RESUMEN
KCR channelrhodopsins (K+-selective light-gated ion channels) have received attention as potential inhibitory optogenetic tools but more broadly pose a fundamental mystery regarding how their K+ selectivity is achieved. Here, we present 2.5-2.7 Å cryo-electron microscopy structures of HcKCR1 and HcKCR2 and of a structure-guided mutant with enhanced K+ selectivity. Structural, electrophysiological, computational, spectroscopic, and biochemical analyses reveal a distinctive mechanism for K+ selectivity; rather than forming the symmetrical filter of canonical K+ channels achieving both selectivity and dehydration, instead, three extracellular-vestibule residues within each monomer form a flexible asymmetric selectivity gate, while a distinct dehydration pathway extends intracellularly. Structural comparisons reveal a retinal-binding pocket that induces retinal rotation (accounting for HcKCR1/HcKCR2 spectral differences), and design of corresponding KCR variants with increased K+ selectivity (KALI-1/KALI-2) provides key advantages for optogenetic inhibition in vitro and in vivo. Thus, discovery of a mechanism for ion-channel K+ selectivity also provides a framework for next-generation optogenetics.
Asunto(s)
Channelrhodopsins , Rhinosporidium , Humanos , Channelrhodopsins/química , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Channelrhodopsins/ultraestructura , Microscopía por Crioelectrón , Canales Iónicos , Potasio/metabolismo , Rhinosporidium/químicaRESUMEN
An ability to build structured mental maps of the world underpins our capacity to imagine relationships between objects that extend beyond experience. In rodents, such representations are supported by sequential place cell reactivations during rest, known as replay. Schizophrenia is proposed to reflect a compromise in structured mental representations, with animal models reporting abnormalities in hippocampal replay and associated ripple activity during rest. Here, utilizing magnetoencephalography (MEG), we tasked patients with schizophrenia and control participants to infer unobserved relationships between objects by reorganizing visual experiences containing these objects. During a post-task rest session, controls exhibited fast spontaneous neural reactivation of presented objects that replayed inferred relationships. Replay was coincident with increased ripple power in hippocampus. Patients showed both reduced replay and augmented ripple power relative to controls, convergent with findings in animal models. These abnormalities are linked to impairments in behavioral acquisition and subsequent neural representation of task structure.
Asunto(s)
Aprendizaje , Neuronas/patología , Esquizofrenia/patología , Esquizofrenia/fisiopatología , Ritmo alfa/fisiología , Conducta , Mapeo Encefálico , Femenino , Hipocampo/fisiopatología , Humanos , Magnetoencefalografía , Masculino , Modelos Biológicos , Análisis y Desempeño de TareasRESUMEN
It is unclear how binding of antidepressant drugs to their targets gives rise to the clinical antidepressant effect. We discovered that the transmembrane domain of tyrosine kinase receptor 2 (TRKB), the brain-derived neurotrophic factor (BDNF) receptor that promotes neuronal plasticity and antidepressant responses, has a cholesterol-sensing function that mediates synaptic effects of cholesterol. We then found that both typical and fast-acting antidepressants directly bind to TRKB, thereby facilitating synaptic localization of TRKB and its activation by BDNF. Extensive computational approaches including atomistic molecular dynamics simulations revealed a binding site at the transmembrane region of TRKB dimers. Mutation of the TRKB antidepressant-binding motif impaired cellular, behavioral, and plasticity-promoting responses to antidepressants in vitro and in vivo. We suggest that binding to TRKB and allosteric facilitation of BDNF signaling is the common mechanism for antidepressant action, which may explain why typical antidepressants act slowly and how molecular effects of antidepressants are translated into clinical mood recovery.
Asunto(s)
Antidepresivos/farmacología , Receptor trkB/metabolismo , Animales , Antidepresivos/química , Antidepresivos/metabolismo , Sitios de Unión , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Línea Celular , Colesterol/metabolismo , Embrión de Mamíferos , Fluoxetina/química , Fluoxetina/metabolismo , Fluoxetina/farmacología , Hipocampo/metabolismo , Humanos , Ratones , Modelos Animales , Simulación de Dinámica Molecular , Dominios Proteicos , Ratas , Receptor trkB/química , Corteza Visual/metabolismoRESUMEN
Binding of arrestin to phosphorylated G-protein-coupled receptors (GPCRs) controls many aspects of cell signaling. The number and arrangement of phosphates may vary substantially for a given GPCR, and different phosphorylation patterns trigger different arrestin-mediated effects. Here, we determine how GPCR phosphorylation influences arrestin behavior by using atomic-level simulations and site-directed spectroscopy to reveal the effects of phosphorylation patterns on arrestin binding and conformation. We find that patterns favoring binding differ from those favoring activation-associated conformational change. Both binding and conformation depend more on arrangement of phosphates than on their total number, with phosphorylation at different positions sometimes exerting opposite effects. Phosphorylation patterns selectively favor a wide variety of arrestin conformations, differently affecting arrestin sites implicated in scaffolding distinct signaling proteins. We also reveal molecular mechanisms of these phenomena. Our work reveals the structural basis for the long-standing "barcode" hypothesis and has important implications for design of functionally selective GPCR-targeted drugs.
Asunto(s)
Arrestina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Arrestina/química , Simulación por Computador , Células HEK293 , Humanos , Fosfatos/metabolismo , Fosfopéptidos/metabolismo , Fosforilación , Unión Proteica , Conformación Proteica , Análisis EspectralRESUMEN
T cell activation is a critical event in the adaptive immune response, indispensable for cell-mediated and humoral immunity as well as for immune regulation. Recent years have witnessed an emerging trend emphasizing the essential role that physical force and mechanical properties play at the T cell interface. In this review, we integrate current knowledge of T cell antigen recognition and the different models of T cell activation from the perspective of mechanobiology, focusing on the interaction between the T cell receptor (TCR) and the peptide-major histocompatibility complex (pMHC) antigen. We address the shortcomings of TCR affinity alone in explaining T cell functional outcomes and the rising status of force-regulated TCR bond lifetimes, most notably the TCR catch bond. Ultimately, T cell activation and the ensuing physiological responses result from mechanical interaction between TCRs and the pMHC.
Asunto(s)
Complejo Mayor de Histocompatibilidad , Receptores de Antígenos de Linfocitos T , Biofisica , Antígenos de Histocompatibilidad , Complejo Mayor de Histocompatibilidad/genética , Receptores de Antígenos de Linfocitos T/genética , Linfocitos TRESUMEN
We report a 100-million atom-scale model of an entire cell organelle, a photosynthetic chromatophore vesicle from a purple bacterium, that reveals the cascade of energy conversion steps culminating in the generation of ATP from sunlight. Molecular dynamics simulations of this vesicle elucidate how the integral membrane complexes influence local curvature to tune photoexcitation of pigments. Brownian dynamics of small molecules within the chromatophore probe the mechanisms of directional charge transport under various pH and salinity conditions. Reproducing phenotypic properties from atomistic details, a kinetic model evinces that low-light adaptations of the bacterium emerge as a spontaneous outcome of optimizing the balance between the chromatophore's structural integrity and robust energy conversion. Parallels are drawn with the more universal mitochondrial bioenergetic machinery, from whence molecular-scale insights into the mechanism of cellular aging are inferred. Together, our integrative method and spectroscopic experiments pave the way to first-principles modeling of whole living cells.
Asunto(s)
Células/metabolismo , Metabolismo Energético , Adaptación Fisiológica/efectos de la radiación , Adenosina Trifosfato/metabolismo , Benzoquinonas/metabolismo , Membrana Celular/metabolismo , Membrana Celular/efectos de la radiación , Células/efectos de la radiación , Cromatóforos/metabolismo , Citocromos c2/metabolismo , Difusión , Transporte de Electrón/efectos de la radiación , Metabolismo Energético/efectos de la radiación , Ambiente , Enlace de Hidrógeno , Cinética , Luz , Simulación de Dinámica Molecular , Fenotipo , Proteínas/metabolismo , Rhodobacter sphaeroides/fisiología , Rhodobacter sphaeroides/efectos de la radiación , Electricidad Estática , Estrés Fisiológico/efectos de la radiación , TemperaturaRESUMEN
During cell division, mitotic motors organize microtubules in the bipolar spindle into either polar arrays at the spindle poles or a "nematic" network of aligned microtubules at the spindle center. The reasons for the distinct self-organizing capacities of dynamic microtubules and different motors are not understood. Using in vitro reconstitution experiments and computer simulations, we show that the human mitotic motors kinesin-5 KIF11 and kinesin-14 HSET, despite opposite directionalities, can both organize dynamic microtubules into either polar or nematic networks. We show that in addition to the motor properties the natural asymmetry between microtubule plus- and minus-end growth critically contributes to the organizational potential of the motors. We identify two control parameters that capture system composition and kinetic properties and predict the outcome of microtubule network organization. These results elucidate a fundamental design principle of spindle bipolarity and establish general rules for active filament network organization.
Asunto(s)
Cinesinas/metabolismo , Microtúbulos/metabolismo , Simulación de Dinámica Molecular , Huso Acromático/metabolismo , Animales , Humanos , Cinesinas/química , Microtúbulos/química , Células Sf9 , Huso Acromático/química , SpodopteraRESUMEN
The exchange of metabolites between the mitochondrial matrix and the cytosol depends on ß-barrel channels in the outer membrane and α-helical carrier proteins in the inner membrane. The essential translocase of the inner membrane (TIM) chaperones escort these proteins through the intermembrane space, but the structural and mechanistic details remain elusive. We have used an integrated structural biology approach to reveal the functional principle of TIM chaperones. Multiple clamp-like binding sites hold the mitochondrial membrane proteins in a translocation-competent elongated form, thus mimicking characteristics of co-translational membrane insertion. The bound preprotein undergoes conformational dynamics within the chaperone binding clefts, pointing to a multitude of dynamic local binding events. Mutations in these binding sites cause cell death or growth defects associated with impairment of carrier and ß-barrel protein biogenesis. Our work reveals how a single mitochondrial "transfer-chaperone" system is able to guide α-helical and ß-barrel membrane proteins in a "nascent chain-like" conformation through a ribosome-free compartment.
Asunto(s)
Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Membranas Intracelulares/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas de Transporte de Membrana Mitocondrial/genética , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Unión Proteica , Dominios Proteicos , Precursores de Proteínas/química , Precursores de Proteínas/metabolismo , Estructura Secundaria de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Alineación de SecuenciaRESUMEN
Comprehensive data about the composition and structure of cellular components have enabled the construction of quantitative whole-cell models. While kinetic network-type models have been established, it is also becoming possible to build physical, molecular-level models of cellular environments. This review outlines challenges in constructing and simulating such models and discusses near- and long-term opportunities for developing physical whole-cell models that can connect molecular structure with biological function.
Asunto(s)
Células Eucariotas/citología , Modelos Biológicos , Animales , Simulación por Computador , Humanos , Simulación de Dinámica Molecular , Programas InformáticosRESUMEN
Transporters shuttle molecules across cell membranes by alternating among distinct conformational states. Fundamental questions remain about how transporters transition between states and how such structural rearrangements regulate substrate translocation. Here, we capture the translocation process by crystallography and unguided molecular dynamics simulations, providing an atomic-level description of alternating access transport. Simulations of a SWEET-family transporter initiated from an outward-open, glucose-bound structure reported here spontaneously adopt occluded and inward-open conformations. Strikingly, these conformations match crystal structures, including our inward-open structure. Mutagenesis experiments further validate simulation predictions. Our results reveal that state transitions are driven by favorable interactions formed upon closure of extracellular and intracellular "gates" and by an unfavorable transmembrane helix configuration when both gates are closed. This mechanism leads to tight allosteric coupling between gates, preventing them from opening simultaneously. Interestingly, the substrate appears to take a "free ride" across the membrane without causing major structural rearrangements in the transporter.
Asunto(s)
Bacterias/química , Proteínas Bacterianas/química , Proteínas de Transporte de Membrana/química , Bacterias/clasificación , Cristalografía por Rayos X , Modelos Moleculares , Simulación de Dinámica Molecular , Conformación ProteicaRESUMEN
G proteins play a central role in signal transduction and pharmacology. Signaling is initiated by cell-surface receptors, which promote guanosine triphosphate (GTP) binding and dissociation of Gα from the Gßγ subunits. Structural studies have revealed the molecular basis of subunit association with receptors, RGS proteins, and downstream effectors. In contrast, the mechanism of subunit dissociation is poorly understood. We use cell signaling assays, molecular dynamics (MD) simulations, and biochemistry and structural analyses to identify a conserved network of amino acids that dictates subunit release. In the presence of the terminal phosphate of GTP, a glycine forms a polar network with an arginine and glutamate, putting torsional strain on the subunit binding interface. This "G-R-E motif" secures GTP and, through an allosteric link, discharges the Gßγ dimer. Replacement of network residues prevents subunit dissociation regardless of agonist or GTP binding. These findings reveal the molecular basis of the final committed step of G protein activation.
Asunto(s)
Guanosina Trifosfato , Proteínas de Unión al GTP Heterotriméricas , Simulación de Dinámica Molecular , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/enzimología , Regulación Alostérica , Secuencias de Aminoácidos , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Células HEK293 , Proteínas de Unión al GTP Heterotriméricas/química , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Humanos , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismoRESUMEN
The cytoplasmic polyamine maintains cellular homeostasis by chelating toxic metal cations, regulating transcriptional activity, and protecting DNA. ATP13A2 was identified as a lysosomal polyamine exporter responsible for polyamine release into the cytosol, and its dysfunction is associated with Alzheimer's disease and other neural degradation diseases. ATP13A2 belongs to the P5 subfamily of the P-type ATPase family, but its mechanisms remain unknown. Here, we report the cryoelectron microscopy (cryo-EM) structures of human ATP13A2 under four different conditions, revealing the structural coupling between the polyamine binding and the dephosphorylation. Polyamine is bound at the luminal tunnel and recognized through numerous electrostatic and π-cation interactions, explaining its broad specificity. The unique N-terminal domain is anchored to the lipid membrane to stabilize the E2P conformation, thereby accelerating the E1P-to-E2P transition. These findings reveal the distinct mechanism of P5B ATPases, thereby paving the way for neuroprotective therapy by activating ATP13A2.
Asunto(s)
Adenosina Trifosfatasas/química , Lípidos/química , Poliaminas/química , ATPasas de Translocación de Protón/química , Sitios de Unión , Microscopía por Crioelectrón , Citosol/metabolismo , Células HEK293 , Homeostasis , Humanos , Lípidos de la Membrana/química , Micelas , Conformación Molecular , Fosforilación , Conformación ProteicaRESUMEN
The definition of shape in multicellular organisms is a major issue of developmental biology. It is well established that morphogenesis relies on genetic regulation. However, cells, tissues, and organism behaviors are also bound by the laws of physics, which limit the range of possible deformations organisms can undergo but also define what organisms must do to achieve specific shapes. Besides experiments, theoretical models and numerical simulations of growing tissues are powerful tools to investigate the link between genetic regulation and mechanics. Here, we provide an overview of the main mechanical models of plant morphogenesis developed so far, from subcellular scales to whole tissues. The common concepts and discrepancies between the various models are discussed.
Asunto(s)
Fenómenos Químicos , Biología Computacional/métodos , Modelos Biológicos , Desarrollo de la Planta , División Celular , Pared Celular/fisiología , Simulación por Computador , Retroalimentación Fisiológica , Desarrollo de la Planta/fisiología , Procesos EstocásticosRESUMEN
The misfolding and mutation of Cu/Zn superoxide dismutase (SOD1) is commonly associated with amyotrophic lateral sclerosis (ALS). SOD1 can accumulate within stress granules (SGs), a type of membraneless organelle, which is believed to form via liquid-liquid phase separation (LLPS). Using wild-type, metal-deficient, and different ALS disease mutants of SOD1 and computer simulations, we report here that the absence of Zn leads to structural disorder within two loop regions of SOD1, triggering SOD1 LLPS and amyloid formation. The addition of exogenous Zn to either metal-free SOD1 or to the severe ALS mutation I113T leads to the stabilization of the loops and impairs SOD1 LLPS and aggregation. Moreover, partial Zn-mediated inhibition of LLPS was observed for another severe ALS mutant, G85R, which shows perturbed Zn-binding. By contrast, the ALS mutant G37R, which shows reduced Cu-binding, does not undergo LLPS. In addition, SOD1 condensates induced by Zn-depletion exhibit greater cellular toxicity than aggregates formed by prolonged incubation under aggregating conditions. Overall, our work establishes a role for Zn-dependent modulation of SOD1 conformation and LLPS properties that may contribute to amyloid formation.
Asunto(s)
Superóxido Dismutasa-1 , Zinc , Humanos , Esclerosis Amiotrófica Lateral/enzimología , Mutación , Superóxido Dismutasa-1/química , Superóxido Dismutasa-1/genética , Zinc/química , Pliegue de ProteínaRESUMEN
Clarifying the mechanisms underlying shape alterations during insect metamorphosis is important for understanding exoskeletal morphogenesis. The large horn of the Japanese rhinoceros beetle Trypoxylus dichotomus is the result of drastic metamorphosis, wherein it appears as a rounded shape during pupation and then undergoes remodeling into an angular adult shape. However, the mechanical mechanisms underlying this remodeling process remain unknown. In this study, we investigated the remodeling mechanisms of the Japanese rhinoceros beetle horn by developing a physical simulation. We identified three factors contributing to remodeling by biological experiments - ventral adhesion, uneven shrinkage, and volume reduction - which were demonstrated to be crucial for transformation using a physical simulation. Furthermore, we corroborated our findings by applying the simulation to the mandibular remodeling of stag beetles. These results indicated that physical simulation applies to pupal remodeling in other beetles, and the morphogenic mechanism could explain various exoskeletal shapes.
Asunto(s)
Escarabajos , Animales , Japón , Simulación por Computador , Mandíbula , PupaRESUMEN
We present an accreditation protocol for analogue, i.e., continuous-time, quantum simulators. For a given simulation task, it provides an upper bound on the variation distance between the probability distributions at the output of an erroneous and error-free analogue quantum simulator. As its overheads are independent of the size and nature of the simulation, the protocol is ready for immediate usage and practical for the long term. It builds on the recent theoretical advances of strongly universal Hamiltonians and quantum accreditation as well as experimental progress toward the realization of programmable hybrid analogue-digital quantum simulators.
RESUMEN
Nanoelectrochemical devices have become a promising candidate technology across various applications, including sensing and energy storage, and provide new platforms for studying fundamental properties of electrode/electrolyte interfaces. In this work, we employ constant-potential molecular dynamics simulations to investigate the impedance of gold-aqueous electrolyte nanocapacitors, exploiting a recently introduced fluctuation-dissipation relation. In particular, we relate the frequency-dependent impedance of these nanocapacitors to the complex conductivity of the bulk electrolyte in different regimes, and use this connection to design simple but accurate equivalent circuit models. We show that the electrode/electrolyte interfacial contribution is essentially capacitive and that the electrolyte response is bulk-like even when the interelectrode distance is only a few nanometers, provided that the latter is sufficiently large compared to the Debye screening length. We extensively compare our simulation results with spectroscopy experiments and predictions from analytical theories. In contrast to experiments, direct access in simulations to the ionic and solvent contributions to the polarization allows us to highlight their significant and persistent anticorrelation and to investigate the microscopic origin of the timescales observed in the impedance spectrum. This work opens avenues for the molecular interpretation of impedance measurements, and offers valuable contributions for future developments of accurate coarse-grained representations of confined electrolytes.
RESUMEN
Expanding the protein fold space beyond linear chains is of fundamental significance, yet remains largely unexplored. Herein, we report the creation of seven topological isoforms (i.e., linear, cyclic, knot, lasso, pseudorotaxane, and catenane) from a single protein fold precursor by rewiring the connectivity of secondary structure elements of the SpyTag-SpyCatcher complex and mutating the reactive residue on SpyTag to abolish the isopeptide bonding. These topological isoforms can be directly expressed in cells. Their topologies were confirmed by combined techniques of proteolytic digestion, fluorescence correlation spectroscopy (FCS), size-exclusion chromatography (SEC), and topological transformation. To study the effects of topology on their structures and properties, their biophysical properties were characterized by differential scanning calorimetry (DSC), heteronuclear single quantum coherence nuclear magnetic resonance spectroscopy (HSQC-NMR), and circular dichroism (CD) spectroscopy. Molecular dynamics (MD) simulations were further performed to reveal the atomic details of structural changes upon unfolding. Both experimental and simulation results suggest that they share a similar, well-folded hydrophobic core but exhibit distinct folding/unfolding dynamic behaviors. These results shed light onto the folding landscape of topological isoforms derived from the same protein fold. As a model system, this work improves our understanding of protein structure and dynamics beyond linear chains and suggests that protein folds are highly amenable to topological variation.
Asunto(s)
Simulación de Dinámica Molecular , Pliegue de Proteína , Isoformas de Proteínas , Isoformas de Proteínas/química , Dicroismo Circular , Rastreo Diferencial de Calorimetría , Estructura Secundaria de ProteínaRESUMEN
Ni is the second most abundant element in the Earth's core. Yet, its effects on the inner core's structure and formation process are usually disregarded because of its electronic and size similarity with Fe. Using ab initio molecular dynamics simulations, we find that the bcc phase can spontaneously crystallize in liquid Ni at temperatures above Fe's melting point at inner core pressures. The melting temperature of Ni is shown to be 700 to 800 K higher than that of Fe at 323 to 360 GPa. hcp, bcc, and liquid phase relations differ for Fe and Ni. Ni can be a bcc stabilizer for Fe at high temperatures and inner core pressures. A small amount of Ni can accelerate Fe's crystallization at core pressures. These results suggest that Ni may substantially impact the structure and formation process of the solid inner core.
RESUMEN
Achieving ligand subtype selectivity within highly homologous subtypes of G-protein-coupled receptor (GPCR) is critical yet challenging for GPCR drug discovery, primarily due to the unclear mechanism underlying ligand subtype selectivity, which hampers the rational design of subtype-selective ligands. Herein, we disclose an unusual molecular mechanism of entropy-driven ligand recognition in cannabinoid (CB) receptor subtypes, revealed through atomic-level molecular dynamics simulations, cryoelectron microscopy structure, and mutagenesis experiments. This mechanism is attributed to the distinct conformational dynamics of the receptor's orthosteric pocket, leading to variations in ligand binding entropy and consequently, differential binding affinities, which culminate in specific ligand recognition. We experimentally validated this mechanism and leveraged it to design ligands with enhanced or ablated subtype selectivity. One such ligand demonstrated favorable pharmacokinetic properties and significant efficacy in rodent inflammatory analgesic models. More importantly, it is precisely due to the high subtype selectivity obtained based on this mechanism that this ligand does not show addictive properties in animal models. Our findings elucidate the unconventional role of entropy in CB receptor subtype selectivity and suggest a strategy for rational design of ligands to achieve entropy-driven subtype selectivity for many pharmaceutically important GPCRs.