An in vitro fermentation screening platform (i-screen) was inoculated with adult fecal microbiota, exposed to different dietary fibers that had a range of concentrations (inulin, alpha-linked galacto-oligosaccharides (alpha-GOS), beta-linked GOS, xylo-oligosaccharides (XOS) from corn cobs and high-fiber sugar cane, and beta-glucan from oats), and compared to a positive fructo-oligosaccharide (FOS) control and a negative control (no fiber addition). All dietary fibers displayed prebiotic activity, with beta-glucan showing more distinct effects on the microbial composition and metabolism compared to the other fibers. Beta-glucan induced the growth of Prevotella and Roseburia with a concomitant increase in propionate production. Inulin and both forms of GOS and XOS had a strong bifidogenic effect on the microbial composition. A dose-response effect was observed for butyrate when exposed to beta-glucan and inulin. The findings of this study support the potential for alpha-GOS, XOS, and oat beta-glucan to serve as novel prebiotics, due to their association with the positive shifts in microbiome composition and short-chain fatty acid production that point to potential health benefits.


Asunto(s)
Biodiversidad , Microbioma Gastrointestinal , Prebióticos , Fibras de la Dieta , Ácidos Grasos Volátiles/metabolismo , Heces/microbiología , Fermentación , Humanos , Metagenoma , Metagenómica/métodos , ARN Ribosómico 16S/genética
9.
Molecules ; 23(10)2018 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-30248999

RESUMEN

Type 2 diabetes (T2D) is a metabolic disorder where insulin-sensitive tissues show reduced sensitivity towards insulin and a decreased glucose uptake (GU), which leads to hyperglycaemia. Peroxisome proliferator-activated receptor (PPAR)γ plays an important role in lipid and glucose homeostasis and is one of the targets in the discovery of drugs against T2D. Activation of PPARγ by agonists leads to a conformational change in the ligand-binding domain, a process that alters the transcription of several target genes involved in glucose and lipid metabolism. Depending on the ligands, they can induce different sets of genes that depends of their recruitment of coactivators. The activation of PPARγ by full agonists such as the thiazolidinediones leads to improved insulin sensitivity but also to severe side effects probably due to their behavior as full agonists. Partial PPARγ agonists are compounds with diminished agonist efficacy compared to full agonist that may exhibit the same antidiabetic effect as full agonists without inducing the same magnitude of side effects. In this review, we describe a screening platform for the identification of partial PPARγ agonists from plant extracts that could be promising lead compounds for the development of antidiabetic drugs. The screening platform includes a series of in vitro bioassays, such as GU in adipocytes, PPARγ-mediated transactivation, adipocyte differentiation and gene expression as well as in silico docking for partial PPARγ agonism.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Evaluación Preclínica de Medicamentos/métodos , Hipoglucemiantes/química , PPAR gamma/agonistas , Adipocitos/citología , Adipocitos/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Simulación por Computador , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Técnicas In Vitro , Metabolismo de los Lípidos/efectos de los fármacos , Simulación del Acoplamiento Molecular , PPAR gamma/química , Tiazolidinedionas/química , Tiazolidinedionas/farmacología
10.
Molecules ; 22(11)2017 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-29160839

RESUMEN

Mesoporous silica nanoparticles (MSNs) have shown great potential in improving drug delivery of poorly water soluble (BCS class II, IV) and poorly permeable (BCS class III, IV) drugs, as well as facilitating successful delivery of unstable compounds. The nanoparticle technology would allow improved treatment by reducing adverse reactions of currently approved drugs and possibly reintroducing previously discarded compounds from the drug development pipeline. This study aims to highlight important aspects in mesoporous silica nanoparticle (MSN) ink formulation development for digital inkjet printing technology and to advice on choosing a method (2D/3D) for nanoparticle print deposit characterization. The results show that both unfunctionalized and polyethyeleneimine (PEI) surface functionalized MSNs, as well as drug-free and drug-loaded MSN-PEI suspensions, can be successfully inkjet-printed. Furthermore, the model BCS class IV drug remained incorporated in the MSNs and the suspension remained physically stable during the processing time and steps. This proof-of-concept study suggests that inkjet printing technology would be a flexible deposition method of pharmaceutical MSN suspensions to generate patterns according to predefined designs. The concept could be utilized as a versatile drug screening platform in the future due to the possibility of accurately depositing controlled volumes of MSN suspensions on various materials.


Asunto(s)
Sistemas de Liberación de Medicamentos , Nanopartículas , Impresión , Dióxido de Silicio , Portadores de Fármacos , Estabilidad de Medicamentos , Tamaño de la Partícula , Preparaciones Farmacéuticas/administración & dosificación , Preparaciones Farmacéuticas/química , Porosidad , Impresión/métodos
11.
J Dairy Sci ; 99(11): 8614-8621, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27638256

RESUMEN

This study aimed to develop an in vivo screening platform using Caenorhabditis elegans to identify a novel bacteriocin for controlling the mastitis-causing pathogen Staphylococcus aureus strain RF122 in dairy cows. Using Bacillus spp. isolated from traditional Korean foods, we developed a direct in vivo screening platform that uses 96-well plates and fluorescence image analysis. We identified a novel bacteriocin produced by Bacillus licheniformis strain 146 (lichenicin 146) with a high in vivo antimicrobial activity using our liquid C. elegans-Staph. aureus assay. We also determined the characteristics of lichenicin 146 using liquid chromatography-mass spectrometry and confirmed that it shared homologous sequences with bacteriocin family proteins. In addition, RNA-sequencing analysis revealed genes encoding cell surface or membrane proteins (SAB0993c, SAB0150, SAB0994c, and SAB2375c) that are involved in the bactericidal activity of lichenicin 146 against Staph. aureus strain RF122 infection as well as those encoding transcriptional regulators (SAB0844c and SAB0133). Thus, our direct in vivo screening platform facilitates simple, convenient, cost-effective, and reliable screening of potential antimicrobial compounds with applications in the dairy field.


Asunto(s)
Bacteriocinas/farmacología , Caenorhabditis elegans/microbiología , Mastitis Bovina/tratamiento farmacológico , Staphylococcus aureus/efectos de los fármacos , Animales , Antibacterianos/farmacología , Bacillus licheniformis/metabolismo , Bovinos , Cloranfenicol/farmacología , Análisis Costo-Beneficio , Femenino , Genes Bacterianos , ARN Bacteriano/genética , Análisis de Secuencia de ARN , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/veterinaria , Staphylococcus aureus/genética , Staphylococcus aureus/crecimiento & desarrollo , Staphylococcus aureus/aislamiento & purificación
12.
N Biotechnol ; 79: 120-126, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38159596

RESUMEN

Cancer immunotherapy, where a patient's immune system is harnessed to eradicate cancer cells selectively, is a leading strategy for cancer treatment. However, successes with immune checkpoint inhibitors (ICI) are hampered by reported systemic and organ-specific toxicities and by two-thirds of the patients being non-responders or subsequently acquiring resistance to approved ICIs. Hence substantial efforts are invested in discovering novel targeted immunotherapies aimed at reduced side-effects and improved potency. One way is utilizing the dual targeting feature of bispecific antibodies, which have made them increasingly popular for cancer immunotherapy. Easy and predictive screening methods for activation ranking of candidate drugs in tumor contra non-tumor environments are however lacking. Herein, we present a cell-based assay mimicking the tumor microenvironment by co-culturing B cells with engineered human embryonic kidney 293 T cells (HEK293T), presenting a controllable density of platelet-derived growth factor receptor ß (PDGFRß). A target density panel with three different surface protein levels on HEK293T cells was established by genetic constructs carrying regulatory elements limiting RNA translation of PDGFRß. We employed a bispecific antibody-affibody construct called an AffiMab capable of binding PDGFRß on cancer cells and CD40 expressed by B cells as a model. Specific activation of CD40-mediated signaling of immune cells was demonstrated with the two highest receptor-expressing cell lines, Level 2/3 and Level 4, while low-to-none in the low-expressing cell lines. The concept of receptor tuning and the presented co-culture protocol may be of general utility for assessing and developing novel bi-specific antibodies for immuno-oncology applications.


Asunto(s)
Anticuerpos Biespecíficos , Neoplasias , Humanos , Linfocitos T , Técnicas de Cocultivo , Células HEK293 , Neoplasias/tratamiento farmacológico , Microambiente Tumoral
13.
J Hematol Oncol ; 17(1): 35, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38764068

RESUMEN

Angiosarcoma is a rare subtype of malignant neoplasm originating from vascular or lymphatic endothelial cells; its low incidence has posed significant challenges for comprehensive investigations into its pathogenic mechanisms and the development of innovative treatment modalities through in vitro and in vivo models. Recent endeavors spearheaded by patient-partnered research initiatives have aimed to elucidate the intricacies of angiosarcomas by leveraging biological omics approaches, with the overarching objective of enhancing prognostic indicators and therapeutic options for this uncommon pathology. To bridge the gap between preclinical research and translational applications, we engineered angiosarcoma-derived organoids from surgically resected primary tumors, hereafter referred to as "sarconoids," as a proof-of-concept model. A novel protocol for the establishment of these sarconoids has been developed and validated. To ensure that the sarconoids faithfully recapitulate the heterogeneity and complexities of the patients' original tumors, including transcriptomic signatures, cell-type specificity, and morphological traits, exhaustive histological and transcriptomic analyses were conducted. Subsequently, we expanded the scope of our study to include an evaluation of a sarconoid-based drug screening platform; for this purpose, a drug library (AOD IX), supplied by the National Cancer Institute's Developmental Therapeutics Program, was screened using 96-well plates. Our findings suggest that sarconoids can be reliably generated from angiosarcoma patient-derived tissues and can serve as accurate models for evaluating therapeutic responses, thereby holding far-reaching implications for translational research and clinical applications aimed at advancing our understanding and treatment of angiosarcoma.


Asunto(s)
Hemangiosarcoma , Hemangiosarcoma/patología , Hemangiosarcoma/tratamiento farmacológico , Hemangiosarcoma/terapia , Hemangiosarcoma/genética , Humanos , Organoides/patología , Organoides/efectos de los fármacos , Femenino
14.
J Prosthodont Res ; 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39231696

RESUMEN

PURPOSE: The innate immune response, particularly the reaction of polymorphonuclear neutrophils (PMNs), is crucial in shaping the outcomes of chronic inflammation, fibrosis, or osseointegration following biomaterial implantation. Peri-implantitis or peri-mucositis, inflammatory conditions linked to dental implants, pose a significant threat to implant success. We developed a single-cell analysis approach using a murine model to assess the immune response to implant materials, offering a practical screening tool for potential dental implants. METHODS: We performed bioinformatics analysis and established a peri-implant inflammation model by inserting two titanium implants into the maxillary region, to examine the immune response. RESULTS: Bioinformatics analysis revealed that titanium implants triggered a host immune response, primarily mediated by PMNs. In the in vivo experiments, we observed a rapid PMN-mediated response, with increased infiltration around the implants and on the implant surface by day 3. Remarkably, PMN attachment to the implants persisted for 7 days, resembling the immune profiles seen in human implant-mediated inflammation. CONCLUSIONS: Our findings indicate that persistent attachment of the short-living PMNs to titanium implants can serve as an indicator or traits of peri-implant inflammation. Therefore, analyzing gingival tissue at the single-cell level could be a useful tool for evaluating the biocompatibility of candidate dental implants.

15.
J Hazard Mater ; 480: 135873, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39305594

RESUMEN

Acrolein (ACR) is a widespread, highly toxic substance that poses significant health risks. Flavonoids have been recognized as effective ACR scavengers, offering a possible way to reduce these risks. However, the lack of specific high-throughput screening methods has limited the identification of ACR scavengers, and their actual detoxifying capacity on ACR remains unknown. To address this, we developed a high-throughput screening platform to assess the ACR scavenging capacity of 322 flavonoids. Our results showed that 80.7 % of the flavonoids could scavenge ACR, but only 34.4 % exhibited detoxifying effects in an ACR-injured QSG7701 cell model. Some flavonoids even increased toxicity. Structure-activity relationship (SAR) analysis indicated that galloyl and pyrogallol units enhance scavenging but worsen ACR-induced cytotoxicity. Further investigation revealed that epigallocatechin gallate (EGCG) could exacerbate ACR-induced redox disorder, leading to cell apoptosis. Our findings provide crucial data on the scavenging and detoxifying capacities of 322 flavonoids, highlighting that ACR scavengers might not mitigate ACR-induced toxicity and could pose additional safety risks.

16.
Insects ; 15(4)2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38667371

RESUMEN

Genome editing provides novel opportunities for the precise genome engineering of diverse organisms. Significant progress has been made in the development of genome-editing tools for Bombyx mori (B. mori) in recent years. Among these, CRISPR/Cas9, which is currently the most commonly used system in lepidopteran insects, recognizes NGG protospacer adjacent motif (PAM) sequences within the target locus. However, Cas9 lacks the ability to target all gene loci in B. mori, indicating the need for Cas9 variants with a larger editing range. In this study, we developed a high-throughput screening platform to validate Cas9 variants at all possible recognizable and editable PAM sites for target sequences in B. mori. This platform enabled us to identify PAM sites that can be recognized by both xCas9 3.7 and SpCas9-NG variants in B. mori and to assess their editing efficiency. Cas9 shows PAM sites every 13 base pairs in the genome, whereas xCas9 3.7 and SpCas9-NG have an average distance of 3.4 and 3.6 base pairs, respectively, between two specific targeting sites. Combining the two Cas9 variants could significantly expand the targeting range of the genome, accelerate research on the B. mori genome, and extend the high-throughput rapid screening platform to other insects, particularly those lacking suitable NGG PAM sequences.

17.
SLAS Discov ; 29(2): 100147, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38355016

RESUMEN

Pediatric brain tumors (PBTs) represent about 25 % of all pediatric cancers and are the most common solid tumors in children and adolescents. Medulloblastoma (MB) is the most frequently occurring malignant PBT, accounting for almost 10 % of all pediatric cancer deaths. MB Group 3 (MB G3) accounts for 25-30 % of all MB cases and has the worst outcome, particularly when associated with MYC amplification. However, no targeted treatments for this group have been developed so far. Here we describe a unique high throughput screening (HTS) platform specifically designed to identify new therapies for MB G3. The platform incorporates optimized and validated 2D and 3D efficacy and toxicity models, that account for tumor heterogenicity, limited efficacy and unacceptable toxicity from the very early stage of drug discovery. The platform has been validated by conducting a pilot HTS campaign with a 1280 lead-like compound library. Results showed 8 active compounds, targeting MB reported targets and several are currently approved or in clinical trials for pediatric patients with PBTs, including MB. Moreover, hits were combined to avoid tumor resistance, identifying 3 synergistic pairs, one of which is currently under clinical study for recurrent MB and other PBTs.


Asunto(s)
Neoplasias Encefálicas , Neoplasias Cerebelosas , Meduloblastoma , Humanos , Niño , Adolescente , Meduloblastoma/tratamiento farmacológico , Meduloblastoma/genética , Meduloblastoma/patología , Ensayos Analíticos de Alto Rendimiento , Neoplasias Cerebelosas/tratamiento farmacológico , Neoplasias Cerebelosas/patología
18.
ACS Chem Neurosci ; 15(7): 1432-1455, 2024 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-38477556

RESUMEN

Alzheimer's disease (AD) is the most prevalent cause of dementia characterized by a progressive cognitive decline. Addressing neuroinflammation represents a promising therapeutic avenue to treat AD; however, the development of effective antineuroinflammatory compounds is often hindered by their limited blood-brain barrier (BBB) permeability. Consequently, there is an urgent need for accurate, preclinical AD patient-specific BBB models to facilitate the early identification of immunomodulatory drugs capable of efficiently crossing the human AD BBB. This study presents a unique approach to BBB drug permeability screening as it utilizes the familial AD patient-derived induced brain endothelial-like cell (iBEC)-based model, which exhibits increased disease relevance and serves as an improved BBB drug permeability assessment tool when compared to traditionally employed in vitro models. To demonstrate its utility as a small molecule drug candidate screening platform, we investigated the effects of diacetylbis(N(4)-methylthiosemicarbazonato)copper(II) (CuII(atsm)) and a library of metal bis(thiosemicarbazone) complexes─a class of compounds exhibiting antineuroinflammatory therapeutic potential in neurodegenerative disorders. By evaluating the toxicity, cellular accumulation, and permeability of those compounds in the AD patient-derived iBEC, we have identified 3,4-hexanedione bis(N(4)-methylthiosemicarbazonato)copper(II) (CuII(dtsm)) as a candidate with good transport across the AD BBB. Furthermore, we have developed a multiplex approach where AD patient-derived iBEC were combined with immune modulators TNFα and IFNγ to establish an in vitro model representing the characteristic neuroinflammatory phenotype at the patient's BBB. Here, we observed that treatment with CuII(dtsm) not only reduced the expression of proinflammatory cytokine genes but also reversed the detrimental effects of TNFα and IFNγ on the integrity and function of the AD iBEC monolayer. This suggests a novel pathway through which copper bis(thiosemicarbazone) complexes may exert neurotherapeutic effects on AD by mitigating BBB neuroinflammation and related BBB integrity impairment. Together, the presented model provides an effective and easily scalable in vitro BBB platform for screening AD drug candidates. Its improved translational potential makes it a valuable tool for advancing the development of metal-based compounds aimed at modulating neuroinflammation in AD.


Asunto(s)
Enfermedad de Alzheimer , Tiosemicarbazonas , Humanos , Barrera Hematoencefálica/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Cobre/metabolismo , Enfermedades Neuroinflamatorias , Tiosemicarbazonas/farmacología , Tiosemicarbazonas/metabolismo , Tiosemicarbazonas/uso terapéutico , Factor de Necrosis Tumoral alfa/metabolismo
19.
ACS Biomater Sci Eng ; 10(5): 3478-3488, 2024 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-38695610

RESUMEN

Static three-dimensional (3D) cell culture has been demonstrated in ultralow attachment well plates, hanging droplet plates, and microtiter well plates with hydrogels or magnetic nanoparticles. Although it is simple, reproducible, and relatively inexpensive, thus potentially used for high-throughput screening, statically cultured 3D cells often suffer from a necrotic core due to limited nutrient and oxygen diffusion and waste removal and have a limited in vivo-like tissue structure. Here, we overcome these challenges by developing a pillar/perfusion plate platform and demonstrating high-throughput, dynamic 3D cell culture. Cell spheroids were loaded on the pillar plate with hydrogel by simple sandwiching and encapsulation and cultured dynamically in the perfusion plate on a digital rocker. Unlike traditional microfluidic devices, fast flow velocity was maintained within perfusion wells and the pillar plate was separated from the perfusion plate for cell-based assays. It was compatible with common lab equipment and allowed cell culture, testing, staining, and imaging in situ. The pillar/perfusion plate enhanced cell growth by rapid diffusion, reproducibility, assay throughput, and user friendliness in a dynamic 3D cell culture.


Asunto(s)
Técnicas de Cultivo Tridimensional de Células , Proliferación Celular , Técnicas de Cultivo Tridimensional de Células/métodos , Técnicas de Cultivo Tridimensional de Células/instrumentación , Humanos , Reproducibilidad de los Resultados , Perfusión/instrumentación , Hidrogeles/química , Esferoides Celulares/citología , Técnicas de Cultivo de Célula/métodos , Técnicas de Cultivo de Célula/instrumentación
20.
ACS Appl Mater Interfaces ; 16(32): 41892-41906, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39078878

RESUMEN

Spontaneous preterm birth (PTB) affects around 11% of births, posing significant risks to neonatal health due to the inflammation at the fetal-maternal interface (FMi). This inflammation disrupts immune tolerance during pregnancy, often leading to PTB. While organ-on-a-chip (OOC) devices effectively mimic the physiology, pathophysiology, and responses of FMi, their relatively low throughput limits their utility in high-throughput testing applications. To overcome this, we developed a three-dimensional (3D)-printed model that fits in a well of a 96-well plate and can be mass-produced while also accurately replicating FMi, enabling efficient screening of drugs targeting FMi inflammation. Our model features two cell culture chambers (maternal and fetal cells) interlinked via an array of microfluidic channels. It was thoroughly validated, ensuring cell viability, metabolic activity, and cell-specific markers. The maternal chamber was exposed to lipopolysaccharides (LPS) to induce an inflammatory state, and proinflammatory cytokines in the culture supernatant were quantified. Furthermore, the efficacy of anti-inflammatory inhibitors in mitigating LPS-induced inflammation was investigated. Results demonstrated that our model supports robust cell growth, maintains viability, and accurately mimics PTB-associated inflammation. This high-throughput 3D-printed model offers a versatile platform for drug screening, promising advancements in drug discovery and PTB prevention.


Asunto(s)
Nacimiento Prematuro , Impresión Tridimensional , Femenino , Humanos , Embarazo , Lipopolisacáridos/farmacología , Dispositivos Laboratorio en un Chip , Ensayos Analíticos de Alto Rendimiento/métodos , Ensayos Analíticos de Alto Rendimiento/instrumentación , Antiinflamatorios/química , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Supervivencia Celular/efectos de los fármacos , Inflamación/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA