RESUMEN
Strong epidemiological evidence now exists that sex is an important biologic variable in immunity. Recent studies, for example, have revealed that sex differences are associated with the severity of symptoms and mortality due to coronavirus disease 2019 (COVID-19). Despite this evidence, much remains to be learned about the mechanisms underlying associations between sex differences and immune-mediated conditions. A growing body of experimental data has made significant inroads into understanding sex-influenced immune responses. As physicians seek to provide more targeted patient care, it is critical to understand how sex-defining factors (e.g., chromosomes, gonadal hormones) alter immune responses in health and disease. In this review, we highlight recent insights into sex differences in autoimmunity; virus infection, specifically severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection; and cancer immunotherapy. A deeper understanding of underlying mechanisms will allow the development of a sex-based approach to disease screening and treatment.
Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Femenino , Humanos , Masculino , Caracteres Sexuales , Factores SexualesRESUMEN
Understanding sex-related variation in health and illness requires rigorous and precise approaches to revealing underlying mechanisms. A first step is to recognize that sex is not in and of itself a causal mechanism; rather, it is a classification system comprising a set of categories, usually assigned according to a range of varying traits. Moving beyond sex as a system of classification to working with concrete and measurable sex-related variables is necessary for precision. Whether and how these sex-related variables matter-and what patterns of difference they contribute to-will vary in context-specific ways. Second, when researchers incorporate these sex-related variables into research designs, rigorous analytical methods are needed to allow strongly supported conclusions. Third, the interpretation and reporting of sex-related variation require care to ensure that basic and preclinical research advance health equity for all.
Asunto(s)
Investigación Biomédica , Equidad en Salud , Sexo , HumanosRESUMEN
Phenotypic sex-based differences exist for many complex traits. In other cases, phenotypes may be similar, but underlying biology may vary. Thus, sex-aware genetic analyses are becoming increasingly important for understanding the mechanisms driving these differences. To this end, we provide a guide outlining the current best practices for testing various models of sex-dependent genetic effects in complex traits and disease conditions, noting that this is an evolving field. Insights from sex-aware analyses will not only teach us about the biology of complex traits but also aid in achieving the goals of precision medicine and health equity for all.
Asunto(s)
Modelos Genéticos , Caracteres Sexuales , Animales , Femenino , Masculino , Herencia Multifactorial , Fenotipo , Control de Calidad , Estudio de Asociación del Genoma Completo , Guías como Asunto , Interacción Gen-Ambiente , HumanosRESUMEN
Progress in studying sex as a biological variable (SABV) is slow, and the influence of gendered effects of the social environment on biology is largely unknown. Yet incorporating these concepts into basic science research will enhance our understanding of human health and disease. We provide steps to move this process forward.
Asunto(s)
Investigación Biomédica , Femenino , Humanos , Masculino , Medicina de Precisión , Caracteres Sexuales , Factores Sexuales , Salud de la MujerRESUMEN
Sex hormones exert a profound influence on gendered behaviors. How individual sex hormone-responsive neuronal populations regulate diverse sex-typical behaviors is unclear. We performed orthogonal, genetically targeted sequencing of four estrogen receptor 1-expressing (Esr1+) populations and identified 1,415 genes expressed differentially between sexes or estrous states. Unique subsets of these genes were distributed across all 137 transcriptomically defined Esr1+ cell types, including estrous stage-specific ones, that comprise the four populations. We used differentially expressed genes labeling single Esr1+ cell types as entry points to functionally characterize two such cell types, BNSTprTac1/Esr1 and VMHvlCckar/Esr1. We observed that these two cell types, but not the other Esr1+ cell types in these populations, are essential for sex recognition in males and mating in females, respectively. Furthermore, VMHvlCckar/Esr1 cell type projections are distinct from those of other VMHvlEsr1 cell types. Together, projection and functional specialization of dimorphic cell types enables sex hormone-responsive populations to regulate diverse social behaviors.
Asunto(s)
Ciclo Estral/genética , Regulación de la Expresión Génica , Caracteres Sexuales , Conducta Sexual Animal/fisiología , Agresión , Animales , Aromatasa/metabolismo , Trastorno Autístico/genética , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Femenino , Perfilación de la Expresión Génica , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Neuronas/metabolismo , Conducta SocialRESUMEN
The incidence and mortality rates of many non-reproductive human cancers are generally higher in males than in females. However, the immunological mechanism underlying sexual differences in cancers remains elusive. Here, we demonstrated that sex-related differences in tumor burden depended on adaptive immunity. Male CD8+ T cells exhibited impaired effector and stem cell-like properties compared with female CD8+ T cells. Mechanistically, androgen receptor inhibited the activity and stemness of male tumor-infiltrating CD8+ T cells by regulating epigenetic and transcriptional differentiation programs. Castration combined with anti-PD-L1 treatment synergistically restricted tumor growth in male mice. In humans, fewer male CD8+ T cells maintained a stem cell-like memory state compared with female counterparts. Moreover, AR expression correlated with tumor-infiltrating CD8+ T cell exhaustion in cancer patients. Our findings reveal sex-biased CD8+ T cell stemness programs in cancer progression and in the responses to cancer immunotherapy, providing insights into the development of sex-based immunotherapeutic strategies for cancer treatment.
Asunto(s)
Linfocitos T CD8-positivos , Neoplasias , Animales , Femenino , Humanos , Inmunoterapia , Masculino , Ratones , Neoplasias/terapia , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Caracteres Sexuales , Microambiente TumoralRESUMEN
Men present more frequently with severe manifestations of coronavirus disease 2019 (COVID-19) and are at higher risk for death. The underlying mechanisms for these differences between female and male individuals infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are insufficiently understood. However, studies from other viral infections have shown that females can mount stronger immune responses against viruses than males. Emerging knowledge on the basic biological pathways that underlie differences in immune responses between women and men needs to be incorporated into research efforts on SARS-CoV-2 pathogenesis and pathology to identify targets for therapeutic interventions aimed at enhancing antiviral immune function and lung airway resilience while reducing pathogenic inflammation in COVID-19.
Asunto(s)
Betacoronavirus/inmunología , Infecciones por Coronavirus/inmunología , Inmunidad Innata/inmunología , Neumonía Viral/inmunología , Caracteres Sexuales , COVID-19 , Femenino , Humanos , Masculino , Pandemias , SARS-CoV-2RESUMEN
Oligodendrocyte precursor cells (OPCs) are not merely a transitory progenitor cell type, but rather a distinct and heterogeneous population of glia with various functions in the developing and adult central nervous system. In this review, we discuss the fate and function of OPCs in the brain beyond their contribution to myelination. OPCs are electrically sensitive, form synapses with neurons, support blood-brain barrier integrity, and mediate neuroinflammation. We explore how sex and age may influence OPC activity, and we review how OPC dysfunction may play a primary role in numerous neurological and neuropsychiatric diseases. Finally, we highlight areas of future research.
Asunto(s)
Encéfalo/citología , Células Precursoras de Oligodendrocitos/citología , Células Precursoras de Oligodendrocitos/inmunología , Factores de Edad , Animales , Encéfalo/embriología , Encéfalo/inmunología , Encéfalo/metabolismo , Sinapsis Eléctricas/fisiología , Humanos , Trastornos Mentales/patología , Enfermedades del Sistema Nervioso/patología , Células Precursoras de Oligodendrocitos/patología , Células Precursoras de Oligodendrocitos/fisiología , Factores SexualesRESUMEN
Obesity presents a significant health challenge, affecting 41% of adults and 19.7% of children in the United States. One of the associated health challenges of obesity is chronic low-grade inflammation. In both mice and humans, T cells in circulation and in the adipose tissue play a pivotal role in obesity-associated inflammation. Changes in the numbers and frequency of specific CD4+ Th subsets and their contribution to inflammation through cytokine production indicate declining metabolic health, that is, insulin resistance and T2D. While some Th subset alterations are consistent between mice and humans with obesity, some changes mainly characterize male mice, whereas female mice often resist obesity and inflammation. However, protection from obesity and inflammation is not observed in human females, who can develop obesity-related T-cell inflammation akin to males. The decline in female sex hormones after menopause is also implicated in promoting obesity and inflammation. Age is a second underappreciated factor for defining and regulating obesity-associated inflammation toward translating basic science findings to the clinic. Weight loss in mice and humans, in parallel with these other factors, does not resolve obesity-associated inflammation. Instead, inflammation persists amid modest changes in CD4+ T cell frequencies, highlighting the need for further research into resolving changes in T-cell function after weight loss. How lingering inflammation after weight loss affecting the common struggle to maintain lower weight is unknown. Semaglutide, a newly popular pharmaceutical used for treating T2D and reversing obesity, holds promise for alleviating obesity-associated health complications, yet its impact on T-cell-mediated inflammation remains unexplored. Further work in this area could significantly contribute to the scientific understanding of the impacts of weight loss and sex/hormones in obesity and obesity-associated metabolic decline.
Asunto(s)
Inflamación , Obesidad , Humanos , Obesidad/inmunología , Obesidad/metabolismo , Animales , Inflamación/inmunología , Femenino , Tejido Adiposo/metabolismo , Ratones , Masculino , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo , Modelos Animales de EnfermedadRESUMEN
Some mental health problems such as depression and anxiety are more common in females, while others such as autism and attention deficit/hyperactivity (AD/H) are more common in males. However, the neurobiological origins of these sex differences are poorly understood. Animal studies have shown substantial sex differences in neuronal and glial cell structure, while human brain imaging studies have shown only small differences, which largely reflect overall body and brain size. Advanced diffusion MRI techniques can be used to examine intracellular, extracellular, and free water signal contributions and provide unique insights into microscopic cellular structure. However, the extent to which sex differences exist in these metrics of subcortical gray matter structures implicated in psychiatric disorders is not known. Here, we show large sex-related differences in microstructure in subcortical regions, including the hippocampus, thalamus, and nucleus accumbens in a large sample of young adults. Unlike conventional T1-weighted structural imaging, large sex differences remained after adjustment for age and brain volume. Further, diffusion metrics in the thalamus and amygdala were associated with depression, anxiety, AD/H, and antisocial personality problems. Diffusion MRI may provide mechanistic insights into the origin of sex differences in behavior and mental health over the life course and help to bridge the gap between findings from experimental, epidemiological, and clinical mental health research.
Asunto(s)
Encéfalo , Caracteres Sexuales , Humanos , Femenino , Masculino , Adulto , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Salud Mental , Adulto Joven , Imagen de Difusión por Resonancia Magnética , Adolescente , Hipocampo/diagnóstico por imagen , Hipocampo/patología , Tálamo/diagnóstico por imagen , Núcleo Accumbens/diagnóstico por imagen , Depresión/diagnóstico por imagen , Depresión/patología , Ansiedad/diagnóstico por imagenRESUMEN
One of the largest sex differences in brain neurochemistry is the expression of the neuropeptide arginine vasopressin (AVP) within the vertebrate brain, with males having more AVP cells in the bed nucleus of the stria terminalis (BNST) than females. Despite the long-standing implication of AVP in social and anxiety-like behaviors, the circuitry underlying AVP's control of these behaviors is still not well defined. Using optogenetic approaches, we show that inhibiting AVP BNST cells reduces social investigation in males, but not in females, whereas stimulating these cells increases social investigation in both sexes, but more so in males. These cells may facilitate male social investigation through their projections to the lateral septum (LS), an area with the highest density of sexually differentiated AVP innervation in the brain, as optogenetic stimulation of BNST AVP â LS increased social investigation and anxiety-like behavior in males but not in females; the same stimulation also caused a biphasic response of LS cells ex vivo. Blocking the vasopressin 1a receptor (V1aR) in the LS eliminated all these responses. Together, these findings establish a sexually differentiated role for BNST AVP cells in the control of social investigation and anxiety-like behavior, likely mediated by their projections to the LS.
Asunto(s)
Ansiedad , Arginina Vasopresina , Conducta Social , Animales , Femenino , Masculino , Ratones , Ansiedad/metabolismo , Arginina Vasopresina/metabolismo , Conducta Animal/fisiología , Ratones Endogámicos C57BL , Neuronas/metabolismo , Neuronas/fisiología , Optogenética , Receptores de Vasopresinas/metabolismo , Receptores de Vasopresinas/genética , Núcleos Septales/metabolismo , Núcleos Septales/fisiologíaRESUMEN
Mitochondria perform an array of functions, many of which involve interactions with gene products encoded by the nucleus. These mitochondrial functions, particularly those involving energy production, can be expected to differ between sexes and across ages. Here, we measured mitochondrial effects on sex- and age-specific gene expression in parental and reciprocal F1 hybrids between allopatric populations of Tigriopus californicus with over 20% mitochondrial DNA divergence. Because the species lacks sex chromosomes, sex-biased mitochondrial effects are not confounded by the effects of sex chromosomes. Results revealed pervasive sex differences in mitochondrial effects, including effects on energetics and aging involving nuclear interactions throughout the genome. Using single-individual RNA sequencing, sex differences were found to explain more than 80% of the variance in gene expression. Males had higher expression of mitochondrial genes and mitochondrially targeted proteins (MTPs) involved in oxidative phosphorylation (OXPHOS), while females had elevated expression of non-OXPHOS MTPs, indicating strongly sex-dimorphic energy metabolism at the whole organism level. Comparison of reciprocal F1 hybrids allowed insights into the nature of mito-nuclear interactions, showing both mitochondrial effects on nuclear expression, and nuclear effects on mitochondrial expression. While based on a small set of crosses, sex-specific increases in mitochondrial expression with age were associated with longer life. Network analyses identified nuclear components of strong mito-nuclear interactions and found them to be sexually dimorphic. These results highlight the profound impact of mitochondria and mito-nuclear interactions on sex- and age-specific gene expression.
Asunto(s)
Mitocondrias , Cromosomas Sexuales , Animales , Femenino , Masculino , Mitocondrias/genética , Mitocondrias/metabolismo , Cromosomas Sexuales/genética , Envejecimiento/genética , Envejecimiento/metabolismo , Fosforilación Oxidativa , Caracteres Sexuales , ADN Mitocondrial/genética , Núcleo Celular/metabolismo , Núcleo Celular/genética , Regulación de la Expresión Génica , Metabolismo Energético/genéticaRESUMEN
General anesthesia-a pharmacologically induced reversible state of unconsciousness-enables millions of life-saving procedures. Anesthetics induce unconsciousness in part by impinging upon sexually dimorphic and hormonally sensitive hypothalamic circuits regulating sleep and wakefulness. Thus, we hypothesized that anesthetic sensitivity should be sex-dependent and modulated by sex hormones. Using distinct behavioral measures, we show that at identical brain anesthetic concentrations, female mice are more resistant to volatile anesthetics than males. Anesthetic sensitivity is bidirectionally modulated by testosterone. Castration increases anesthetic resistance. Conversely, testosterone administration acutely increases anesthetic sensitivity. Conversion of testosterone to estradiol by aromatase is partially responsible for this effect. In contrast, oophorectomy has no effect. To identify the neuronal circuits underlying sex differences, we performed whole brain c-Fos activity mapping under anesthesia in male and female mice. Consistent with a key role of the hypothalamus, we found fewer active neurons in the ventral hypothalamic sleep-promoting regions in females than in males. In humans, we demonstrate that females regain consciousness and recover cognition faster than males after identical anesthetic exposures. Remarkably, while behavioral and neurocognitive measures in mice and humans point to increased anesthetic resistance in females, cortical activity fails to show sex differences under anesthesia in either species. Cumulatively, we demonstrate that sex differences in anesthetic sensitivity are evolutionarily conserved and not reflected in conventional electroencephalographic-based measures of anesthetic depth. This covert resistance to anesthesia may explain the higher incidence of unintended awareness under general anesthesia in females.
Asunto(s)
Anestésicos , Caracteres Sexuales , Humanos , Femenino , Masculino , Animales , Ratones , Anestésicos/farmacología , Anestesia General , Testosterona/farmacología , InconscienciaRESUMEN
Many complex diseases exhibit pronounced sex differences that can affect both the initial risk of developing the disease, as well as clinical disease symptoms, molecular manifestations, disease progression, and the risk of developing comorbidities. Despite this, computational studies of molecular data for complex diseases often treat sex as a confounding variable, aiming to filter out sex-specific effects rather than attempting to interpret them. A more systematic, in-depth exploration of sex-specific disease mechanisms could significantly improve our understanding of pathological and protective processes with sex-dependent profiles. This survey discusses dedicated bioinformatics approaches for the study of molecular sex differences in complex diseases. It highlights that, beyond classical statistical methods, approaches are needed that integrate prior knowledge of relevant hormone signaling interactions, gene regulatory networks, and sex linkage of genes to provide a mechanistic interpretation of sex-dependent alterations in disease. The review examines and compares the advantages, pitfalls and limitations of various conventional statistical and systems-level mechanistic analyses for this purpose, including tailored pathway and network analysis techniques. Overall, this survey highlights the potential of specialized bioinformatics techniques to systematically investigate molecular sex differences in complex diseases, to inform biomarker signature modeling, and to guide more personalized treatment approaches.
Asunto(s)
Biología Computacional , Caracteres Sexuales , Humanos , Biología Computacional/métodos , Masculino , Femenino , Redes Reguladoras de GenesRESUMEN
Although microglia possess the unique ability to migrate, whether mobility is evident in all microglia, is sex dependent, and what molecular mechanisms drive this, is not well understood in the adult brain. Using longitudinal in vivo two-photon imaging of sparsely labeled microglia, we find a relatively small population of microglia (~5%) are mobile under normal conditions. Following injury (microbleed), the fraction of mobile microglia increased in a sex-dependent manner, with male microglia migrating significantly greater distances toward the microbleed relative to their female counterparts. To understand the signaling pathways involved, we interrogated the role of interferon gamma (IFNγ). Our data show that in male mice, stimulating microglia with IFNγ promotes migration whereas inhibiting IFNγ receptor 1 signaling inhibits them. By contrast, female microglia were generally unaffected by these manipulations. These findings highlight the diversity of microglia migratory responses to injury, its dependence on sex and the signaling mechanisms that modulate this behavior.
Asunto(s)
Interferón gamma , Microglía , Animales , Masculino , Femenino , Ratones , Microglía/metabolismo , Interferón gamma/metabolismo , Transducción de Señal , Encéfalo/metabolismo , Hemorragia Cerebral/metabolismoRESUMEN
Mental health disorders often arise as a combination of environmental and genetic factors. The FKBP5 gene, encoding the GR co-chaperone FKBP51, has been uncovered as a key genetic risk factor for stress-related illness. However, the exact cell type and region-specific mechanisms by which FKBP51 contributes to stress resilience or susceptibility processes remain to be unravelled. FKBP51 functionality is known to interact with the environmental risk factors age and sex, but so far data on behavioral, structural, and molecular consequences of these interactions are still largely unknown. Here we report the cell type- and sex-specific contribution of FKBP51 to stress susceptibility and resilience mechanisms under the high-risk environmental conditions of an older age, by using two conditional knockout models within glutamatergic (Fkbp5Nex) and GABAergic (Fkbp5Dlx) neurons of the forebrain. Specific manipulation of Fkbp51 in these two cell types led to opposing effects on behavior, brain structure and gene expression profiles in a highly sex-dependent fashion. The results emphasize the role of FKBP51 as a key player in stress-related illness and the need for more targeted and sex-specific treatment strategies.
Asunto(s)
Trastornos Mentales , Masculino , Femenino , Humanos , Trastornos Mentales/genética , Neuronas GABAérgicas/metabolismo , Prosencéfalo/metabolismo , Proteínas de Unión a Tacrolimus/genética , Proteínas de Unión a Tacrolimus/metabolismoRESUMEN
Gender inequality across the world has been associated with a higher risk to mental health problems and lower academic achievement in women compared to men. We also know that the brain is shaped by nurturing and adverse socio-environmental experiences. Therefore, unequal exposure to harsher conditions for women compared to men in gender-unequal countries might be reflected in differences in their brain structure, and this could be the neural mechanism partly explaining women's worse outcomes in gender-unequal countries. We examined this through a random-effects meta-analysis on cortical thickness and surface area differences between adult healthy men and women, including a meta-regression in which country-level gender inequality acted as an explanatory variable for the observed differences. A total of 139 samples from 29 different countries, totaling 7,876 MRI scans, were included. Thickness of the right hemisphere, and particularly the right caudal anterior cingulate, right medial orbitofrontal, and left lateral occipital cortex, presented no differences or even thicker regional cortices in women compared to men in gender-equal countries, reversing to thinner cortices in countries with greater gender inequality. These results point to the potentially hazardous effect of gender inequality on women's brains and provide initial evidence for neuroscience-informed policies for gender equality.
Asunto(s)
Encéfalo , Equidad de Género , Masculino , Adulto , Humanos , Femenino , Encéfalo/diagnóstico por imagen , Factores SexualesRESUMEN
The "Reading the Mind in the Eyes" Test (Eyes Test) is a widely used assessment of "theory of mind." The NIMH Research Domain Criteria recommends it as one of two tests for "understanding mental states." Previous studies have demonstrated an on-average female advantage on the Eyes Test. However, it is unknown whether this female advantage exists across the lifespan and across a large number of countries. Thus, we tested sex and age differences using the English version of the Eyes Test in adolescents and adults across 57 countries. We also tested for associations with sociodemographic and cognitive/personality factors. We leveraged one discovery dataset (N = 305,726) and three validation datasets (Ns = 642; 5,284; and 1,087). The results show that: i) there is a replicable on-average female advantage in performance on the Eyes Test; ii) performance increases through adolescence and shallowly declines across adulthood; iii) the on-average female advantage is evident across the lifespan; iv) there is a significant on-average female advantage in 36 out of 57 countries; v) there is a significant on-average female advantage on translated (non-English) versions of the Eyes Test in 12 out of 16 countries, as confirmed by a systematic review; vi) D-scores, or empathizing-systemizing, predict Eyes Test performance above and beyond sex differences; and vii) the female advantage is negatively linked to "prosperity" and "autonomy," and positively linked to "collectivism," as confirmed by exploratory country-level analyses. We conclude that the on-average female advantage on the Eyes Test is observed across ages and most countries.
Asunto(s)
Ojo , Caracteres Sexuales , Adulto , Adolescente , Humanos , Masculino , Femenino , EmpatíaRESUMEN
Reading acquisition involves the integration of auditory and visual stimuli. Thus, low-level audiovisual multisensory integration might contribute to disrupted reading in developmental dyslexia. Although dyslexia is more frequently diagnosed in males and emerging evidence indicates that the neural basis of dyslexia might differ between sexes, previous studies examining multisensory integration did not evaluate potential sex differences nor tested its neural correlates. In the current study on 88 adolescents and young adults, we found that only males with dyslexia showed a deficit in multisensory integration of simple nonlinguistic stimuli. At the neural level, both females and males with dyslexia presented smaller differences in response to multisensory compared to those in response to unisensory conditions in the N1 and N2 components (early components of event-related potentials associated with sensory processing) than the control group. Additionally, in a subsample of 80 participants matched for nonverbal IQ, only males with dyslexia exhibited smaller differences in the left hemisphere in response to multisensory compared to those in response to unisensory conditions in the N1 component. Our study indicates that deficits of multisensory integration seem to be more severe in males than females with dyslexia. This provides important insights into sex-modulated cognitive processes that might confer vulnerability to reading difficulties.
Asunto(s)
Percepción Auditiva , Dislexia , Adolescente , Adulto Joven , Humanos , Masculino , Femenino , Percepción Auditiva/fisiología , Tiempo de Reacción/fisiología , Percepción Visual/fisiología , Caracteres Sexuales , Estimulación AcústicaRESUMEN
The initiation of abstinence after chronic drug self-administration is stressful. Cocaine-seeking behavior on the first day of the absence of the expected drug (Extinction Day 1, ED1) is reduced by blocking 5-HT signaling in dorsal hippocampal cornu ammonis 1 (CA1) in both male and female rats. We hypothesized that the experience of ED1 can substantially influence later relapse behavior and that dorsal raphe (DR) serotonin (5-HT) input to CA1 may be involved. We inhibited 5-HT1A/1B receptors (WAY-100635 plus GR-127935), or DR input (chemogenetics), in CA1 on ED1 to test the role of this pathway on cocaine-seeking persistence 2â weeks later. We also inhibited 5-HT1A or 5-HT1B receptors in CA1 during conditioned place preference (CPP) for cocaine, to examine mechanisms involved in the persistent effects of ED1 manipulations. Inhibition of DR inputs, or 5-HT1A/1B signaling, in CA1 decreased drug seeking on ED1 and decreased cocaine seeking 2â weeks later revealing that 5-HT signaling in CA1 during ED1 contributes to persistent drug seeking during abstinence. In addition, 5-HT1B antagonism alone transiently decreased drug-associated memory performance when given prior to a CPP test, whereas similar antagonism of 5-HT1A alone had no such effect but blocked CPP retrieval on a test 24â h later. These CPP findings are consistent with prior work showing that DR inputs to CA1 augment recall of the drug-associated context and drug seeking via 5-HT1B receptors and prevent consolidation of the updated nondrug context via 5-HT1A receptors. Thus, treatments that modulate 5-HT-dependent memory mechanisms in CA1 during initial abstinence may facilitate later maintenance of abstinence.