Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Environ Manage ; 326(Pt B): 116835, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36435131

RESUMEN

Catalytic performances of Silica Pillared Clay (SPC) supports synthesized in different silica amounts both from standard SWy-2 clay mineral and Hançili region bentonite rock (HWB), and iron (Fe) and/or titanium (Ti) incorporated SPCs in different combinations were evaluated in various advanced Catalytic Wet Peroxide Oxidation (CWPO) of phenol. Host clay mineral type led to different oxidation performances and metal loading created significant increases in the catalytic performance. CWPO performance of Fe-loaded SPCs was better than Ti-loaded ones, so oxidation parameters for Fe-SPCs were studied in detail. Catalyst amount and rise in temperature increased phenol conversion values significantly, and catalysts were more effective in lower pH reaction medium. Aromatic intermediates such as catechol, hydroquinone and benzoquinone formed at the beginning of oxidation were oxidized to carboxylic acids with an advancing oxidation time. The presence of carboxylic acids such as oxalic and formic acid resulted in relatively low total organic carbon (TOC) conversion values. The highest catalytic activity was obtained with high silica content Fe-SPCs synthesized with both host clays. Complete conversion was nearly achieved within 60 min with an experimental condition of T = 30 °C, pH = 3.7 and catalyst/solution ratio = 2 g/L for SWy-2 based catalyst by applying either CWPO or PCWPO (Photo Catalytic Wet Peroxide Oxidation) techniques. SCWPO (Sono Catalytic Wet Peroxide Oxidation) technique also yielded this value at the same oxidation conditions for HWB based catalyst. TOC conversion values at 240 min oxidation time were determined as 33% and 48% for SWy-2 based catalyst with CWPO and PCWPO techniques, respectively, and 37% for HWB based catalyst with SCWPO technique. SWy-2 based catalyst still retained its performance after 3 cycles.


Asunto(s)
Peróxidos , Fenol , Fenol/química , Arcilla , Hierro/química , Titanio , Dióxido de Silicio , Peróxido de Hidrógeno/química , Catálisis , Oxidación-Reducción , Ácidos Carboxílicos
2.
Mater Sci Eng C Mater Biol Appl ; 40: 102-8, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24857471

RESUMEN

Novel magnetic silica-pillared clay (SPC) materials with an ordered interlayered mesopore structure were synthesized via a two-step method including gallery molecular self-assembly and sol-gel magnetic functionalization, resulting in the formation of FexOy@SPC composites. Small-angle XRD, TEM and N2 adsorption-desorption isotherms results show that these composites conserved a regular layered and ordered mesoporous structure after the formation of FexOy nanoparticles. Wide-angle XRD and XPS analyses confirmed that the FexOy generated in these mesoporous silica-pillared clay hosts is mainly composed of γ-Fe2O3. Magnetic measurements reveal that these composites with different γ-Fe2O3 loading amounts possess super-paramagnetic properties at 300K, and the saturation magnetization increases with increasing Fe ratio loaded. Compared to the pure SPC, the in vitro drug release rate of the FexOy@SPC composites was enhanced due to the fact that the intensities of the SiOH bands on the pore surface of SPC decrease after the generation of FexOy. However, under an external magnetic field of 0.15T, the drug release rate of the FexOy@SPC composites decreases dramatically owing to the aggregation of the magnetic FexOy@SPC particles triggered by non-contact magnetic force. The obtained FexOy@SPC composites imply the possibility of application in magnetic drug targeting.


Asunto(s)
Silicatos de Aluminio/química , Aspirina/química , Portadores de Fármacos/química , Compuestos Férricos/química , Geles/química , Magnetismo , Dióxido de Silicio/química , Aspirina/metabolismo , Arcilla , Nanopartículas del Metal/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA