Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 836
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Development ; 151(16)2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39058236

RESUMEN

Drafting gene regulatory networks (GRNs) requires embryological knowledge pertaining to the cell type families, information on the regulatory genes, causal data from gene knockdown experiments and validations of the identified interactions by cis-regulatory analysis. We use multi-omics involving next-generation sequencing to obtain the necessary information for drafting the Strongylocentrotus purpuratus (Sp) posterior gut GRN. Here, we present an update to the GRN using: (1) a single-cell RNA-sequencing-derived cell atlas highlighting the 2 day-post-fertilization (dpf) sea urchin gastrula cell type families, as well as the genes expressed at the single-cell level; (2) a set of putative cis-regulatory modules and transcription factor-binding sites obtained from chromatin accessibility ATAC-seq data; and (3) interactions directionality obtained from differential bulk RNA sequencing following knockdown of the transcription factor Sp-Pdx1, a key regulator of gut patterning in sea urchins. Combining these datasets, we draft the GRN for the hindgut Sp-Pdx1-positive cells in the 2 dpf gastrula embryo. Overall, our data suggest the complex connectivity of the posterior gut GRN and increase the resolution of gene regulatory cascades operating within it.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Análisis de la Célula Individual , Strongylocentrotus purpuratus , Animales , Strongylocentrotus purpuratus/genética , Strongylocentrotus purpuratus/embriología , Gástrula/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Erizos de Mar/genética , Erizos de Mar/embriología , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Multiómica
2.
Trends Genet ; 39(7): 528-530, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37024335

RESUMEN

Marine larvae have factored heavily in pursuits to understand the origin and evolution of animal life cycles. Recent comparisons of gene expression and chromatin state in different species of sea urchin and annelid show how evolutionary changes in embryonic gene regulation can lead to markedly different larval forms.


Asunto(s)
Estadios del Ciclo de Vida , Erizos de Mar , Animales , Larva/genética , Estadios del Ciclo de Vida/genética , Erizos de Mar/genética
3.
Development ; 150(10)2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37139779

RESUMEN

Defining pattern formation mechanisms during embryonic development is important for understanding the etiology of birth defects and to inform tissue engineering approaches. In this study, we used tricaine, a voltage-gated sodium channel (VGSC) inhibitor, to show that VGSC activity is required for normal skeletal patterning in Lytechinus variegatus sea urchin larvae. We demonstrate that tricaine-mediated patterning defects are rescued by an anesthetic-insensitive version of the VGSC LvScn5a. Expression of this channel is enriched in the ventrolateral ectoderm, where it spatially overlaps with posterolaterally expressed Wnt5. We show that VGSC activity is required to spatially restrict Wnt5 expression to this ectodermal region that is adjacent and instructive to clusters of primary mesenchymal cells that initiate secretion of the larval skeleton as triradiates. Tricaine-mediated Wnt5 spatial expansion correlates with the formation of ectopic PMC clusters and triradiates. These defects are rescued by Wnt5 knockdown, indicating that the spatial expansion of Wnt5 is responsible for the patterning defects induced by VGSC inhibition. These results demonstrate a previously unreported connection between bioelectrical status and the spatial control of patterning cue expression during embryonic pattern formation.


Asunto(s)
Lytechinus , Erizos de Mar , Animales , Larva , Tipificación del Cuerpo/genética , Regulación del Desarrollo de la Expresión Génica , Embrión no Mamífero/metabolismo
4.
Development ; 150(1)2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36607745

RESUMEN

Sea urchins and other echinoderms are important experimental models for studying developmental processes. The lack of approaches for conditional gene perturbation, however, has made it challenging to investigate the late developmental functions of genes that have essential roles during early embryogenesis and genes that have diverse functions in multiple tissues. The doxycycline-controlled Tet-On system is a widely used molecular tool for temporally and spatially regulated transgene expression. Here, we optimized the Tet-On system to conditionally induce gene expression in sea urchin embryos. Using this approach, we explored the roles the MAPK signaling plays in skeletogenesis by expressing genes that perturb the pathway specifically in primary mesenchyme cells during later stages of development. We demonstrated the wide utility of the Tet-On system by applying it to a second sea urchin species and in cell types other than the primary mesenchyme cells. Our work provides a robust and flexible platform for the spatiotemporal regulation of gene expression in sea urchins, which will considerably enhance the utility of this prominent model system.


Asunto(s)
Desarrollo Embrionario , Erizos de Mar , Animales , Erizos de Mar/genética , Expresión Génica , Regulación del Desarrollo de la Expresión Génica
5.
Development ; 150(22)2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37902109

RESUMEN

Multinucleated cells, or syncytia, are found in diverse taxa. Their biological function is often associated with the compartmentalization of biochemical or cellular activities within the syncytium. How such compartments are generated and maintained is poorly understood. The sea urchin embryonic skeleton is secreted by a syncytium, and local patterns of skeletal growth are associated with distinct sub-domains of gene expression within the syncytium. For such molecular compartments to be maintained and to control local patterns of skeletal growth: (1) the mobility of TFs must be restricted to produce stable differences in the transcriptional states of nuclei within the syncytium; and (2) the mobility of biomineralization proteins must also be restricted to produce regional differences in skeletal growth. To test these predictions, we expressed fluorescently tagged forms of transcription factors and biomineralization proteins in sub-domains of the skeletogenic syncytium. We found that both classes of proteins have restricted mobility within the syncytium and identified motifs that limit their mobility. Our findings have general implications for understanding the functional and molecular compartmentalization of syncytia.


Asunto(s)
Erizos de Mar , Factores de Transcripción , Animales , Factores de Transcripción/metabolismo , Células Gigantes/metabolismo , Mesodermo/metabolismo , Regulación del Desarrollo de la Expresión Génica
6.
Trends Immunol ; 44(2): 129-145, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36623953

RESUMEN

There are striking similarities between the sea urchin cavity macrophage-like phagocytes (coelomocytes) and mammalian cavity macrophages in not only their location, but also their behaviors. These cells are crucial for maintaining homeostasis within the cavity following a breach, filling the gap and functioning as a barrier between vital organs and the environment. In this review, we summarize the evolving literature regarding these Gata6+ large peritoneal macrophages (GLPMs), focusing on ontogeny, their responses to perturbations, including their rapid aggregation via coagulation, as well as scavenger receptor cysteine-rich domains and their potential roles in diseases, such as cancer. We challenge the 50-year old phenomenon of the 'macrophage disappearance reaction' (MDR) and propose the new term 'macrophage disturbance of homeostasis reaction' (MDHR), which may better describe this complex phenomenon.


Asunto(s)
Factor de Transcripción GATA6 , Macrófagos Peritoneales , Mamíferos , Animales , Factor de Transcripción GATA6/inmunología , Macrófagos Peritoneales/inmunología , Mamíferos/inmunología , Fagocitos/inmunología , Erizos de Mar/inmunología
7.
Dev Biol ; 508: 123-137, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38290645

RESUMEN

microRNAs are evolutionarily conserved non-coding RNAs that direct post-transcriptional regulation of target transcripts. In vertebrates, microRNA-1 (miR-1) is expressed in muscle and has been found to play critical regulatory roles in vertebrate angiogenesis, a process that has been proposed to be analogous to sea urchin skeletogenesis. Results indicate that both miR-1 inhibitor and miR-1 mimic-injected larvae have significantly less F-actin enriched circumpharyngeal muscle fibers and fewer gut contractions. In addition, miR-1 regulates the positioning of skeletogenic primary mesenchyme cells (PMCs) and skeletogenesis of the sea urchin embryo. Interestingly, the gain-of-function of miR-1 leads to more severe PMC patterning and skeletal branching defects than its loss-of-function. The results suggest that miR-1 directly suppresses Ets1/2, Tbr, and VegfR7 of the skeletogenic gene regulatory network, and Nodal, and Wnt1 signaling components. This study identifies potential targets of miR-1 that impacts skeletogenesis and muscle formation and contributes to a deeper understanding of miR-1's function during development.


Asunto(s)
MicroARNs , Animales , MicroARNs/genética , MicroARNs/metabolismo , Embrión no Mamífero/metabolismo , Erizos de Mar/genética , Erizos de Mar/metabolismo , Transducción de Señal/genética , Redes Reguladoras de Genes , Regulación del Desarrollo de la Expresión Génica/genética , Mesodermo/metabolismo
8.
Dev Biol ; 516: 59-70, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39098630

RESUMEN

Dicer substrate interfering RNAs (DsiRNAs) destroy targeted transcripts using the RNA-Induced Silencing Complex (RISC) through a process called RNA interference (RNAi). This process is ubiquitous among eukaryotes. Here we report the utility of DsiRNA in embryos of the sea urchin Lytechinus variegatus (Lv). Specific knockdowns phenocopy known morpholino and inhibitor knockdowns, and DsiRNA offers a useful alternative to morpholinos. Methods are described for the design of specific DsiRNAs that lead to destruction of targeted mRNA. DsiRNAs directed against pks1, an enzyme necessary for pigment production, show how successful DsiRNA perturbations are monitored by RNA in situ analysis and by qPCR to determine relative destruction of targeted mRNA. DsiRNA-based knockdowns phenocopy morpholino- and drug-based inhibition of nodal and lefty. Other knockdowns demonstrate that the RISC operates early in development as well as on genes that are first transcribed hours after gastrulation is completed. Thus, DsiRNAs effectively mediate destruction of targeted mRNA in the sea urchin embryo. The approach offers significant advantages over other widely used methods in the urchin in terms of cost, and ease of procurement, and offers sizeable experimental advantages in terms of ease of handling, injection, and knockdown validation.

9.
Dev Biol ; 516: 122-129, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39117030

RESUMEN

Growing evidence suggests that metabolic regulation directly influences cellular function and development and thus may be more dynamic than previously expected. In vivo and in real-time analysis of metabolite activities during development is crucial to test this idea directly. In this study, we employ two metabolic biosensors to track the dynamics of pyruvate and oxidative phosphorylation (Oxphos) during the early embryogenesis of the sea urchin. A pyruvate sensor, PyronicSF, shows the signal enrichment on the mitotic apparatus, which is consistent with the localization patterns of the corresponding enzyme, pyruvate kinase (PKM). The addition of pyruvate increases the PyronicSF signal, while PKM knockdown decreases its signal, responding to the pyruvate level in the cell. Similarly, a ratio-metric sensor, Grx-roGFP, that reads the redox potential of the cell responds to DTT and H2O2, the known reducer and inducer of Oxphos. These observations suggest that these metabolic biosensors faithfully reflect the metabolic status in the cell during embryogenesis. The time-lapse imaging of these biosensors suggests that pyruvate and Oxphos levels change both spatially and temporarily during embryonic development. Pyruvate level is increased first in micromeres compared to other blastomeres at the 16-cell stage and remains high in ectoderm while decreasing in endomesoderm during gastrulation. In contrast, the Oxphos signal first decreases in micromeres at the 16-cell stage, while it increases in the endomesoderm during gastrulation, showing the opposite trend of the pyruvate signal. These results suggest that metabolic regulation is indeed both temporally and spatially dynamic during embryogenesis, and these biosensors are a valuable tool to monitor metabolic activities in real-time in developing embryos.

10.
Dev Biol ; 514: 12-27, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38862087

RESUMEN

The development of the sea urchin larval body plan is well understood from extensive studies of embryonic patterning. However, fewer studies have investigated the late larval stages during which the unique pentaradial adult body plan develops. Previous work on late larval development highlights major tissue changes leading up to metamorphosis, but the location of specific cell types during juvenile development is less understood. Here, we improve on technical limitations by applying highly sensitive hybridization chain reaction fluorescent in situ hybridization (HCR-FISH) to the fast-developing and transparent sea urchin Lytechinus pictus, with a focus on skeletogenic cells. First, we show that HCR-FISH can be used in L. pictus to precisely localize skeletogenic cells in the rudiment. In doing so, we provide a detailed staging scheme for the appearance of skeletogenic cells around the rudiment prior to and during biomineralization and show that many skeletogenic cells unassociated with larval rods localize outside of the rudiment prior to localizing inside. Second, we show that downstream biomineralization genes have similar expression patterns during larval and juvenile skeletogenesis, suggesting some conservation of skeletogenic mechanisms during development between stages. Third, we find co-expression of blastocoelar and skeletogenic cell markers around juvenile skeleton located outside of the rudiment, which is consistent with data showing that cells from the non-skeletogenic mesoderm embryonic lineage contribute to the juvenile skeletogenic cell lineage. This work sets the foundation for subsequent studies of other cell types in the late larva of L. pictus to better understand juvenile body plan development, patterning, and evolution.


Asunto(s)
Larva , Lytechinus , Animales , Lytechinus/embriología , Larva/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Hibridación Fluorescente in Situ , Erizos de Mar/embriología , Metamorfosis Biológica , Tipificación del Cuerpo/genética , Biomineralización
11.
J Cell Sci ; 136(14)2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37345489

RESUMEN

One presenilin gene (PSEN) is expressed in the sea urchin embryo, in the vegetal pole of the gastrula and then mainly in cilia cells located around the digestive system of the pluteus, as we recently have reported. PSEN expression must be accurately regulated for correct execution of these two steps of development. While investigating PSEN expression changes in embryos after expansion of endoderm with LiCl or of ectoderm with Zn2+ by whole-mount in situ hybridization (WISH) and quantitative PCR (qPCR), we detected natural antisense transcription of PSEN. We then found that Endo16 and Wnt5, markers of endo-mesoderm, and of Hnf6 and Gsc, markers of ectoderm, are also sense and antisense transcribed. We discuss that general gene expression could depend on both sense and antisense transcription. This mechanism, together with the PSEN gene, should be included in gene regulatory networks (GRNs) that theorize diverse processes in this species. We suggest that it would also be relevant to investigate natural antisense transcription of PSEN in the field of Alzheimer's disease (AD) where the role of human PSEN1 and PSEN2 is well known.


Asunto(s)
Presenilinas , Erizos de Mar , Humanos , Animales , Presenilinas/genética , Hibridación in Situ , Expresión Génica , Erizos de Mar/genética , Regulación del Desarrollo de la Expresión Génica
12.
Development ; 149(11)2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35666622

RESUMEN

Sea urchins are premier model organisms for the study of early development. However, the lengthy generation times of commonly used species have precluded application of stable genetic approaches. Here, we use the painted sea urchin Lytechinus pictus to address this limitation and to generate a homozygous mutant sea urchin line. L. pictus has one of the shortest generation times of any currently used sea urchin. We leveraged this advantage to generate a knockout mutant of the sea urchin homolog of the drug transporter ABCB1, a major player in xenobiotic disposition for all animals. Using CRISPR/Cas9, we generated large fragment deletions of ABCB1 and used these readily detected deletions to rapidly genotype and breed mutant animals to homozygosity in the F2 generation. The knockout larvae are produced according to expected Mendelian distribution, exhibit reduced xenobiotic efflux activity and can be grown to maturity. This study represents a major step towards more sophisticated genetic manipulation of the sea urchin and the establishment of reproducible sea urchin animal resources.


Asunto(s)
Lytechinus , Xenobióticos , Animales , Técnicas Genéticas , Larva/genética , Lytechinus/genética , Erizos de Mar/genética
13.
Development ; 149(22)2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36399063

RESUMEN

Echinoderms represent a broad phylum with many tractable features to test evolutionary changes and constraints. Here, we present a single-cell RNA-sequencing analysis of early development in the sea star Patiria miniata, to complement the recent analysis of two sea urchin species. We identified 20 cell states across six developmental stages from 8 hpf to mid-gastrula stage, using the analysis of 25,703 cells. The clusters were assigned cell states based on known marker gene expression and by in situ RNA hybridization. We found that early (morula, 8-14 hpf) and late (blastula-to-mid-gastrula) cell states are transcriptionally distinct. Cells surrounding the blastopore undergo rapid cell state changes that include endomesoderm diversification. Of particular import to understanding germ cell specification is that we never see Nodal pathway members within Nanos/Vasa-positive cells in the region known to give rise to the primordial germ cells (PGCs). The results from this work contrast the results of PGC specification in the sea urchin, and the dataset presented here enables deeper comparative studies in tractable developmental models for testing a variety of developmental mechanisms.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Estrellas de Mar , Animales , Estrellas de Mar/genética , Erizos de Mar/genética , Células Germinativas/metabolismo , ARN/genética
14.
Bioessays ; 45(4): e2300004, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36825672

RESUMEN

Localized mRNA translation is a biological process that allows mRNA to be translated on-site, which is proposed to provide fine control in protein regulation, both spatially and temporally within a cell. We recently reported that Vasa, an RNA-helicase, is a promising factor that appears to regulate this process on the spindle during the embryonic development of the sea urchin, yet the detailed roles and functional mechanisms of Vasa in this process are still largely unknown. In this review article, to elucidate these remaining questions, we first summarize the prior knowledge and our recent findings in the area of Vasa research and further discuss how Vasa may function in localized mRNA translation, contributing to efficient protein regulation during rapid embryogenesis and cancer cell regulation.


Asunto(s)
Desarrollo Embrionario , Biosíntesis de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica
15.
Dev Dyn ; 253(8): 781-790, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38340021

RESUMEN

BACKGROUND: Sea urchins have contributed greatly to knowledge of fertilization, embryogenesis, and cell biology. However, until now, they have not been genetic model organisms because of their long generation times and lack of tools for husbandry and gene manipulation. We recently established the sea urchin Lytechinus pictus, as a multigenerational model Echinoderm, because of its relatively short generation time of 4-6 months and ease of laboratory culture. To take full advantage of this new multigenerational species, methods are needed to biobank and share genetically modified L. pictus sperm. RESULTS: Here, we describe a method, based on sperm ion physiology that maintains L. pictus and Strongylocentrotus purpuratus sperm fertilizable for at least 5-10 weeks when stored at 0°C. We also describe a new method to cryopreserve sperm of both species. Sperm of both species can be frozen and thawed at least twice and still give rise to larvae that undergo metamorphosis. CONCLUSIONS: The simple methods we describe work well for both species, achieving >90% embryo development and producing larvae that undergo metamorphosis to juvenile adults. We hope that these methods will be useful to others working on marine invertebrate sperm.


Asunto(s)
Criopreservación , Lytechinus , Espermatozoides , Strongylocentrotus purpuratus , Animales , Masculino , Criopreservación/métodos , Lytechinus/fisiología , Strongylocentrotus purpuratus/embriología , Strongylocentrotus purpuratus/fisiología , Espermatozoides/fisiología , Espermatozoides/citología , Preservación de Semen/métodos
16.
Dev Dyn ; 253(3): 333-350, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37698352

RESUMEN

BACKGROUND: Some marine invertebrate organisms are considered not to develop tumors due to unknown mechanisms. To gain an initial insight into how tumor-related genes may be expressed and function during marine invertebrate development, we here leverage sea urchin embryos as a model system and characterize the expressions of Myc and p53/p63/p73 which are reported to function synergistically in mammalian models as an oncogene and tumor suppressor, respectively. RESULTS: During sea urchin embryogenesis, a combo gene of p53/p63/p73 is found to be maternally loaded and decrease after fertilization both in transcript and protein, while Myc transcript and protein are zygotically expressed. p53/p63/p73 and Myc proteins are observed in the cytoplasm and nucleus of every blastomere, respectively, throughout embryogenesis. Both p53/p63/p73 and Myc overexpression results in compromised development with increased DNA damage after the blastula stage. p53/p63/p73 increases the expression of parp1, a DNA repair/cell death marker gene, and suppresses endomesoderm gene expressions. In contrast, Myc does not alter the expression of specification genes or oncogenes yet induces disorganized morphology. CONCLUSIONS: p53/p63/p73 appears to be important for controlling cell differentiation, while Myc induces disorganized morphology yet not through conventional oncogene regulations or apoptotic pathways during embryogenesis of the sea urchin.


Asunto(s)
Blastocisto , Proteína p53 Supresora de Tumor , Animales , Proteína p53 Supresora de Tumor/genética , Blastómeros , Desarrollo Embrionario/genética , Erizos de Mar/genética , Mamíferos
17.
Genesis ; 62(4): e23614, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39139086

RESUMEN

Organisms from the five kingdoms of life use minerals to harden their tissues and make teeth, shells and skeletons, in the process of biomineralization. The sea urchin larval skeleton is an excellent system to study the biological regulation of biomineralization and its evolution. The gene regulatory network (GRN) that controls sea urchin skeletogenesis is known in great details and shows similarity to the GRN that controls vertebrates' vascularization while it is quite distinct from the GRN that drives vertebrates' bone formation. Yet, transforming growth factor beta (TGF-ß) signaling regulates both sea urchin and vertebrates' skeletogenesis. Here, we study the upstream regulation and identify transcriptional targets of TGF-ß in the Mediterranean Sea urchin species, Paracentrotus lividus. TGF-ßRII is transiently active in the skeletogenic cells downstream of vascular endothelial growth factor (VEGF) signaling, in P. lividus. Continuous perturbation of TGF-ßRII activity significantly impairs skeletal elongation and the expression of key skeletogenic genes. Perturbation of TGF-ßRII after skeletal initiation leads to a delay in skeletal elongation and minor changes in gene expression. TGF-ß targets are distinct from its transcriptional targets during vertebrates' bone formation, suggesting that the role of TGF-ß in biomineralization in these two phyla results from convergent evolution.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Larva , Paracentrotus , Animales , Larva/crecimiento & desarrollo , Larva/metabolismo , Larva/genética , Paracentrotus/genética , Paracentrotus/metabolismo , Paracentrotus/embriología , Receptor Tipo II de Factor de Crecimiento Transformador beta/genética , Receptor Tipo II de Factor de Crecimiento Transformador beta/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/genética , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta/genética , Osteogénesis/genética , Redes Reguladoras de Genes , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
18.
J Struct Biol ; 216(2): 108074, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38432597

RESUMEN

Calcium carbonate is present in many biominerals, including in the exoskeletons of crustaceans and shells of mollusks. High Mg-containing calcium carbonate was synthesized by high temperatures, high pressures or high molecular organic matter. For example, biogenic high Mg-containing calcite is synthesized under strictly controlled Mg concentration at ambient temperature and pressure. The spines of sea urchins consist of calcite, which contain a high percentage of magnesium. In this study, we investigated the factors that increase the magnesium content in calcite from the spines of the sea urchin, Heliocidaris crassispina. X-ray diffraction and inductively coupled plasma mass spectrometry analyses showed that sea urchin spines contain about 4.8% Mg. The organic matrix extracted from the H. crassispina spines induced the crystallization of amorphous phase and synthesis of magnesium-containing calcite, while amorphous was synthesized without SUE (sea urchin extract). In addition, aragonite was synthesized by SUE treated with protease-K. HC tropomyosin was specifically incorporated into Mg precipitates. Recombinant HC-tropomyosin induced calcite contained 0.1-2.5% Mg synthesis. Western blotting of sea urchin spine extracts confirmed that HC tropomyosin was present in the purple sea urchin spines at a protein weight ratio of 1.5%. These results show that HC tropomyosin is one factor that increases the magnesium concentration in the calcite of H. crassispina spines.


Asunto(s)
Carbonato de Calcio , Magnesio , Erizos de Mar , Tropomiosina , Animales , Carbonato de Calcio/química , Carbonato de Calcio/metabolismo , Erizos de Mar/metabolismo , Tropomiosina/química , Tropomiosina/metabolismo , Magnesio/química , Difracción de Rayos X , Cristalización
19.
Dev Biol ; 502: 50-62, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37419400

RESUMEN

MicroRNAs regulate gene expression post-transcriptionally by destabilizing and/or inhibiting translation of target mRNAs in animal cells. MicroRNA-124 (miR-124) has been examined mostly in the context of neurogenesis. This study discovers a novel role of miR-124 in regulating mesodermal cell differentiation in the sea urchin embryo. The expression of miR-124 is first detectable at 12hours post fertilization at the early blastula stage, during endomesodermal specification. Mesodermally-derived immune cells come from the same progenitor cells that give rise to blastocoelar cells (BCs) and pigment cells (PCs) that must make a binary fate decision. We determined that miR-124 directly represses Nodal and Notch to regulate BC and PC differentiation. miR-124 inhibition does not impact the dorsal-ventral axis formation, but result in a significant increase in number of cells expressing BC-specific transcription factors (TFs) and a concurrent reduction of differentiated PCs. In general, removing miR-124's suppression of Nodal phenocopies miR124 inhibition. Interestingly, removing miR-124's suppression of Notch leads to an increased number of both BCs and PCs, with a subset of hybrid cells that express both BC- and PC-specific TFs in the larvae. Removal of miR-124's suppression of Notch not only affects differentiation of both BCs and PCs, but also induces cell proliferation of these cells during the first wave of Notch signaling. This study demonstrates that post-transcriptional regulation by miR-124 impacts differentiation of BCs and PCs by regulating the Nodal and Notch signaling pathways.


Asunto(s)
MicroARNs , Receptores Notch , Animales , Receptores Notch/genética , Receptores Notch/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Diferenciación Celular/genética , Transducción de Señal/genética , Regulación de la Expresión Génica , Factor de Crecimiento Transformador beta/metabolismo
20.
Dev Biol ; 495: 21-34, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36587799

RESUMEN

Septate junctions (SJs) evolved as cell-cell junctions that regulate the paracellular barrier and integrity of epithelia in invertebrates. Multiple morphological variants of SJs exist specific to different epithelia and/or phyla but the biological significance of varied SJ morphology is unclear because the knowledge of the SJ associated proteins and their functions in non-insect invertebrates remains largely unknown. Here we report cell-specific expression of nine candidate SJ genes in the early life stages of the sea urchin Strongylocentrotus purpuratus. By use of in situ RNA hybridization and single cell RNA-seq we found that the expression of selected genes encoding putatively SJ associated transmembrane and cytoplasmic scaffold molecules was dynamically regulated during epithelial development in the embryos and larvae with different epithelia expressing different cohorts of SJ genes. We focused a functional analysis on SpMesh, a homolog of the Drosophila smooth SJ component Mesh, which was highly enriched in the endodermal epithelium of the mid- and hindgut. Functional perturbation of SpMesh by both CRISPR/Cas9 mutagenesis and vivo morpholino-mediated knockdown shows that loss of SpMesh does not disrupt the formation of the gut epithelium during gastrulation. However, loss of SpMesh resulted in a severely reduced gut-paracellular barrier as quantitated by increased permeability to 3-5 â€‹kDa FITC-dextran. Together, these studies provide a first look at the molecular SJ physiology during the development of a marine organism and suggest a shared role for Mesh-homologous proteins in forming an intestinal barrier in invertebrates. Results have implications for consideration of the traits underlying species-specific sensitivity of marine larvae to climate driven ocean change.


Asunto(s)
Proteínas de Drosophila , Strongylocentrotus purpuratus , Animales , Strongylocentrotus purpuratus/genética , Strongylocentrotus purpuratus/metabolismo , Uniones Estrechas/genética , Uniones Estrechas/metabolismo , Epitelio/metabolismo , Uniones Intercelulares/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Erizos de Mar/genética , Erizos de Mar/metabolismo , Larva/genética , Larva/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA