Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 746
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 167(3): 633-642.e11, 2016 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-27768887

RESUMEN

The evolution of body shape is thought to be tightly coupled to changes in regulatory sequences, but specific molecular events associated with major morphological transitions in vertebrates have remained elusive. We identified snake-specific sequence changes within an otherwise highly conserved long-range limb enhancer of Sonic hedgehog (Shh). Transgenic mouse reporter assays revealed that the in vivo activity pattern of the enhancer is conserved across a wide range of vertebrates, including fish, but not in snakes. Genomic substitution of the mouse enhancer with its human or fish ortholog results in normal limb development. In contrast, replacement with snake orthologs caused severe limb reduction. Synthetic restoration of a single transcription factor binding site lost in the snake lineage reinstated full in vivo function to the snake enhancer. Our results demonstrate changes in a regulatory sequence associated with a major body plan transition and highlight the role of enhancers in morphological evolution. PAPERCLIP.


Asunto(s)
Evolución Biológica , Elementos de Facilitación Genéticos , Extremidades/crecimiento & desarrollo , Proteínas Hedgehog/genética , Serpientes/genética , Animales , Secuencia de Bases , Evolución Molecular , Técnicas de Sustitución del Gen , Ratones , Ratones Transgénicos , Mutación , Filogenia , Serpientes/clasificación
2.
Development ; 151(13)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38828852

RESUMEN

The cellular and genetic networks that contribute to the development of the zeugopod (radius and ulna of the forearm, tibia and fibula of the leg) are not well understood, although these bones are susceptible to loss in congenital human syndromes and to the action of teratogens such as thalidomide. Using a new fate-mapping approach with the Chameleon transgenic chicken line, we show that there is a small contribution of SHH-expressing cells to the posterior ulna, posterior carpals and digit 3. We establish that although the majority of the ulna develops in response to paracrine SHH signalling in both the chicken and mouse, there are differences in the contribution of SHH-expressing cells between mouse and chicken as well as between the chicken ulna and fibula. This is evidence that, although zeugopod bones are clearly homologous according to the fossil record, the gene regulatory networks that contribute to their development and evolution are not fixed.


Asunto(s)
Animales Modificados Genéticamente , Pollos , Proteínas Hedgehog , Animales , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Pollos/genética , Ratones , Evolución Biológica , Embrión de Pollo , Cúbito , Regulación del Desarrollo de la Expresión Génica , Peroné/metabolismo , Radio (Anatomía)/metabolismo , Humanos , Extremidades/embriología
3.
Mol Cell ; 76(4): 546-561.e8, 2019 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-31561952

RESUMEN

Through transcriptional control of the evolutionarily conserved heat shock, or proteotoxic stress, response, heat shock factor 1 (HSF1) preserves proteomic stability. Here, we show that HSF1, a physiological substrate for AMP-activated protein kinase (AMPK), constitutively suppresses this central metabolic sensor. By physically evoking conformational switching of AMPK, HSF1 impairs AMP binding to the γ subunits and enhances the PP2A-mediated de-phosphorylation, but it impedes the LKB1-mediated phosphorylation of Thr172, and retards ATP binding to the catalytic α subunits. These immediate and manifold regulations empower HSF1 to both repress AMPK under basal conditions and restrain its activation by diverse stimuli, thereby promoting lipogenesis, cholesterol synthesis, and protein cholesteroylation. In vivo, HSF1 antagonizes AMPK to control body fat mass and drive the lipogenic phenotype and growth of melanomas independently of its intrinsic transcriptional action. Thus, the physical AMPK-HSF1 interaction epitomizes a reciprocal kinase-substrate regulation whereby lipid metabolism and proteomic stability intertwine.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Metabolismo Energético , Factores de Transcripción del Choque Térmico/metabolismo , Proteínas Quinasas Activadas por AMP/química , Proteínas Quinasas Activadas por AMP/genética , Adenosina Monofosfato/metabolismo , Adenosina Trifosfato/metabolismo , Adiposidad , Animales , Sitios de Unión , Proliferación Celular , Colesterol/biosíntesis , Células HEK293 , Células HeLa , Factores de Transcripción del Choque Térmico/deficiencia , Factores de Transcripción del Choque Térmico/genética , Humanos , Lipogénesis , Melanoma/genética , Melanoma/metabolismo , Melanoma/patología , Ratones de la Cepa 129 , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Fosforilación , Conformación Proteica , Estabilidad Proteica , Transducción de Señal , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/patología , Relación Estructura-Actividad
4.
Proc Natl Acad Sci U S A ; 121(13): e2314802121, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38498715

RESUMEN

The molecular basis for cortical expansion during evolution remains largely unknown. Here, we report that fibroblast growth factor (FGF)-extracellular signal-regulated kinase (ERK) signaling promotes the self-renewal and expansion of cortical radial glial (RG) cells. Furthermore, FGF-ERK signaling induces bone morphogenic protein 7 (Bmp7) expression in cortical RG cells, which increases the length of the neurogenic period. We demonstrate that ERK signaling and Sonic Hedgehog (SHH) signaling mutually inhibit each other in cortical RG cells. We provide evidence that ERK signaling is elevated in cortical RG cells during development and evolution. We propose that the expansion of the mammalian cortex, notably in human, is driven by the ERK-BMP7-GLI3R signaling pathway in cortical RG cells, which participates in a positive feedback loop through antagonizing SHH signaling. We also propose that the relatively short cortical neurogenic period in mice is partly due to mouse cortical RG cells receiving higher SHH signaling that antagonizes ERK signaling.


Asunto(s)
Células Ependimogliales , Quinasas MAP Reguladas por Señal Extracelular , Animales , Ratones , Humanos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Células Ependimogliales/metabolismo , Proliferación Celular , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Transducción de Señal , Factores de Crecimiento de Fibroblastos , Mamíferos/metabolismo
5.
Development ; 150(1)2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36458546

RESUMEN

Intervertebral disc (IVD) degeneration is the primary cause of back pain in humans. However, the cellular and molecular pathogenesis of IVD degeneration is poorly understood. This study shows that zebrafish IVDs possess distinct and non-overlapping zones of cell proliferation and cell death. We find that, in zebrafish, cellular communication network factor 2a (ccn2a) is expressed in notochord and IVDs. Although IVD development appears normal in ccn2a mutants, the adult mutant IVDs exhibit decreased cell proliferation and increased cell death leading to IVD degeneration. Moreover, Ccn2a overexpression promotes regeneration through accelerating cell proliferation and suppressing cell death in wild-type aged IVDs. Mechanistically, Ccn2a maintains IVD homeostasis and promotes IVD regeneration by enhancing outer annulus fibrosus cell proliferation and suppressing nucleus pulposus cell death through augmenting FGFR1-SHH signaling. These findings reveal that Ccn2a plays a central role in IVD homeostasis and regeneration, which could be exploited for therapeutic intervention in degenerated human discs.


Asunto(s)
Degeneración del Disco Intervertebral , Disco Intervertebral , Animales , Comunicación Celular , Factor de Crecimiento del Tejido Conjuntivo/genética , Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Proteínas Hedgehog/metabolismo , Disco Intervertebral/metabolismo , Degeneración del Disco Intervertebral/genética , Degeneración del Disco Intervertebral/metabolismo , Degeneración del Disco Intervertebral/patología , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patología , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Transducción de Señal/genética , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
6.
Development ; 150(6)2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36960826

RESUMEN

The murine kidney and ureter develop in a regionalized fashion from the ureteric bud and its surrounding mesenchyme. Whereas the factors that establish the metanephric cell lineages have been well characterized, much less is known about the molecular cues that specify the ureter. Here, we have identified a crucial patterning function in this process for Tbx18, a T-box transcription factor gene specifically expressed in the mesenchymal primordium of the ureter. Using misexpression and loss-of-function mice combined with molecular profiling approaches, we show that Tbx18 is required and sufficient to repress metanephric mesenchymal gene programs. We identify Wt1 as a functional target of TBX18. Our work suggests that TBX18 acts as a permissive factor in ureter specification by generating a mesenchymal domain around the distal ureteric bud where SHH and BMP4 signaling can occur.


Asunto(s)
Uréter , Ratones , Animales , Uréter/metabolismo , Riñón/metabolismo , Transducción de Señal/genética , Linaje de la Célula/genética , Expresión Génica , Mesodermo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo
7.
Development ; 149(21)2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36227576

RESUMEN

The tongue is a highly specialized muscular organ with diverse cellular origins, which provides an excellent model for understanding mechanisms controlling tissue-tissue interactions during organogenesis. Previous studies showed that SHH signaling is required for tongue morphogenesis and tongue muscle organization, but little is known about the underlying mechanisms. Here we demonstrate that the Foxf1/Foxf2 transcription factors act in the cranial neural crest cell (CNCC)-derived mandibular mesenchyme to control myoblast migration into the tongue primordium during tongue initiation, and thereafter continue to regulate intrinsic tongue muscle assembly and lingual tendon formation. We performed chromatin immunoprecipitation sequencing analysis and identified Hgf, Tgfb2 and Tgfb3 among the target genes of Foxf2 in the embryonic tongue. Through genetic analyses of mice with CNCC-specific inactivation of Smo or both Foxf1 and Foxf2, we show that Foxf1 and Foxf2 mediate hedgehog signaling-mediated regulation of myoblast migration during tongue initiation and intrinsic tongue muscle formation by regulating the activation of the HGF and TGFß signaling pathways. These data uncover the molecular network integrating the SHH, HGF and TGFß signaling pathways in regulating tongue organogenesis.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog , Ratones , Animales , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Organogénesis/genética , Lengua , Transducción de Señal/genética , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo
8.
Development ; 149(17)2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36094016

RESUMEN

The coordinated development of the mesenchymal and epithelial progenitors of the murine ureter depends on a complex interplay of diverse signaling activities. We have recently shown that epithelial FGFR2 signaling regulates stratification and differentiation of the epithelial compartment by enhancing epithelial Shh expression, and mesenchymal SHH and BMP4 activity. Here, we show that FGFR1 and FGFR2 expression in the mesenchymal primordium impinges on the SHH/BMP4 signaling axis to regulate mesenchymal patterning and differentiation. Mouse embryos with conditional loss of Fgfr1 and Fgfr2 in the ureteric mesenchyme exhibited reduced mesenchymal proliferation and prematurely activated lamina propria formation at the expense of the smooth muscle cell program. They also manifested hydroureter at birth. Molecular profiling detected increased SHH, WNT and retinoic acid signaling, whereas BMP4 signaling in the mesenchyme was reduced. Pharmacological activation of SHH signaling in combination with inhibition of BMP4 signaling recapitulated the cellular changes in explant cultures of wild-type ureters. Additional experiments suggest that mesenchymal FGFR1 and FGFR2 act as a sink for FGF ligands to dampen activation of Shh and BMP receptor gene expression by epithelial FGFR2 signaling.


Asunto(s)
Uréter , Animales , Proteína Morfogenética Ósea 4/metabolismo , Diferenciación Celular , Proteínas Hedgehog/metabolismo , Mesodermo/metabolismo , Ratones , Miocitos del Músculo Liso/metabolismo , Transducción de Señal/genética , Uréter/metabolismo
9.
Development ; 149(1)2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-35020897

RESUMEN

The patterned array of basal, intermediate and superficial cells in the urothelium of the mature ureter arises from uncommitted epithelial progenitors of the distal ureteric bud. Urothelial development requires signaling input from surrounding mesenchymal cells, which, in turn, depend on cues from the epithelial primordium to form a layered fibro-muscular wall. Here, we have identified FGFR2 as a crucial component in this reciprocal signaling crosstalk in the murine ureter. Loss of Fgfr2 in the ureteric epithelium led to reduced proliferation, stratification, intermediate and basal cell differentiation in this tissue, and affected cell survival and smooth muscle cell differentiation in the surrounding mesenchyme. Loss of Fgfr2 impacted negatively on epithelial expression of Shh and its mesenchymal effector gene Bmp4. Activation of SHH or BMP4 signaling largely rescued the cellular defects of mutant ureters in explant cultures. Conversely, inhibition of SHH or BMP signaling in wild-type ureters recapitulated the mutant phenotype in a dose-dependent manner. Our study suggests that FGF signals from the mesenchyme enhance, via epithelial FGFR2, the SHH-BMP4 signaling axis to drive urothelial and mesenchymal development in the early ureter.


Asunto(s)
Proteína Morfogenética Ósea 4/metabolismo , Proteínas Hedgehog/metabolismo , Organogénesis , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Transducción de Señal , Uréter/metabolismo , Animales , Mesodermo/citología , Mesodermo/metabolismo , Ratones , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Uréter/embriología , Urotelio/citología , Urotelio/metabolismo
10.
FASEB J ; 38(5): e23501, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38411462

RESUMEN

In the adult mammalian brain, new neurons are continuously generated from neural stem cells (NSCs) in the subventricular zone (SVZ)-olfactory bulb (OB) pathway. YAP, a transcriptional co-activator of the Hippo pathway, promotes cell proliferation and inhibits differentiation in embryonic neural progenitors. However, the role of YAP in postnatal NSCs remains unclear. Here, we showed that YAP was present in NSCs of the postnatal mouse SVZ. Forced expression of Yap promoted NSC maintenance and inhibited differentiation, whereas depletion of Yap by RNA interference or conditional knockout led to the decline of NSC maintenance, premature neuronal differentiation, and collapse of neurogenesis. For the molecular mechanism, thyroid hormone receptor-interacting protein 6 (TRIP6) recruited protein phosphatase PP1A to dephosphorylate LATS1/2, therefore inducing YAP nuclear localization and activation. Moreover, TRIP6 promoted NSC maintenance, cell proliferation, and inhibited differentiation through YAP. In addition, YAP regulated the expression of the Sonic Hedgehog (SHH) pathway effector Gli2 and Gli1/2 mediated the effect of YAP on NSC maintenance. Together, our findings demonstrate a novel TRIP6-YAP-SHH axis, which is critical for regulating postnatal neurogenesis in the SVZ-OB pathway.


Asunto(s)
Proteínas Hedgehog , Células-Madre Neurales , Animales , Ratones , Neuronas , Neurogénesis , Encéfalo , Mamíferos
11.
Exp Cell Res ; 439(1): 114072, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38719175

RESUMEN

HHATL, previously implicated in cardiac hypertrophy in the zebrafish model, has emerged as a prioritized HCM risk gene. We identified six rare mutations in HHATL, present in 6.94 % of nonsarcomeric HCM patients (5/72). Moreover, a decrease of HHATL in the heart tissue from HCM patients and cardiac hypertrophy mouse model using transverse aortic constriction was observed. Despite this, the precise pathogenic mechanisms underlying HHATL-associated cardiac hypertrophy remain elusive. In this study, we observed that HHATL downregulation in H9C2 cells resulted in elevated expression of hypertrophic markers and reactive oxygen species (ROS), culminating in cardiac hypertrophy and mitochondrial dysfunction. Notably, the bioactive form of SHH, SHHN, exhibited a significant increase, while the mitochondrial fission protein dynamin-like GTPase (DRP1) decreased upon HHATL depletion. Intervention with the SHH inhibitor RU-SKI 43 or DRP1 overexpression effectively prevented Hhatl-depletion-induced cardiac hypertrophy, mitigating disruptions in mitochondrial morphology and membrane potential through the SHH/DRP1 axis. In summary, our findings suggest that HHATL depletion activates SHH signaling, reducing DRP1 levels and thereby promoting the expression of hypertrophic markers, ROS generation, and mitochondrial dysfunction, ultimately leading to cardiac hypertrophy. This study provides additional compelling evidence supporting the association of HHATL with cardiac hypertrophy.


Asunto(s)
Cardiomegalia , Regulación hacia Abajo , Dinaminas , Proteínas Hedgehog , Especies Reactivas de Oxígeno , Dinaminas/metabolismo , Dinaminas/genética , Animales , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Cardiomegalia/metabolismo , Cardiomegalia/genética , Cardiomegalia/patología , Especies Reactivas de Oxígeno/metabolismo , Humanos , Regulación hacia Abajo/genética , Transducción de Señal , Ratones , Ratas , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Mitocondrias/metabolismo , Mitocondrias/patología , Mitocondrias/genética
12.
Cell Mol Life Sci ; 81(1): 74, 2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38308696

RESUMEN

Intervertebral disc degeneration is closely related to abnormal phenotypic changes in disc cells. However, the mechanism by which disc cell phenotypes are maintained remains poorly understood. Here, Hedgehog-responsive cells were found to be specifically localized in the inner annulus fibrosus and cartilaginous endplate of postnatal discs, likely activated by Indian Hedgehog. Global inhibition of Hedgehog signaling using a pharmacological inhibitor or Agc1-CreERT2-mediated deletion of Smo in disc cells of juvenile mice led to spontaneous degenerative changes in annulus fibrosus and cartilaginous endplate accompanied by aberrant disc cell differentiation in adult mice. In contrast, Krt19-CreER-mediated deletion of Smo specifically in nucleus pulposus cells led to healthy discs and normal disc cell phenotypes. Similarly, age-related degeneration of nucleus pulposus was accelerated by genetic inactivation of Hedgehog signaling in all disc cells, but not in nucleus pulposus cells. Furthermore, inactivation of Gli2 in disc cells resulted in partial loss of the vertebral growth plate but otherwise healthy discs, whereas deletion of Gli3 in disc cells largely corrected disc defects caused by Smo ablation in mice. Taken together, our findings not only revealed for the first time a direct role of Hedgehog-Gli3 signaling in maintaining homeostasis and cell phenotypes of annuls fibrosus and cartilaginous endplate, but also identified disc-intrinsic Hedgehog signaling as a novel non-cell-autonomous mechanism to regulate nucleus pulposus cell phenotype and protect mice from age-dependent nucleus pulposus degeneration. Thus, targeting Hedgehog signaling may represent a potential therapeutic strategy for the prevention and treatment of intervertebral disc degeneration.


Asunto(s)
Anillo Fibroso , Degeneración del Disco Intervertebral , Disco Intervertebral , Ratones , Animales , Degeneración del Disco Intervertebral/genética , Proteínas Hedgehog/genética , Fenotipo
13.
Proc Natl Acad Sci U S A ; 119(43): e2206571119, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36252002

RESUMEN

Development of mammalian auditory epithelium, the organ of Corti, requires precise control of both cell cycle withdrawal and differentiation. Sensory progenitors (prosensory cells) in the cochlear apex exit the cell cycle first but differentiate last. Sonic hedgehog (Shh) signaling is required for the spatiotemporal regulation of prosensory cell differentiation, but the underlying mechanisms remain unclear. Here, we show that suppressor of fused (Sufu), a negative regulator of Shh signaling, is essential for controlling the timing and progression of hair cell (HC) differentiation. Removal of Sufu leads to abnormal Atoh1 expression and a severe delay of HC differentiation due to elevated Gli2 mRNA expression. Later in development, HC differentiation defects are restored in the Sufu mutant by the action of speckle-type PDZ protein (Spop), which promotes Gli2 protein degradation. Deletion of both Sufu and Spop results in robust Gli2 activation, exacerbating HC differentiation defects. We further demonstrate that Gli2 inhibits HC differentiation through maintaining the progenitor state of Sox2+ prosensory cells. Along the basal-apical axis of the developing cochlea, the Sox2 expression level is higher in the progenitor cells than in differentiating cells and is down-regulated from base to apex as differentiation proceeds. The dynamic spatiotemporal change of Sox2 expression levels is controlled by Shh signaling through Gli2. Together, our results reveal key functions of Gli2 in sustaining the progenitor state, thereby preventing HC differentiation and in turn governing the basal-apical progression of HC differentiation in the cochlea.


Asunto(s)
Células Ciliadas Auditivas , Proteínas Hedgehog , Animales , Diferenciación Celular/genética , Cóclea/metabolismo , Regulación del Desarrollo de la Expresión Génica , Células Ciliadas Auditivas/metabolismo , Proteínas Hedgehog/metabolismo , Mamíferos/genética , ARN Mensajero/metabolismo , Proteína Gli2 con Dedos de Zinc/genética , Proteína Gli2 con Dedos de Zinc/metabolismo
14.
Dev Biol ; 500: 22-30, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37247832

RESUMEN

Xenopus young tadpoles regenerate a limb with the anteroposterior (AP) pattern, but metamorphosed froglets regenerate a hypomorphic limb after amputation. The key gene for AP patterning, shh, is expressed in a regenerating limb of the tadpole but not in that of the froglet. Genomic DNA in the shh limb-specific enhancer, MFCS1 (ZRS), is hypermethylated in froglets but hypomethylated in tadpoles: shh expression may be controlled by epigenetic regulation of MFCS1. Is MFCS1 specifically activated for regenerating the AP-patterned limb? We generated transgenic Xenopus laevis lines that visualize the MFCS1 enhancer activity with a GFP reporter. The transgenic tadpoles showed GFP expression in hoxd13-and shh-expressing domains of developing and regenerating limbs, whereas the froglets showed no GFP expression in the regenerating limbs despite having hoxd13 expression. Genome sequence analysis and co-transfection assays using cultured cells revealed that Hoxd13 can activate Xenopus MFCS1. These results suggest that MFCS1 activation correlates with regeneration of AP-patterned limbs and that re-activation of epigenetically inactivated MFCS1 would be crucial to confer the ability to non-regenerative animals for regenerating a properly patterned limb.


Asunto(s)
Epigénesis Genética , Extremidades , Animales , Xenopus laevis/genética , Animales Modificados Genéticamente , Extremidades/fisiología , Factores de Transcripción/genética
15.
J Biol Chem ; 299(8): 105034, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37442233

RESUMEN

Lung branching morphogenesis relies on a complex coordination of multiple signaling pathways and transcription factors. Here, we found that ablation of the LIM homeodomain transcription factor Islet1 (Isl1) in lung epithelium resulted in defective branching morphogenesis and incomplete formation of five lobes. A reduction in mesenchymal cell proliferation was observed in Isl1ShhCre lungs. There was no difference in apoptosis between the wild-type (ShhCre) and Isl1ShhCre embryos. RNA-Seq and in situ hybridization analysis showed that Shh, Ptch1, Sox9, Irx1, Irx2, Tbx2, and Tbx3 were downregulated in the lungs of Isl1ShhCre embryos. ChIP assay implied the Shh gene served as a direct target of ISL1, since the transcription factor ISL1 could bind to the Shh epithelial enhancer sequence (MACS1). Also, activation of the Hedgehog pathway via ectopic gene expression rescued the defects caused by Isl1 ablation, confirming the genetic integration of Hedgehog signaling. In conclusion, our works suggest that epithelial Isl1 regulates lung branching morphogenesis through administrating the Shh signaling mediated epithelial-mesenchymal communications.


Asunto(s)
Proteínas Hedgehog , Pulmón , Factores de Transcripción , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Pulmón/crecimiento & desarrollo , Pulmón/metabolismo , Morfogénesis , Transducción de Señal/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Animales , Ratones
16.
Development ; 148(17)2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34463328

RESUMEN

Pathogenic gene variants in humans that affect the sonic hedgehog (SHH) pathway lead to severe brain malformations with variable penetrance due to unknown modifier genes. To identify such modifiers, we established novel congenic mouse models. LRP2-deficient C57BL/6N mice suffer from heart outflow tract defects and holoprosencephaly caused by impaired SHH activity. These defects are fully rescued on a FVB/N background, indicating a strong influence of modifier genes. Applying comparative transcriptomics, we identified Pttg1 and Ulk4 as candidate modifiers upregulated in the rescue strain. Functional analyses showed that ULK4 and PTTG1, both microtubule-associated proteins, are positive regulators of SHH signaling, rendering the pathway more resilient to disturbances. In addition, we characterized ULK4 and PTTG1 as previously unidentified components of primary cilia in the neuroepithelium. The identification of genes that powerfully modulate the penetrance of genetic disturbances affecting the brain and heart is likely relevant to understanding the variability in human congenital disorders.


Asunto(s)
Encéfalo/embriología , Genes Modificadores/fisiología , Proteínas Hedgehog/metabolismo , Transducción de Señal , Animales , Encéfalo/metabolismo , Cilios/metabolismo , Modelos Animales de Enfermedad , Cardiopatías Congénitas/genética , Proteínas Hedgehog/genética , Holoprosencefalia/genética , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Ratones , Mutación , Células Neuroepiteliales/metabolismo , Penetrancia , Fenotipo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Securina/genética , Securina/metabolismo
17.
Development ; 148(23)2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34822715

RESUMEN

SMAD4 regulates gene expression in response to BMP and TGFß signal transduction, and is required for diverse morphogenetic processes, but its target genes have remained largely elusive. Here, we identify the SMAD4 target genes in mouse limb buds using an epitope-tagged Smad4 allele for ChIP-seq analysis in combination with transcription profiling. This analysis shows that SMAD4 predominantly mediates BMP signal transduction during early limb bud development. Unexpectedly, the expression of cholesterol biosynthesis enzymes is precociously downregulated and intracellular cholesterol levels are reduced in Smad4-deficient limb bud mesenchymal progenitors. Most importantly, our analysis reveals a predominant function of SMAD4 in upregulating target genes in the anterior limb bud mesenchyme. Analysis of differentially expressed genes shared between Smad4- and Shh-deficient limb buds corroborates this function of SMAD4 and also reveals the repressive effect of SMAD4 on posterior genes that are upregulated in response to SHH signaling. This analysis uncovers opposing trans-regulatory inputs from SHH- and SMAD4-mediated BMP signal transduction on anterior and posterior gene expression during the digit patterning and outgrowth in early limb buds.


Asunto(s)
Tipificación del Cuerpo , Proteínas Morfogenéticas Óseas/metabolismo , Proteínas Hedgehog/metabolismo , Esbozos de los Miembros/embriología , Transducción de Señal , Proteína Smad4/metabolismo , Animales , Proteínas Morfogenéticas Óseas/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/genética , Miembro Posterior/embriología , Ratones , Ratones Transgénicos , Proteína Smad4/genética
18.
Development ; 148(9)2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33914869

RESUMEN

Signaling centers, or organizers, regulate many aspects of embryonic morphogenesis. In the mammalian molar tooth, reiterative signaling in specialized centers called enamel knots (EKs) determines tooth patterning. Preceding the primary EK, transient epithelial thickening appears, the significance of which remains debated. Using tissue confocal fluorescence imaging with laser ablation experiments, we show that this transient thickening is an earlier signaling center, the molar initiation knot (IK), that is required for the progression of tooth development. IK cell dynamics demonstrate the hallmarks of a signaling center: cell cycle exit, condensation and eventual silencing through apoptosis. IK initiation and maturation are defined by the juxtaposition of cells with high Wnt activity to Shh-expressing non-proliferating cells, the combination of which drives the growth of the tooth bud, leading to the formation of the primary EK as an independent cell cluster. Overall, the whole development of the tooth, from initiation to patterning, is driven by the iterative use of signaling centers.


Asunto(s)
Diente Molar/embriología , Diente Molar/crecimiento & desarrollo , Odontogénesis/fisiología , Transducción de Señal , Animales , Apoptosis/fisiología , Proteínas de Ciclo Celular/genética , División Celular , Movimiento Celular , Proliferación Celular , Proteínas de Unión al ADN/genética , Desarrollo Embrionario , Células Epiteliales , Ratones , Diente Molar/citología , Germen Dentario/citología , Germen Dentario/embriología
19.
Genet Med ; 26(7): 101126, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38529886

RESUMEN

PURPOSE: DISP1 encodes a transmembrane protein that regulates the secretion of the morphogen, Sonic hedgehog, a deficiency of which is a major cause of holoprosencephaly (HPE). This disorder covers a spectrum of brain and midline craniofacial malformations. The objective of the present study was to better delineate the clinical phenotypes associated with division transporter dispatched-1 (DISP1) variants. METHODS: This study was based on the identification of at least 1 pathogenic variant of the DISP1 gene in individuals for whom detailed clinical data were available. RESULTS: A total of 23 DISP1 variants were identified in heterozygous, compound heterozygous or homozygous states in 25 individuals with midline craniofacial defects. Most cases were minor forms of HPE, with craniofacial features such as orofacial cleft, solitary median maxillary central incisor, and congenital nasal pyriform aperture stenosis. These individuals had either monoallelic loss-of-function variants or biallelic missense variants in DISP1. In individuals with severe HPE, the DISP1 variants were commonly found associated with a variant in another HPE-linked gene (ie, oligogenic inheritance). CONCLUSION: The genetic findings we have acquired demonstrate a significant involvement of DISP1 variants in the phenotypic spectrum of midline defects. This underlines its importance as a crucial element in the efficient secretion of Sonic hedgehog. We also demonstrated that the very rare solitary median maxillary central incisor and congenital nasal pyriform aperture stenosis combination is part of the DISP1-related phenotype. The present study highlights the clinical risks to be flagged up during genetic counseling after the discovery of a pathogenic DISP1 variant.


Asunto(s)
Alelos , Holoprosencefalia , Fenotipo , Adolescente , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Anodoncia , Labio Leporino/genética , Labio Leporino/patología , Fisura del Paladar/genética , Fisura del Paladar/patología , Anomalías Craneofaciales/genética , Anomalías Craneofaciales/patología , Heterocigoto , Holoprosencefalia/genética , Holoprosencefalia/patología , Homocigoto , Incisivo/anomalías , Proteínas de la Membrana/genética , Mutación Missense/genética
20.
Clin Genet ; 105(3): 273-282, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38018232

RESUMEN

Autism spectrum disorder (ASD) is a highly variable neurodevelopmental disorder that typically manifests childhood, characterized by a triad of symptoms: impaired social interaction, communication difficulties, and restricted interests with repetitive behaviors. De novo variants in related genes can cause ASD. We present the case of a 6-year-old Chinese boy with autistic behavior, including language communication impairments, intellectual disabilities, stunted development, and irritability in social interactions. Using Sanger sequencing, we confirmed a pathogenic in the RERE gene (NM_012102.4) (c.3732delC, p.Tyr1245Thrfs*12; EX21; Het). Subsequently, we generated an RERE point mutation cell line (ReMut) using CRISPR/Cas9 Targeted Genome Editing. Immunofluorescence was conducted to determine the location of the mutant RERE. RNA-sequencing and mass spectrometry analyses were performed to elucidate the ASD-related genes and signaling pathways disrupted by this variant in RERE. We identified 3790 differentially expressed genes and 684 differentially expressed proteins. The SHH signaling pathway was found to be downregulated, and the Hippo pathway was upregulated in ReMut. Genes implicated in autism, such as CNTNAP2, STX1A, FARP2, and GPC1, were significantly downregulated. Simultaneously, we noted alterations in HDAC1 and HDAC2, which are members of the WHHERE complex, suggesting their role in the pathogenesis of this patient. In conclusion, we report a de novo variant in RERE associated with autistic behavior. The finding that ASD is associated with RERE variants underscore the role of genetic factors in ASD and provides insights regarding the mechanisms underlying RERE variants in disease onset.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Masculino , Humanos , Niño , Trastorno del Espectro Autista/genética , Trastorno Autístico/genética , Transducción de Señal/genética , Mutación Puntual , Expresión Génica , Proteínas Portadoras/genética , Factores de Intercambio de Guanina Nucleótido/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA