Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 270
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Ther ; 32(2): 384-394, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38087779

RESUMEN

Hematopoietic stem/progenitor cell (HSPC)-based anti-HIV-1 gene therapy holds great promise to eradicate HIV-1 or to provide long-term remission through a continuous supply of anti-HIV-1 gene-modified cells without ongoing antiretroviral therapy. However, achieving sufficient engraftment levels of anti-HIV gene-modified HSPC to provide therapeutic efficacy has been a major limitation. Here, we report an in vivo selection strategy for anti-HIV-1 gene-modified HSPC by introducing 6-thioguanine (6TG) chemoresistance through knocking down hypoxanthine-guanine phosphoribosyl transferase (HPRT) expression using RNA interference (RNAi). We developed a lentiviral vector capable of co-expressing short hairpin RNA (shRNA) against HPRT alongside two anti-HIV-1 genes: shRNA targeting HIV-1 co-receptor CCR5 and a membrane-anchored HIV-1 fusion inhibitor, C46, for efficient in vivo selection of anti-HIV-1 gene-modified human HSPC. 6TG-mediated preconditioning and in vivo selection significantly enhanced engraftment of HPRT-knockdown anti-HIV-1 gene-modified cells (>2-fold, p < 0.0001) in humanized bone marrow/liver/thymus (huBLT) mice. Viral load was significantly reduced (>1 log fold, p < 0.001) in 6TG-treated HIV-1-infected huBLT mice compared to 6TG-untreated mice. We demonstrated that 6TG-mediated preconditioning and in vivo selection considerably improved engraftment of HPRT-knockdown anti-HIV-1 gene-modified HSPC and repopulation of anti-HIV-1 gene-modified hematopoietic cells in huBLT mice, allowing for efficient HIV-1 inhibition.


Asunto(s)
VIH-1 , Trasplante de Células Madre Hematopoyéticas , Humanos , Ratones , Animales , VIH-1/fisiología , Hipoxantina Fosforribosiltransferasa/genética , Hipoxantina Fosforribosiltransferasa/metabolismo , Células Madre Hematopoyéticas/metabolismo , Médula Ósea/metabolismo , Tioguanina/metabolismo , Tioguanina/farmacología , ARN Interferente Pequeño/genética
2.
Mol Ther ; 31(11): 3127-3145, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37735876

RESUMEN

In recent years, there has been a surge in the innovative modification and application of the viral vector-based gene therapy field. Significant and consistent improvements in the engineering, delivery, and safety of viral vectors have set the stage for their application as RNA interference (RNAi) delivery tools. Viral vector-based delivery of RNAi has made remarkable breakthroughs in the treatment of several debilitating diseases and disorders (e.g., neurological diseases); however, their novelty has yet to be fully applied and utilized for the treatment of cancer. This review highlights the most promising and emerging viral vector delivery tools for RNAi therapeutics while discussing the variables limiting their success and suitability for cancer therapy. Specifically, we outline different integrating and non-integrating viral platforms used for gene delivery, currently employed RNAi targets for anti-cancer effect, and various strategies used to optimize the safety and efficacy of these RNAi therapeutics. Most importantly, we provide great insight into what challenges exist in their application as cancer therapeutics and how these challenges can be effectively navigated to advance the field.


Asunto(s)
Vectores Genéticos , Neoplasias , Interferencia de ARN , Vectores Genéticos/genética , Terapia Genética , Técnicas de Transferencia de Gen , Neoplasias/genética , Neoplasias/terapia
3.
Int J Mol Sci ; 25(6)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38542074

RESUMEN

Lethal toxin (LT) is the critical virulence factor of Bacillus anthracis, the causative agent of anthrax. One common symptom observed in patients with anthrax is thrombocytopenia, which has also been observed in mice injected with LT. Our previous study demonstrated that LT induces thrombocytopenia by suppressing megakaryopoiesis, but the precise molecular mechanisms behind this phenomenon remain unknown. In this study, we utilized 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced megakaryocytic differentiation in human erythroleukemia (HEL) cells to identify genes involved in LT-induced megakaryocytic suppression. Through cDNA microarray analysis, we identified Dachshund homolog 1 (DACH1) as a gene that was upregulated upon TPA treatment but downregulated in the presence of TPA and LT, purified from the culture supernatants of B. anthracis. To investigate the function of DACH1 in megakaryocytic differentiation, we employed short hairpin RNA technology to knock down DACH1 expression in HEL cells and assessed its effect on differentiation. Our data revealed that the knockdown of DACH1 expression suppressed megakaryocytic differentiation, particularly in polyploidization. We demonstrated that one mechanism by which B. anthracis LT induces suppression of polyploidization in HEL cells is through the cleavage of MEK1/2. This cleavage results in the downregulation of the ERK signaling pathway, thereby suppressing DACH1 gene expression and inhibiting polyploidization. Additionally, we found that known megakaryopoiesis-related genes, such as FOSB, ZFP36L1, RUNX1, FLI1, AHR, and GFI1B genes may be positively regulated by DACH1. Furthermore, we observed an upregulation of DACH1 during in vitro differentiation of CD34-megakaryocytes and downregulation of DACH1 in patients with thrombocytopenia. In summary, our findings shed light on one of the molecular mechanisms behind LT-induced thrombocytopenia and unveil a previously unknown role for DACH1 in megakaryopoiesis.


Asunto(s)
Carbunco , Bacillus anthracis , Leucemia Eritroblástica Aguda , Trombocitopenia , Animales , Humanos , Ratones , Antígenos Bacterianos/metabolismo , Bacillus anthracis/metabolismo , Factor 1 de Respuesta al Butirato/metabolismo , Diferenciación Celular , Trombocitopenia/inducido químicamente , Trombocitopenia/genética
4.
Int J Mol Sci ; 25(8)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38673939

RESUMEN

Polyglutamine (polyQ)-encoding CAG repeat expansions represent a common disease-causing mutation responsible for several dominant spinocerebellar ataxias (SCAs). PolyQ-expanded SCA proteins are toxic for cerebellar neurons, with Purkinje cells (PCs) being the most vulnerable. RNA interference (RNAi) reagents targeting transcripts with expanded CAG reduce the level of various mutant SCA proteins in an allele-selective manner in vitro and represent promising universal tools for treating multiple CAG/polyQ SCAs. However, it remains unclear whether the therapeutic targeting of CAG expansion can be achieved in vivo and if it can ameliorate cerebellar functions. Here, using a mouse model of SCA7 expressing a mutant Atxn7 allele with 140 CAGs, we examined the efficacy of short hairpin RNAs (shRNAs) targeting CAG repeats expressed from PHP.eB adeno-associated virus vectors (AAVs), which were introduced into the brain via intravascular injection. We demonstrated that shRNAs carrying various mismatches with the CAG target sequence reduced the level of polyQ-expanded ATXN7 in the cerebellum, albeit with varying degrees of allele selectivity and safety profile. An shRNA named A4 potently reduced the level of polyQ-expanded ATXN7, with no effect on normal ATXN7 levels and no adverse side effects. Furthermore, A4 shRNA treatment improved a range of motor and behavioral parameters 23 weeks after AAV injection and attenuated the disease burden of PCs by preventing the downregulation of several PC-type-specific genes. Our results show the feasibility of the selective targeting of CAG expansion in the cerebellum using a blood-brain barrier-permeable vector to attenuate the disease phenotype in an SCA mouse model. Our study represents a significant advancement in developing CAG-targeting strategies as a potential therapy for SCA7 and possibly other CAG/polyQ SCAs.


Asunto(s)
Ataxina-7 , Dependovirus , Modelos Animales de Enfermedad , Péptidos , Fenotipo , ARN Interferente Pequeño , Ataxias Espinocerebelosas , Expansión de Repetición de Trinucleótido , Animales , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/terapia , Ataxias Espinocerebelosas/metabolismo , Péptidos/genética , Dependovirus/genética , Ratones , Ataxina-7/genética , Ataxina-7/metabolismo , Expansión de Repetición de Trinucleótido/genética , ARN Interferente Pequeño/genética , Vectores Genéticos/genética , Vectores Genéticos/administración & dosificación , Células de Purkinje/metabolismo , Células de Purkinje/patología , Ratones Transgénicos , Cerebelo/metabolismo , Cerebelo/patología , Humanos , Terapia Genética/métodos , Alelos
5.
J Cell Physiol ; 237(5): 2309-2344, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35437787

RESUMEN

The identification of agents that can reverse drug resistance in cancer chemotherapy, and enhance the overall efficacy is of great interest. Paclitaxel (PTX) belongs to taxane family that exerts an antitumor effect by stabilizing microtubules and inhibiting cell cycle progression. However, PTX resistance often develops in tumors due to the overexpression of drug transporters and tumor-promoting pathways. Noncoding RNAs (ncRNAs) are modulators of many processes in cancer cells, such as apoptosis, migration, differentiation, and angiogenesis. In the present study, we summarize the effects of ncRNAs on PTX chemotherapy. MicroRNAs (miRNAs) can have opposite effects on PTX resistance (stimulation or inhibition) via influencing YES1, SK2, MRP1, and STAT3. Moreover, miRNAs modulate the growth and migration rates of tumor cells in regulating PTX efficacy. PIWI-interacting RNAs, small interfering RNAs, and short-hairpin RNAs are other members of ncRNAs regulating PTX sensitivity of cancer cells. Long noncoding RNAs (LncRNAs) are similar to miRNAs and can modulate PTX resistance/sensitivity by their influence on miRNAs and drug efflux transport. The cytotoxicity of PTX against tumor cells can also be affected by circular RNAs (circRNAs) and limitation is that oncogenic circRNAs have been emphasized and experiments should also focus on onco-suppressor circRNAs.


Asunto(s)
MicroARNs , Neoplasias , ARN Largo no Codificante , Resistencia a Medicamentos , Resistencia a Antineoplásicos/genética , Humanos , MicroARNs/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , ARN Circular/genética , ARN Largo no Codificante/metabolismo , ARN no Traducido/genética
6.
Exp Cell Res ; 409(1): 112886, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34673000

RESUMEN

Chimeric antigen receptor (CAR) T cells have been successfully used for the treatment of hematological malignancies including acute and chronic lymphoblastic leukemia. However, results of CAR T cell projects in solid tumors have been less impressive to date, partly because of immunosuppressive tumor microenvironment (TME). It is widely known that high adenosine production is an important factor causing tumor-induced immunosuppression in TME, and adenosine mediates the suppression of anti-tumor T cell responses via binding and signaling through adenosine 2a receptor (A2aR). Previous studies have shown that adenosine generated by cancer cells significantly inhibits T cell anti-tumor activity through binding and then activating adenosine 2A receptors (A2aRs) of T cells. Based on the previous work, in our study, we evaluated whether A2aR disruption by shRNA could enhance the anti-tumor function of anti-mesothelin (MSLN) CAR T cells both in vitro and in vivo. For this goal above, we used MSLN-positive human ovarian serous carcinoma cells (SKOV3) and human colon cancer cells (HCT116) as target cancer cells while MSLN-negative human ovarian cancer cells (ES2) as non-target cancer cells. We observed that targeting cell-intrinsic A2aR through shRNA overexpression caused significant A2aR disruption in CAR T cells and profoundly increased CAR T cell efficacy in both CAR T cell cytokine production and cytotoxicity towards MSLN-positive cancer cells in vitro. More importantly, in SKOV3 xenograft mouse models, anti-MSLN CAR-T cells significantly reduced the tumor burden compared with non-transduced T cells, and the anti-tumor activity of A2aR-disrupted anti-MSLN CAR-T cells was stronger than that of wild-type anti-MSLN CAR-T cells. Altogether, our study showed enhanced anti-tumor efficacy caused by shRNA-mediated A2aR disruption in anti-MSLN CAR T cells both in vitro and in vivo, which proved that shRNA-mediated modification of gene expression might be an excellent strategy for improving CAR T cell function in immunosuppressive tumor microenvironment (TME) and could potentially improve the outcome of treatment in clinical trials.


Asunto(s)
Carcinoma Epitelial de Ovario/metabolismo , Mesotelina/metabolismo , Neoplasias Ováricas/metabolismo , Receptor de Adenosina A2A/metabolismo , Receptores Quiméricos de Antígenos/metabolismo , Linfocitos T/metabolismo , Animales , Línea Celular , Línea Celular Tumoral , Femenino , Células HCT116 , Células HEK293 , Humanos , Tolerancia Inmunológica/fisiología , Inmunoterapia Adoptiva/métodos , Ratones , Microambiente Tumoral/fisiología
7.
Int J Mol Sci ; 23(13)2022 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-35806132

RESUMEN

Cancer is a multifactorial and deadly disease. Despite major advancements in cancer therapy in the last two decades, cancer incidence is on the rise and disease prognosis still remains poor. Furthermore, molecular mechanisms of cancer invasiveness, metastasis, and drug resistance remain largely elusive. Targeted cancer therapy involving the silencing of specific cancer-enriched proteins by small interfering RNA (siRNA) offers a powerful tool. However, its application in clinic is limited by the short half-life of siRNA and warrants the development of efficient and stable siRNA delivery systems. Oncolytic adenovirus-mediated therapy offers an attractive alternative to the chemical drugs that often suffer from innate and acquired drug resistance. In continuation to our reports on the development of oncolytic adenovirus-mediated delivery of shRNA, we report here the replication-incompetent (dAd/shErbB3) and replication-competent (oAd/shErbB3) oncolytic adenovirus systems that caused efficient and persistent targeting of ErbB3. We demonstrate that the E1A coded by oAd/shErbB, in contrast to dAd/shErbB, caused downregulation of ErbB2 and ErbB3, yielding stronger downregulation of the ErbB3-oncogenic signaling axis in in vitro models of lung and breast cancer. These results were validated by in vivo antitumor efficacy of dAd/shErbB3 and oAd/shErbB3.


Asunto(s)
Neoplasias de la Mama , Viroterapia Oncolítica , Virus Oncolíticos , Adenoviridae/fisiología , Apoptosis/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Vectores Genéticos , Humanos , Viroterapia Oncolítica/métodos , Virus Oncolíticos/fisiología , ARN Interferente Pequeño/genética , Receptor ErbB-3/genética , Receptor ErbB-3/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Mol Biol (Mosk) ; 56(4): 604-618, 2022.
Artículo en Ruso | MEDLINE | ID: mdl-35964317

RESUMEN

GNAO1 encephalopathy is an orphan genetic disease associated with early infantile epilepsy, impaired motor control, and severe developmental delay. The disorder is caused by mutations in the GNAO1 gene, leading to dysfunction of the encoded protein Gao1. There is no cure for this disease, and symptomatic therapy is ineffective. Phenotypic heterogeneity highlights the need for a personalized approach for treating patients with a specific clinical variant of GNAO1 and requires the study of the disease mechanism in animal and cell models. Towards this aim, we developed an approach for modeling GNAO1 encephalopathy and testing gene therapy drugs in primary neurons derived from healthy mice. We optimized the delivery of transgenes to Gαo1-expressing neurons using recombinant adeno-associated viruses (rAAV). We assessed the tropism of five neurotropic AAV serotypes (1, 2, 6, 9, DJ) for Gαo1-positive neurons from the whole mouse brain. The DJ serotype showed the highest potential as a reporter delivery vehicle, infecting up to 66% of Gαo1-expressing cells without overt cytotoxicity. We demonstrated that AAV-DJ also provides efficient delivery and expression of genetic constructs encoding normal and mutant Gαo1, as well as short hairpin RNA (shRNA) to suppress endogenous Gnao1 in murine neurons. Our results will further simplify the study of the pathological mechanism for clinical variants of GNAO1, as well as optimize the testing of gene therapy approaches for GNAO1 encephalopathy in cell models.


Asunto(s)
Encefalopatías , Epilepsia , Animales , Epilepsia/genética , Epilepsia/metabolismo , Epilepsia/patología , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Proteínas de Unión al GTP/genética , Terapia Genética , Ratones , Neuronas/metabolismo
9.
J Biol Chem ; 295(16): 5229-5244, 2020 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-32132171

RESUMEN

Following its evoked release, dopamine (DA) signaling is rapidly terminated by presynaptic reuptake, mediated by the cocaine-sensitive DA transporter (DAT). DAT surface availability is dynamically regulated by endocytic trafficking, and direct protein kinase C (PKC) activation acutely diminishes DAT surface expression by accelerating DAT internalization. Previous cell line studies demonstrated that PKC-stimulated DAT endocytosis requires both Ack1 inactivation, which releases a DAT-specific endocytic brake, and the neuronal GTPase, Rit2, which binds DAT. However, it is unknown whether Rit2 is required for PKC-stimulated DAT endocytosis in DAergic terminals or whether there are region- and/or sex-dependent differences in PKC-stimulated DAT trafficking. Moreover, the mechanisms by which Rit2 controls PKC-stimulated DAT endocytosis are unknown. Here, we directly examined these important questions. Ex vivo studies revealed that PKC activation acutely decreased DAT surface expression selectively in ventral, but not dorsal, striatum. AAV-mediated, conditional Rit2 knockdown in DAergic neurons impacted baseline DAT surface:intracellular distribution in DAergic terminals from female ventral, but not dorsal, striatum. Further, Rit2 was required for PKC-stimulated DAT internalization in both male and female ventral striatum. FRET and surface pulldown studies in cell lines revealed that PKC activation drives DAT-Rit2 surface dissociation and that the DAT N terminus is required for both PKC-mediated DAT-Rit2 dissociation and DAT internalization. Finally, we found that Rit2 and Ack1 independently converge on DAT to facilitate PKC-stimulated DAT endocytosis. Together, our data provide greater insight into mechanisms that mediate PKC-regulated DAT internalization and reveal unexpected region-specific differences in PKC-stimulated DAT trafficking in bona fide DAergic terminals.


Asunto(s)
Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Neuronas Dopaminérgicas/metabolismo , Endocitosis , Proteínas de Unión al GTP Monoméricas/metabolismo , Animales , Sitios de Unión , Línea Celular Tumoral , Cuerpo Estriado/citología , Cuerpo Estriado/metabolismo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/química , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas de Unión al GTP Monoméricas/genética , Unión Proteica , Proteína Quinasa C/metabolismo
10.
J Biol Chem ; 295(29): 9948-9958, 2020 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-32471868

RESUMEN

Neurofibromatosis type 1 (NF1) is a common cancer predisposition syndrome caused by mutations in the NF1 tumor suppressor gene. NF1 encodes neurofibromin, a GTPase-activating protein for RAS proto-oncogene GTPase (RAS). Plexiform neurofibromas are a hallmark of NF1 and result from loss of heterozygosity of NF1 in Schwann cells, leading to constitutively activated p21RAS. Given the inability to target p21RAS directly, here we performed an shRNA library screen of all human kinases and Rho-GTPases in a patient-derived NF1-/- Schwann cell line to identify novel therapeutic targets to disrupt PN formation and progression. Rho family members, including Rac family small GTPase 1 (RAC1), were identified as candidates. Corroborating these findings, we observed that shRNA-mediated knockdown of RAC1 reduces cell proliferation and phosphorylation of extracellular signal-regulated kinase (ERK) in NF1-/- Schwann cells. Genetically engineered Nf1flox/flox;PostnCre+ mice, which develop multiple PNs, also exhibited increased RAC1-GTP and phospho-ERK levels compared with Nf1flox/flox;PostnCre- littermates. Notably, mice in which both Nf1 and Rac1 loci were disrupted (Nf1flox/floxRac1flox/flox;PostnCre+) were completely free of tumors and had normal phospho-ERK activity compared with Nf1flox/flox ;PostnCre+ mice. We conclude that the RAC1-GTPase is a key downstream node of RAS and that genetic disruption of the Rac1 allele completely prevents PN tumor formation in vivo in mice.


Asunto(s)
Técnicas de Silenciamiento del Gen , Neoplasias Primarias Secundarias , Neurofibroma Plexiforme , Neurofibromatosis 1 , Neuropéptidos/deficiencia , Proteína de Unión al GTP rac1/deficiencia , Animales , Ratones , Ratones Noqueados , Neoplasias Primarias Secundarias/enzimología , Neoplasias Primarias Secundarias/genética , Neoplasias Primarias Secundarias/patología , Neoplasias Primarias Secundarias/prevención & control , Neurofibroma Plexiforme/enzimología , Neurofibroma Plexiforme/genética , Neurofibroma Plexiforme/prevención & control , Neurofibromatosis 1/enzimología , Neurofibromatosis 1/genética , Neurofibromatosis 1/patología , Neurofibromina 1/deficiencia , Neurofibromina 1/metabolismo , Neuropéptidos/metabolismo , Proto-Oncogenes Mas , Proteína de Unión al GTP rac1/metabolismo
11.
Pestic Biochem Physiol ; 177: 104906, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34301367

RESUMEN

The response of insects to orally delivered double-stranded RNA ranges widely among taxa studied to date. Long dsRNA does elicit a response in stink bugs but the dose required to achieve an effect is relatively high compared to other insects such Colorado potato beetle or western corn rootworm. Improving the delivery of dsRNA to stink bugs will improve the likelihood of using RNA-based biocontrols for the management of these economically important pests. Short hairpin RNA (shRNA) is a useful molecule with which to test improvements in the delivery of double stranded RNA in the neotropical brown stink bug, Euschistus heros, since shRNA alone does not elicit a clear effect like that for long dsRNA. Here, we show for the first time the oral delivery of shRNA triggering RNA interference (RNAi) in E. heros using 4 nm cerium oxide nanoparticles (CeO2 NPs) coated with diethylamioethyl dextran (Dextran-DEAE) as a carrier. We identified particle properties (coating composition and degree of substitution, hydrodynamic diameter, and zeta potential) and shRNA loading rates (Ce:shRNA mass ratio) that resulted in successful transcript reduction or RNAi. When the Z-average diameter of CeO2 Dextran-DEAE-shRNA NP complex was less than 250 nm and the zeta potential was in the 15-25 mV range (Ce:shRNA mass ratio of 0.7:1), significant mortality attributed to RNAi was observed with a shRNA concentration in feeding solution of 250 ng/µl. The degradation of the targeted troponin transcript by NP-delivered shRNA was equivalent to that observed with long dsRNA, while naked shRNA transcript reduction was not statistically significant. Elemental mapping by synchrotron X-ray fluorescence microprobe confirmed uptake and distribution of Ce throughout the body with the highest concentrations found in gut tissue. Taken together, our results suggest that a nanoparticle delivery system can improve the delivery of RNA-based biocontrols to E. heros, and therefore its attractiveness as an application in the management of this important pest in soybean production.


Asunto(s)
Heterópteros , Nanoestructuras , Animales , Heterópteros/genética , Interferencia de ARN , ARN Bicatenario/genética , ARN Interferente Pequeño/genética
12.
Int J Mol Sci ; 22(13)2021 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-34203338

RESUMEN

Diffuse alveolar hemorrhage (DAH) in systemic lupus erythematosus (SLE) is associated with significant mortality, requiring a thorough understanding of its complex mechanisms to develop novel therapeutics for disease control. Activated p53-dependent apoptosis with dysregulated long non-coding RNA (lncRNA) expression is involved in the SLE pathogenesis and correlated with clinical activity. We examined the expression of apoptosis-related p53-dependent lncRNA, including H19, HOTAIR and lincRNA-p21 in SLE-associated DAH patients. Increased lincRNA-p21 levels were detected in circulating mononuclear cells, mainly in CD4+ and CD14+ cells. Higher expression of p53, lincRNA-p21 and cell apoptosis was identified in lung tissues. Lentivirus-based short hairpin RNA (shRNA)-transduced stable transfectants were created for examining the targeting efficacy in lncRNA. Under pristane stimulation, alveolar epithelial cells had increased p53, lincRNA-p21 and downstream Bax levels with elevated apoptotic ratios. After pristane injection, C57/BL6 mice developed DAH with increased pulmonary expression of p53, lincRNA-p21 and cell apoptosis. Intra-pulmonary delivery of shRNA targeting lincRNA-p21 reduced hemorrhage frequencies and improved anemia status through decreasing Bax expression and cell apoptosis. Our findings demonstrate increased p53-dependent lncRNA expression with accelerated cell apoptosis in the lungs of SLE-associated DAH patients, and show the therapeutic potential of targeting intra-pulmonary lncRNA expression in a pristane-induced model of DAH.


Asunto(s)
ARN Largo no Codificante/genética , Proteína p53 Supresora de Tumor/metabolismo , Animales , Apoptosis/fisiología , Modelos Animales de Enfermedad , Femenino , Hemorragia/genética , Hemorragia/metabolismo , Humanos , Pulmón/metabolismo , Pulmón/microbiología , Enfermedades Pulmonares/genética , Enfermedades Pulmonares/metabolismo , Lupus Eritematoso Sistémico/genética , Lupus Eritematoso Sistémico/metabolismo , Masculino , Alveolos Pulmonares/metabolismo , Alveolos Pulmonares/microbiología , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteína p53 Supresora de Tumor/genética
13.
J Biol Chem ; 294(4): 1396-1409, 2019 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-30523157

RESUMEN

Dysregulation of the ErbB family of receptor tyrosine kinases is involved in the progression of many cancers. Antibodies targeting the dimerization domains of family members EGFR and HER2 are approved cancer therapeutics, but efficacy is restricted to a subset of tumors and resistance often develops in response to treatment. A third family member, HER3, heterodimerizes with both EGFR and HER2 and has also been implicated in cancer. Consequently, there is strong interest in developing antibodies that target HER3, but to date, no therapeutics have been approved. To aid the development of anti-HER3 antibodies as cancer therapeutics, we combined antibody engineering and functional genomics screens to identify putative mechanisms of resistance or synthetic lethality with antibody-mediated anti-proliferative effects. We developed a synthetic antibody called IgG 95, which binds to HER3 and promotes ubiquitination, internalization, and receptor down-regulation. Using an shRNA library targeting enzymes in the ubiquitin proteasome system, we screened for genes that effect response to IgG 95 and uncovered the E3 ubiquitin ligase RNF41 as a driver of IgG 95 anti-proliferative activity. RNF41 has been shown previously to regulate HER3 levels under normal conditions and we now show that it is also responsible for down-regulation of HER3 upon treatment with IgG 95. Moreover, our findings suggest that down-regulation of RNF41 itself may be a mechanism for acquired resistance to treatment with IgG 95 and perhaps other anti-HER3 antibodies. Our work deepens our understanding of HER3 signaling by uncovering the mechanistic basis for the anti-proliferative effects of potential anti-HER3 antibody therapeutics.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Neoplasias de la Mama/prevención & control , Proliferación Celular , Neoplasias Pancreáticas/prevención & control , Receptor ErbB-3/inmunología , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Secuencia de Aminoácidos , Animales , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Femenino , Regulación Neoplásica de la Expresión Génica , Genoma Humano , Humanos , Ratones , Ratones SCID , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Receptor ErbB-3/antagonistas & inhibidores , Homología de Secuencia , Células Tumorales Cultivadas , Ubiquitina-Proteína Ligasas/genética , Ensayos Antitumor por Modelo de Xenoinjerto
14.
J Cell Biochem ; 121(3): 2330-2342, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31692032

RESUMEN

BACKGROUND: The main issue of this study is to demonstrate whether M-phase phosphoprotein 8 (MPP8) affect gastric tumor growth and metastasis. METHODS: Retrospective study was proceeded in 280 patients' surgical specimens with different disease stages. Loss-of-function assays, including 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide, flow cytometry, and transwell assays were performed to evaluate the biological function of MPP8 in gastric cancer cells. Apoptosis and metastasis relative biomarkers were measured by quantitative real-time polymerase chain reaction and Western blot analysis. RESULTS: Compared with normal adjacent tissues, obviously elevated MPP8 expression was found in gastric cancer tissues. Elevated MPP8 expression was associated with male sex (vs female sex), intermediate differentiation (vs poorly differentiated cancer), and later stage (vs earlier stage). Furthermore, MPP8 overexpression in tumor tissues was marginally associated with a poor prognosis, with a significant relationship between MPP8 overexpression and prognosis among patients with poorly differentiated gastric cancer. Inhibition of MPP8 in these cells significantly suppressed proliferation and colony formation, promoted apoptosis, and repressed invasion. Furthermore, silencing of MPP8 remarkably increased apoptosis-related proteins (p53, Bax, and PARP) expression, but downregulated Bcl-2 expression. Silencing of MPP8 also decreased the expression of metastasis pathway-related proteins (N-cadherin and vimentin), and as well as the levels of anti-oncogene ZEB1, MET, and KRAS mRNA. CONCLUSION: Our findings demonstrated that MPP8 might be an oncogene by positively regulating gastric cancer cell function through the p53/Bcl-2 and epithelial to mesenchymal transition-related signaling pathways.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , Fosfoproteínas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Neoplasias Gástricas/patología , Proteína p53 Supresora de Tumor/metabolismo , Apoptosis , Biomarcadores de Tumor/genética , Ciclo Celular , Movimiento Celular , Proliferación Celular , Femenino , Gastrectomía , Humanos , Masculino , Persona de Mediana Edad , Invasividad Neoplásica , Metástasis de la Neoplasia , Fosfoproteínas/genética , Pronóstico , Proteínas Proto-Oncogénicas c-bcl-2/genética , Estudios Retrospectivos , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/cirugía , Tasa de Supervivencia , Células Tumorales Cultivadas , Proteína p53 Supresora de Tumor/genética
15.
J Virol ; 93(14)2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31043531

RESUMEN

Virus-derived double-stranded RNA (dsRNA) molecules containing a triphosphate group at the 5' end are natural ligands of retinoic acid-inducible gene I (RIG-I). The cellular pathways and proteins induced by RIG-I are an essential part of the innate immune response against viral infections. Starting from a previously published RNA scaffold (3p10L), we characterized an optimized small dsRNA hairpin (called 3p10LG9, 25 nucleotides [nt] in length) as a highly efficient RIG-I activator. Dengue virus (DENV) infection in cell lines and primary human skin cells could be prevented and restricted through 3p10LG9-mediated activation of RIG-I. This antiviral effect was RIG-I and interferon signal dependent. The effect was temporary and was reversed above a saturating concentration of RIG-I ligand. This finding revealed an effective feedback loop that controls potentially damaging inflammatory effects of the RIG-I response, at least in immune cells. Our results show that the small RIG-I activator 3p10LG9 can confer short-term protection against DENV and can be further explored as an antiviral treatment in humans.IMPORTANCE Short hairpin RNA ligands that activate RIG-I induce antiviral responses in infected cells and prevent or control viral infections. Here, we characterized a new short hairpin RNA molecule with high efficacy in antiviral gene activation and showed that this molecule is able to control dengue virus infection. We demonstrate how structural modifications of minimal RNA ligands can lead to increased potency and a wider window of RIG-I-activating concentrations before regulatory mechanisms kick in at high concentrations. We also show that minimal RNA ligands induce an effective antiviral response in human skin dendritic cells and macrophages, which are the target cells of initial infection after the mosquito releases virus into the skin. Using short hairpin RNA as RIG-I ligands could therefore be explored as antiviral therapy.


Asunto(s)
Antivirales , Virus del Dengue/inmunología , Dengue/tratamiento farmacológico , ARN Bicatenario , Piel/inmunología , Antivirales/química , Antivirales/farmacología , Células Cultivadas , Proteína 58 DEAD Box , Dengue/inmunología , Dengue/patología , Humanos , ARN Bicatenario/química , ARN Bicatenario/farmacología , Receptores Inmunológicos , Piel/patología , Piel/virología
16.
Virol J ; 17(1): 71, 2020 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-32493436

RESUMEN

BACKGROUND: Porcine epidemic diarrhea virus (PEDV) of the family Coronaviridae has caused substantial economic losses in the swine husbandry industry. There's currently no specific drug available for treatment of coronaviruses or PEDV. METHOD: In the current study, we use coronavirus PEDV as a model to study antiviral agents. Briefly, a fusion inhibitor tHR2, recombinant lentivirus-delivered shRNAs targeted to conserved M and N sequences, homoharringtonine (HHT), and hydroxychloroquine (HCQ) were surveyed for their antiviral effects. RESULTS: Treatment with HCQ at 50 µM and HHT at 150 nM reduced virus titer in TCID50 by 30 and 3.5 fold respectively, and the combination reduced virus titer in TCID50 by 200 fold. CONCLUSION: Our report demonstrates that the combination of HHT and HCQ exhibited higher antiviral activity than either HHT or HCQ exhibited. The information may contribute to the development of antiviral strategies effective in controlling PEDV infection.


Asunto(s)
Antivirales/farmacología , Homoharringtonina/farmacología , Hidroxicloroquina/farmacología , Virus de la Diarrea Epidémica Porcina/efectos de los fármacos , ARN Interferente Pequeño/farmacología , Animales , Chlorocebus aethiops , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/virología , Proteínas M de Coronavirus , Proteínas de la Nucleocápside de Coronavirus , Sinergismo Farmacológico , Proteínas de la Nucleocápside/genética , Péptidos/farmacología , ARN Interferente Pequeño/genética , Glicoproteína de la Espiga del Coronavirus/antagonistas & inhibidores , Glicoproteína de la Espiga del Coronavirus/química , Células Vero , Carga Viral/efectos de los fármacos , Proteínas de la Matriz Viral/genética
17.
Exp Lung Res ; 46(7): 243-257, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32578458

RESUMEN

Aim/Purpose: Exposure to various allergens has been shown to increase expression of ORMDL3 in the lung in models of allergic asthma. Studies using genetically modified (transgenic or knock out) mice have revealed some of the functions of ORMDL3 in asthma pathogenesis, although amid debate. The goal of this study was to use targeted post-transcriptional downregulation of ORMDL3 in allergen-challenged wild-type (WT) mice by RNA interference to further elucidate the functional role of ORMDL3 in asthma pathogenesis and evaluate a potential therapeutic option.Methods: Allergen (ovalbumin [OVA])-challenged WT mice were administered intranasally (i.n) with a single dose of five short hairpin RNA (shRNA) constructs with different target sequence for murine ORMDL3 cloned in a lentiviral vector or with the empty vector (control). Mice were evaluated for allergen-induced airway hyperresponsiveness (AHR) and various features of airway inflammation after 72 hours.Results: I.n administration of a single dose of ORMDL3 shRNAs to OVA-challenged mice resulted in reduction of ORMDL3 gene expression in the lungs associated with a significant reduction in AHR to inhaled methacholine and in the number of inflammatory cells recruited in the airways, specifically eosinophils, as well as in airway mucus secretion compared to OVA-challenged mice that received the empty vector. Administration of ORMDL3 shRNAs also significantly inhibited levels of IL-13, eotaxin-2 and sphingosine in the lungs. Additionally, ORMDL3 shRNAs significantly inhibited the allergen-mediated increase in monohexyl ceramides C22:0 and C24:0.Conclusions: Post-transcriptional down regulation of ORMDL3 in allergic lungs using i.n-delivered ORMDL3 shRNA (akin to inhaled therapy) attenuates development of key features of airway allergic disease, confirming the involvement of ORMDL3 in allergic asthma pathogenesis and serving as a model for a potential therapeutic strategy.


Asunto(s)
Alérgenos/metabolismo , Inflamación/metabolismo , Pulmón/metabolismo , Proteínas de la Membrana/metabolismo , ARN Interferente Pequeño/metabolismo , Hipersensibilidad Respiratoria/metabolismo , Animales , Asma/tratamiento farmacológico , Asma/metabolismo , Hiperreactividad Bronquial/tratamiento farmacológico , Hiperreactividad Bronquial/metabolismo , Líquido del Lavado Bronquioalveolar/química , Citocinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Inflamación/tratamiento farmacológico , Pulmón/efectos de los fármacos , Masculino , Cloruro de Metacolina/farmacología , Ratones , Ratones Noqueados , Ratones Transgénicos , Eosinofilia Pulmonar/tratamiento farmacológico , Eosinofilia Pulmonar/metabolismo , Interferencia de ARN/efectos de los fármacos , Hipersensibilidad Respiratoria/tratamiento farmacológico
18.
Int J Mol Sci ; 21(18)2020 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-32933162

RESUMEN

RNA-based therapeutics are considered as novel treatments for human diseases. Our previous study demonstrated that treatment with short-hairpin RNA against Ido1 (IDO shRNA) suppresses tumor growth, detects Th1-bias immune responses, and elevates expression of tryptophan transfer RNA (tRNATrp) in total splenocytes. In addition, depletion of Ly6g+ neutrophils attenuates the effect of IDO shRNA. The aim of this study was to investigate the regulatory network and the expression profile of tRNAs and other non-coding RNAs in IDO shRNA-treated spleens. The total splenocytes and magnetic bead-enriched splenic neutrophils were collected from the lung tumor bearing mice, which were treated with IDO shRNA or scramble IDO shRNA, and the collected cells were subsequently subjected to RNA sequencing. The gene ontology analysis revealed the different enrichment pathways in total splenocytes and splenic neutrophils. Furthermore, the expression of tRNA genes was identified and validated. Six isoacceptors of tRNA, with different expression patterns between total splenocytes and splenic neutrophils, were observed. In summary, our findings not only revealed novel biological processes in IDO shRNA-treated total splenocytes and splenic neutrophils, but the identified tRNAs and other non-coding RNAs may contribute to developing a novel biomarker gene set for evaluating the clinical efficiency of RNA-based cancer immunotherapies.


Asunto(s)
Antineoplásicos/administración & dosificación , Regulación de la Expresión Génica/genética , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Neutrófilos/fisiología , ARN Mensajero/genética , ARN Interferente Pequeño/genética , ARN de Transferencia/genética , Bazo/fisiología , Animales , Biomarcadores de Tumor/genética , Línea Celular Tumoral , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Ontología de Genes , Indolamina-Pirrol 2,3,-Dioxigenasa/administración & dosificación , Neoplasias Pulmonares/genética , Ratones , Ratones Endogámicos C57BL , Neutrófilos/efectos de los fármacos , ARN Interferente Pequeño/administración & dosificación , Bazo/efectos de los fármacos
19.
J Cell Biochem ; 120(3): 3989-3997, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30260030

RESUMEN

OBJECTIVE: The aim of the study was to explore the mechanism of excessive apoptosis of nucleus pulposus cells induced by short hairpin RNA (shRNA) Piezo type mechanosensitive ion channel component 1 (Piezo1) under abnormal mechanical stretch stress. METHODS: In vitro mechanical stretch stress model of nucleus pulposus cells in vitro was established, in which the expression of Piezo1 was interfered by transfection of shRNA-Piezo1 interfering vector. Both messenger RNA and protein level of Piezo1 were measured by reverse-transcription polymerase chain reaction and Western blot analysis, respectively. Cytoplasmic Ca2+ was detected by Fluo3-AM kit, and changes of mitochondrial membrane potential in cells were detected using Cell Meter Assay kit. Finally, the apoptosis was evaluated with annexin V-fluorescein isothiocyanate kit. RESULTS: The highest transfection efficiency of lentivirus titer was 1 × 10 TU/mL and the nucleus pulposus cells were transfected with plural multiplicity of infection = 50. Homo-3201 sequence exhibited the most effective silencing effect and was used in subsequent experiments as the default sequence of shRNA-Piezo1. The calcium content in the cytoplasm of the tension stress group increased significantly compared with that in the blank control group ( q = 3.773; P < 0.05). The level of cytosolic calcium in shRNA-interference group was significantly lower than that in stretch stress group ( q = 5.159; P < 0.05). Stretch stress treatment resulted in an elevated ratio of mitochondrial membrane potential turnover as opposed to blank control group ( q = 4.332; P < 0.05), while shRNA-interference group showed smaller ratio of mitochondrial membrane potential turnover than that in stretch stress group ( q = 4.974; P < 0.05). Similar results were also observed in apoptosis rate analysis ( q = 3.175; P < 0.05). CONCLUSION: ShRNA-Piezo1 can protect cells by reducing the level of intracellular Ca2+ and the change of mitochondrial membrane potential.


Asunto(s)
Señalización del Calcio/genética , Canales Iónicos/genética , Núcleo Pulposo/metabolismo , Estrés Mecánico , Apoptosis/genética , Proliferación Celular/genética , Regulación de la Expresión Génica/genética , Humanos , Lentivirus/genética , Potencial de la Membrana Mitocondrial/genética , Núcleo Pulposo/patología , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Transfección
20.
Virus Genes ; 55(6): 795-801, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31463771

RESUMEN

Porcine deltacoronavirus (PDCoV) is a recently identified coronavirus that causes intestinal diseases in neonatal piglets with diarrhea, vomiting, dehydration, and post-infection mortality of 50-100%. Currently, there are no effective treatments or vaccines available to control PDCoV. To study the potential of RNA interference (RNAi) as a strategy against PDCoV infection, two short hairpin RNA (shRNA)-expressing plasmids (pGenesil-M and pGenesil-N) that targeted the M and N genes of PDCoV were constructed and transfected separately into swine testicular (ST) cells, which were then infected with PDCoV strain HB-BD. The potential of the plasmids to inhibit PDCoV replication was evaluated by cytopathic effect, virus titers, and real-time quantitative RT-PCR assay. The cytopathogenicity assays demonstrated that pGenesil-M and pGenesil-N protected ST cells against pathological changes with high specificity and efficacy. The 50% tissue culture infective dose showed that the PDCoV titers in ST cells treated with pGenesil-M and pGenesil-N were reduced 13.2- and 32.4-fold, respectively. Real-time quantitative RT-PCR also confirmed that the amount of viral RNA in cell cultures pre-transfected with pGenesil-M and pGenesil-N was reduced by 45.8 and 56.1%, respectively. This is believed to be the first report to show that shRNAs targeting the M and N genes of PDCoV exert antiviral effects in vitro, which suggests that RNAi is a promising new strategy against PDCoV infection.


Asunto(s)
Infecciones por Coronavirus/genética , Coronavirus/genética , Proteínas Virales/genética , Replicación Viral/genética , Animales , Coronavirus/patogenicidad , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/virología , Diarrea/genética , Diarrea/patología , Diarrea/veterinaria , Diarrea/virología , Masculino , Plásmidos/genética , Interferencia de ARN , ARN Interferente Pequeño/genética , ARN Viral/genética , Porcinos/virología , Enfermedades de los Porcinos/genética , Enfermedades de los Porcinos/virología , Testículo/crecimiento & desarrollo , Testículo/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA