Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 627
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 56(5): 1027-1045.e8, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-36791722

RESUMEN

Genetic tools to target microglia specifically and efficiently from the early stages of embryonic development are lacking. We generated a constitutive Cre line controlled by the microglia signature gene Crybb1 that produced nearly complete recombination in embryonic brain macrophages (microglia and border-associated macrophages [BAMs]) by the perinatal period, with limited recombination in peripheral myeloid cells. Using this tool in combination with Flt3-Cre lineage tracer, single-cell RNA-sequencing analysis, and confocal imaging, we resolved embryonic-derived versus monocyte-derived BAMs in the mouse cortex. Deletion of the transcription factor SMAD4 in microglia and embryonic-derived BAMs using Crybb1-Cre caused a developmental arrest of microglia, which instead acquired a BAM specification signature. By contrast, the development of genuine BAMs remained unaffected. Our results reveal that SMAD4 drives a transcriptional and epigenetic program that is indispensable for the commitment of brain macrophages to the microglia fate and highlight Crybb1-Cre as a tool for targeting embryonic brain macrophages.


Asunto(s)
Macrófagos , Microglía , Ratones , Animales , Microglía/metabolismo , Macrófagos/metabolismo , Integrasas/genética , Integrasas/metabolismo , Encéfalo/metabolismo
2.
Immunity ; 52(2): 328-341.e5, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-32049050

RESUMEN

Fever, an evolutionarily conserved physiological response to infection, is also commonly associated with many autoimmune diseases, but its role in T cell differentiation and autoimmunity remains largely unclear. T helper 17 (Th17) cells are critical in host defense and autoinflammatory diseases, with distinct phenotypes and pathogenicity. Here, we show that febrile temperature selectively regulated Th17 cell differentiation in vitro in enhancing interleukin-17 (IL-17), IL-17F, and IL-22 expression. Th17 cells generated under febrile temperature (38.5°C-39.5°C), compared with those under 37°C, showed enhanced pathogenic gene expression with increased pro-inflammatory activities in vivo. Mechanistically, febrile temperature promoted SUMOylation of SMAD4 transcription factor to facilitate its nuclear localization; SMAD4 deficiency selectively abrogated the effects of febrile temperature on Th17 cell differentiation both in vitro and ameliorated an autoimmune disease model. Our results thus demonstrate a critical role of fever in shaping adaptive immune responses with implications in autoimmune diseases.


Asunto(s)
Temperatura Corporal/inmunología , Fiebre/inmunología , Células Th17/inmunología , Inmunidad Adaptativa , Animales , Diferenciación Celular/inmunología , Núcleo Celular/metabolismo , Citocinas/metabolismo , Encefalomielitis Autoinmune Experimental/genética , Encefalomielitis Autoinmune Experimental/inmunología , Fiebre/genética , Regulación de la Expresión Génica , Respuesta al Choque Térmico/inmunología , Ratones , Proteína Smad4/deficiencia , Proteína Smad4/metabolismo , Sumoilación , Células Th17/metabolismo
3.
Immunity ; 47(5): 959-973.e9, 2017 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-29150241

RESUMEN

Aortic aneurysms are life-threatening conditions with effective treatments mainly limited to emergency surgery or trans-arterial endovascular stent grafts, thus calling for the identification of specific molecular targets. Genetic studies have highlighted controversial roles of transforming growth factor ß (TGF-ß) signaling in aneurysm development. Here, we report on aneurysms developing in adult mice after smooth muscle cell (SMC)-specific inactivation of Smad4, an intracellular transducer of TGF-ß. The results revealed that Smad4 inhibition activated interleukin-1ß (IL-1ß) in SMCs. This danger signal later recruited innate immunity in the adventitia through chemokine (C-C motif) ligand 2 (CCL2) and modified the mechanical properties of the aortic wall, thus favoring vessel dilation. SMC-specific Smad4 deletion in Il1r1- or Ccr2-null mice resulted in milder aortic pathology. A chronic treatment with anti-IL-1ß antibody effectively hampered aneurysm development. These findings identify a mechanistic target for controlling the progression of aneurysms with compromised TGF-ß signaling, such as those driven by SMAD4 mutations.


Asunto(s)
Aneurisma de la Aorta/prevención & control , Interleucina-1beta/antagonistas & inhibidores , Transducción de Señal/fisiología , Factor de Crecimiento Transformador beta/fisiología , Animales , Células Cultivadas , Quimiocina CCL2/antagonistas & inhibidores , Interleucina-1beta/biosíntesis , Ratones , Miocitos del Músculo Liso/inmunología , FN-kappa B/fisiología , Receptores CCR2/antagonistas & inhibidores , Proteína Smad4/fisiología , Tamoxifeno/farmacología
4.
EMBO J ; 40(21): e107532, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34549820

RESUMEN

Astrocytes regulate brain-wide functions and also show region-specific differences, but little is known about how general and region-specific functions are aligned at the single-cell level. To explore this, we isolated adult mouse diencephalic astrocytes by ACSA-2-mediated magnetic-activated cell sorting (MACS). Single-cell RNA-seq revealed 7 gene expression clusters of astrocytes, with 4 forming a supercluster. Within the supercluster, cells differed by gene expression related to ion homeostasis or metabolism, with the former sharing gene expression with other regions and the latter being restricted to specific regions. All clusters showed expression of proliferation-related genes, and proliferation of diencephalic astrocytes was confirmed by immunostaining. Clonal analysis demonstrated low level of astrogenesis in the adult diencephalon, but not in cerebral cortex grey matter. This led to the identification of Smad4 as a key regulator of diencephalic astrocyte in vivo proliferation and in vitro neurosphere formation. Thus, astrocytes show diverse gene expression states related to distinct functions with some subsets being more widespread while others are more regionally restricted. However, all share low-level proliferation revealing the novel concept of adult astrogenesis in the diencephalon.


Asunto(s)
Astrocitos/metabolismo , Linaje de la Célula/genética , Diencéfalo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Neurogénesis/genética , Proteína Smad4/genética , Animales , Astrocitos/clasificación , Astrocitos/citología , Ciclo Celular/genética , Diferenciación Celular , Proliferación Celular , Corteza Cerebral/citología , Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/metabolismo , Diencéfalo/citología , Diencéfalo/crecimiento & desarrollo , Ontología de Genes , Redes Reguladoras de Genes , Sustancia Gris/citología , Sustancia Gris/crecimiento & desarrollo , Sustancia Gris/metabolismo , Redes y Vías Metabólicas , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Anotación de Secuencia Molecular , Familia de Multigenes , Transducción de Señal , Proteína Smad4/metabolismo
5.
J Pathol ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38922866

RESUMEN

SMAD4 is a tumor suppressor mutated or silenced in multiple cancers, including oral cavity squamous cell carcinoma (OSCC). Human clinical samples and cell lines, mouse models and organoid culture were used to investigate the role that SMAD4 plays in progression from benign disease to invasive OSCC. Human OSCC lost detectable SMAD4 protein within tumor epithelium in 24% of cases, and this loss correlated with worse progression-free survival independent of other major clinical and pathological features. A mouse model engineered for KrasG12D expression in the adult oral epithelium induced benign papillomas, however the combination of KrasG12D with loss of epithelial Smad4 expression resulted in rapid development of invasive carcinoma with features of human OSCC. Examination of regulatory pathways in 3D organoid cultures of SMAD4+ and SMAD4- mouse tumors with Kras mutation found that either loss of SMAD4 or inhibition of TGFß signaling upregulated the WNT pathway and altered the extracellular matrix. The gene signature of the mouse tumor organoids lacking SMAD4 was highly similar to the gene signature of human head and neck squamous cell carcinoma. In summary, this work has uncovered novel mechanisms by which SMAD4 acts as a tumor suppressor in OSCC. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.

6.
Genes Dev ; 31(23-24): 2337-2342, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29352019

RESUMEN

SMAD4 constrains progression of Pten-null prostate cancer and serves as a common downstream node of transforming growth factor ß (TGFß) and bone morphogenetic protein (BMP) pathways. Here, we dissected the roles of TGFß receptor II (TGFBR2) and BMP receptor II (BMPR2) using a Pten-null prostate cancer model. These studies demonstrated that the molecular actions of TGFBR2 result in both SMAD4-dependent constraint of proliferation and SMAD4-independent activation of apoptosis. In contrast, BMPR2 deletion extended survival relative to Pten deletion alone, establishing its promoting role in BMP6-driven prostate cancer progression. These analyses reveal the complexity of TGFß-BMP signaling and illuminate potential therapeutic targets for prostate cancer.


Asunto(s)
Receptores de Proteínas Morfogenéticas Óseas de Tipo II/genética , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/metabolismo , Neoplasias de la Próstata/fisiopatología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/genética , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Transducción de Señal , Animales , Neoplasias Óseas/genética , Neoplasias Óseas/secundario , Modelos Animales de Enfermedad , Eliminación de Gen , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Genotipo , Estimación de Kaplan-Meier , Masculino , Ratones , Ratones Endogámicos C57BL , Fosfohidrolasa PTEN/genética , Neoplasias de la Próstata/genética , Receptor Tipo II de Factor de Crecimiento Transformador beta , Proteína Smad4/genética , Proteína Smad4/metabolismo
7.
Dev Dyn ; 253(1): 119-143, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37650555

RESUMEN

BACKGROUND: During embryogenesis, cardiac neural crest-derived cells (NCs) migrate into the pharyngeal arches and give rise to the vascular smooth muscle cells (vSMCs) of the pharyngeal arch arteries (PAAs). vSMCs are critical for the remodeling of the PAAs into their final adult configuration, giving rise to the aortic arch and its arteries (AAAs). RESULTS: We investigated the role of SMAD4 in NC-to-vSMC differentiation using lineage-specific inducible mouse strains. We found that the expression of SMAD4 in the NC is indelible for regulating the survival of cardiac NCs. Although the ablation of SMAD4 at E9.5 in the NC lineage led to a near-complete absence of NCs in the pharyngeal arches, PAAs became invested with vSMCs derived from a compensatory source. Analysis of AAA development at E16.5 showed that the alternative vSMC source compensated for the lack of NC-derived vSMCs and rescued AAA morphogenesis. CONCLUSIONS: Our studies uncovered the requisite role of SMAD4 in the contribution of the NC to the pharyngeal arch mesenchyme. We found that in the absence of SMAD4+ NCs, vSMCs around the PAAs arose from a different progenitor source, rescuing AAA morphogenesis. These findings shed light on the remarkable plasticity of developmental mechanisms governing AAA development.


Asunto(s)
Músculo Liso Vascular , Cresta Neural , Animales , Ratones , Aorta , Aorta Torácica , Región Branquial , Músculo Liso Vascular/metabolismo
8.
J Cell Mol Med ; 28(7): e18237, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38509727

RESUMEN

To explore the underlying molecular mechanisms of supraventricular tachycardia (SVT), this study aimed to analyse the complex relationship between FLRT3 and TGF-ß/SMAD4 signalling pathway, which affects Na+ and K+ channels in cardiomyocytes. Bioinformatics analysis was performed on 85 SVT samples and 15 healthy controls to screen overlapping genes from the key module and differentially expressed genes (DEGs). Expression profiling of overlapping genes, coupled with Receiver Operating Characteristic (ROC) curve analyses, identified FLRT3 as a hub gene. In vitro studies utilizing Ang II-stimulated H9C2 cardiomyocytes were undertaken to elucidate the consequences of FLRT3 silencing on cardiomyocyte apoptosis and autophagic processes. Utilizing a combination of techniques such as quantitative reverse-transcription polymerase chain reaction (qRT-PCR), western blotting (WB), flow cytometry, dual-luciferase reporter assays and chromatin immunoprecipitation polymerase chain reaction (ChIP-PCR) assays were conducted to decipher the intricate interactions between FLRT3, the TGF-ß/SMAD4 signalling cascade and ion channel gene expression. Six genes (AADAC, DSC3, FLRT3, SYT4, PRR9 and SERTM1) demonstrated reduced expression in SVT samples, each possessing significant clinical diagnostic potential. In H9C2 cardiomyocytes, FLRT3 silencing mitigated Ang II-induced apoptosis and modulated autophagy. With increasing TGF-ß concentration, there was a dose-responsive decline in FLRT3 and SCN5A expression, while both KCNIP2 and KCND2 expressions were augmented. Moreover, a direct interaction between FLRT3 and SMAD4 was observed, and inhibition of SMAD4 expression resulted in increased FLRT3 expression. Our results demonstrated that the TGF-ß/SMAD4 signalling pathway plays a critical role by regulating FLRT3 expression, with potential implications for ion channel function in SVT.


Asunto(s)
Apoptosis , Glicoproteínas de Membrana , Proteína Smad4 , Taquicardia Supraventricular , Factor de Crecimiento Transformador beta , Humanos , Apoptosis/genética , Autofagia/genética , Western Blotting , Glicoproteínas de Membrana/metabolismo , Proteína Smad4/metabolismo , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo
9.
Curr Issues Mol Biol ; 46(4): 2827-2844, 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38666907

RESUMEN

The present review demonstrates the major tumor suppressor genes, including TP53, CDKN2A and SMAD4, associated with pancreatic cancer. Each gene's role, prevalence and impact on tumor development and progression are analyzed, focusing on the intricate molecular landscape of pancreatic cancer. In addition, this review underscores the prognostic significance of specific mutations, such as loss of TP53, and explores some potential targeted therapies tailored to these molecular signatures. The findings highlight the importance of genomic analyses for risk assessment, early detection and the design of personalized treatment approaches in pancreatic cancer. Overall, this review provides a comprehensive analysis of the molecular intricacies of pancreatic tumors, paving the way for more effective and tailored therapeutic interventions.

10.
Cancer ; 130(3): 476-484, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-37823514

RESUMEN

BACKGROUND: In select patients, pancreatic adenocarcinoma remains a local disease, yet there are no validated biomarkers to predict this behavior and who may benefit from aggressive local treatments. This study sought to determine if SMAD4 (mothers against decapentaplegic homolog 4) messenger RNA-sequencing (RNA-seq) expression is a robust method for predicting overall survival (OS) and distant metastasis-free survival (DMFS) in patients with resected pancreatic adenocarcinoma. METHODS: Utilizing The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC), 322 patients with resected stage I-III pancreatic adenocarcinoma were identified. In TCGA, multivariable proportional hazards models were used to determine the association of SMAD4 genomic aberrations and RNA-seq expression with OS and DMFS. In the ICGC, analysis sought to confirm the predictive performance of RNA-seq via multivariable models and receiver operator characteristic curves. RESULTS: In TCGA, the presence of SMAD4 genomic aberrations was associated with worse OS (hazard ratio [HR], 1.55; 95% CI, 1.00-2.40; p = .048) but not DMFS (HR, 1.33; 95% CI, .87-2.03; p = .19). Low SMAD4 RNA-seq expression was associated with worse OS (HR, 1.83; 95% CI, 1.17-2.86; p = .008) and DMFS (HR, 1.70; 95% CI, 1.14-2.54; p = .009). In the ICGC, increased SMAD4 RNA-seq expression correlated with improved OS (area under the curve [AUC], .92; 95% CI, .86-.94) and DMFS (AUC, .84; 95% CI, .82-.87). CONCLUSIONS: In patients with resected pancreatic adenocarcinoma, SMAD4 genomic aberrations are associated with worse OS but do not predict for DMFS. Increased SMAD4 RNA-seq expression is associated with improved OS and DMFS in patients with resected pancreatic adenocarcinoma. This reproducible finding suggests SMAD4 RNA-seq expression may be a useful marker to predict metastatic spread.


Asunto(s)
Adenocarcinoma , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/cirugía , Neoplasias Pancreáticas/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/cirugía , Proteína Smad4/genética , Modelos de Riesgos Proporcionales , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Pronóstico
11.
Biochem Biophys Res Commun ; 715: 150007, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38678783

RESUMEN

Smad4, a critical mediator of TGF-ß signaling, plays a pivotal role in regulating various cellular functions, including immune responses. In this study, we investigated the impact of Smad4 knockout specifically in macrophages on anti-tumor immunity, focusing on lung metastasis of B16 melanoma cells. Using a mouse model with Smad4 knockout in macrophages established via Lyz2-cre mice and Smad4 flox/flox mice, we demonstrated a significant inhibition of B16 metastasis in the lungs. Interestingly, the inhibition of tumor growth was found to be independent of adaptive immunity, as no significant changes were observed in the numbers or activities of T cells, B cells, or NK cells. Instead, Smad4 knockout led to the emergence of an MCHIIlow CD206high subset of lung interstitial macrophages, characterized by enhanced phagocytosis function. Our findings highlight the crucial role of Smad4 in modulating the innate immune response against tumors and provide insights into potential therapeutic strategies targeting lung interstitial macrophages to enhance anti-tumor immunity.


Asunto(s)
Neoplasias Pulmonares , Melanoma Experimental , Fagocitosis , Proteína Smad4 , Animales , Ratones , Línea Celular Tumoral , Pulmón/patología , Pulmón/inmunología , Pulmón/metabolismo , Neoplasias Pulmonares/secundario , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/inmunología , Macrófagos Alveolares/patología , Melanoma Experimental/patología , Melanoma Experimental/inmunología , Ratones Endogámicos C57BL , Ratones Noqueados , Fagocitosis/genética , Proteína Smad4/deficiencia , Proteína Smad4/genética , Proteína Smad4/metabolismo
12.
Development ; 148(23)2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34822715

RESUMEN

SMAD4 regulates gene expression in response to BMP and TGFß signal transduction, and is required for diverse morphogenetic processes, but its target genes have remained largely elusive. Here, we identify the SMAD4 target genes in mouse limb buds using an epitope-tagged Smad4 allele for ChIP-seq analysis in combination with transcription profiling. This analysis shows that SMAD4 predominantly mediates BMP signal transduction during early limb bud development. Unexpectedly, the expression of cholesterol biosynthesis enzymes is precociously downregulated and intracellular cholesterol levels are reduced in Smad4-deficient limb bud mesenchymal progenitors. Most importantly, our analysis reveals a predominant function of SMAD4 in upregulating target genes in the anterior limb bud mesenchyme. Analysis of differentially expressed genes shared between Smad4- and Shh-deficient limb buds corroborates this function of SMAD4 and also reveals the repressive effect of SMAD4 on posterior genes that are upregulated in response to SHH signaling. This analysis uncovers opposing trans-regulatory inputs from SHH- and SMAD4-mediated BMP signal transduction on anterior and posterior gene expression during the digit patterning and outgrowth in early limb buds.


Asunto(s)
Tipificación del Cuerpo , Proteínas Morfogenéticas Óseas/metabolismo , Proteínas Hedgehog/metabolismo , Esbozos de los Miembros/embriología , Transducción de Señal , Proteína Smad4/metabolismo , Animales , Proteínas Morfogenéticas Óseas/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/genética , Miembro Posterior/embriología , Ratones , Ratones Transgénicos , Proteína Smad4/genética
13.
Biol Chem ; 405(4): 241-256, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38270141

RESUMEN

We investigated the effects of transcriptional intermediary factor 1γ (TIF1γ) and SMAD4 on the proliferation and liver metastasis of colorectal cancer (CRC) cells through knockdown of TIF1γ and/or SMAD4 and knockdown of TIF1γ and/or restoration of SMAD4 expression. Furthermore, we examined TIF1γ and SMAD4 expression in human primary CRC and corresponding liver metastatic CRC specimens. TIF1γ promoted but SMAD4 inhibited the proliferation of CRC cells by competitively binding to activated SMAD2/SMAD3 complexes and then reversely regulating c-Myc, p21, p27, and cyclinA2 levels. Surprisingly, both TIF1γ and SMAD4 reduced the liver metastasis of all studied CRC cell lines via inhibition of MEK/ERK pathway-mediated COX-2, Nm23, uPA, and MMP9 expression. In patients with advanced CRC, reduced TIF1γ or SMAD4 expression was correlated with increased invasion and liver metastasis and was a significant, independent risk factor for recurrence and survival after radical resection. Patients with advanced CRC with reduced TIF1γ or SAMD4 expression had higher recurrence rates and shorter overall survival. TIF1γ and SMAD4 competitively exert contrasting effects on cell proliferation but act complementarily to suppress the liver metastasis of CRC via MEK/ERK pathway inhibition. Thus, reduced TIF1γ or SMAD4 expression in advanced CRC predicts earlier liver metastasis and poor prognosis.


Asunto(s)
Neoplasias Colorrectales , Neoplasias Hepáticas , Humanos , Línea Celular Tumoral , Proliferación Celular , Neoplasias Colorrectales/patología , Neoplasias Hepáticas/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteína Smad4 , Factores de Transcripción/metabolismo
14.
Reprod Biol Endocrinol ; 22(1): 17, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38297261

RESUMEN

BACKGROUND: In our previous investigation, we revealed a significant increase in the expression of microRNA-6881-3p (miR-6881-3p) in follicular fluid granulosa cells (GCs) from women with diminished ovarian reserve (DOR) compared to those with normal ovarian reserve (NOR). However, the role of miR-6881-3p in the development of DOR remains poorly understood. OBJECTIVE: This study aimed to elucidate the involvement of miR-6881-3p in the regulation of granulosa cells (GCs) function and the pathogenesis of DOR. MATERIALS AND METHODS: Initially, we assessed the expression levels of miR-6881-3p in GCs obtained from human follicular fluid in both NOR and DOR cases and explored the correlation between miR-6881-3p expression and clinical outcomes in assisted reproduction technology (ART). Bioinformatic predictions and dual-luciferase reporter assays were employed to identify the target gene of miR-6881-3p. Manipulation of miR-6881-3p expression was achieved through the transfection of KGN cells with miR-6881-3p mimics, inhibitor, and miRNA negative control (NC). Following transfection, we assessed granulosa cell apoptosis and cell cycle progression via flow cytometry and quantified target gene expression through quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot (WB) analysis. Finally, we examined the correlation between target gene expression levels in GCs from NOR and DOR patients and their association with ART outcomes. RESULTS: Our findings revealed elevated miR-6881-3p levels in GCs from DOR patients, which negatively correlated with ovarian reserve function and ART outcomes. We identified a direct binding interaction between miR-6881-3p and the 3'-untranslated region of the SMAD4. Transfection with miR-6881-3p mimics induced apoptosis in KGN cell. Furthermore, miR-6881-3p expression negatively correlated with both mRNA and protein levels of the SMAD4. The mRNA and protein levels of SMAD4 were notably reduced in GCs from DOR patients, and SMAD4 mRNA expression positively correlated with ART outcomes. In addition, the mRNA levels of FSHR, CYP11A1 were notably reduced after transfection with miR-6881-3p mimics in KGN cell, while LHCGR notably increased. The mRNA and protein levels of FSHR, CYP11A1 were notably reduced in GCs from DOR patients, while LHCGR notably increased. CONCLUSION: This study underscores the role of miR-6881-3p in directly targeting SMAD4 mRNA, subsequently diminishing granulosa cell viability and promoting apoptosis, and may affect steroid hormone regulation and gonadotropin signal reception in GCs. These findings contribute to our understanding of the pathogenesis of DOR.


Asunto(s)
MicroARNs , Enfermedades del Ovario , Reserva Ovárica , Humanos , Femenino , Reserva Ovárica/genética , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/metabolismo , MicroARNs/metabolismo , Enfermedades del Ovario/metabolismo , Células de la Granulosa/metabolismo , Apoptosis/genética , ARN Mensajero/metabolismo , Proliferación Celular/genética , Proteína Smad4/metabolismo
15.
FASEB J ; 37(8): e23073, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37402125

RESUMEN

In female mammals, the oviduct and uterus are essential sites for female and male gamete transport, fertilization, implantation, and maintenance of a successful pregnancy. To delineate the reproductive function of Mothers against decapentaplegic homolog 4 (Smad4), we specifically inactivated Smad4 in ovarian granulosa cells and, oviduct and uterine mesenchymal cells using the Amhr2-cre mouse line. Deletion of exon 8 of Smad4 results in the production of an MH2-truncated SMAD4 protein. These mutant mice are infertile due to the development of oviductal diverticula and defects during the implantation process. The ovaries are fully functional as demonstrated in an ovary transfer experiment. The development of oviductal diverticula occurs shortly after puberty and is dependent on estradiol. The diverticula interfere with sperm migration and embryo transit to the uterus, reducing the number of implantation sites. Analysis of the uterus shows that, even if implantation occurs, decidualization and vascularization are defective resulting in embryo resorption as early as the seventh day of pregnancy. Thus, Smad4 plays an important function in female reproduction by controlling the structural and functional integrity of the oviduct and uterus.


Asunto(s)
Estradiol , Proteína Smad4 , Animales , Femenino , Humanos , Masculino , Ratones , Embarazo , Implantación del Embrión , Estradiol/metabolismo , Mamíferos/metabolismo , Oviductos/metabolismo , Semen/metabolismo , Proteína Smad4/genética , Proteína Smad4/metabolismo , Útero/metabolismo
16.
FASEB J ; 37(11): e23243, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37800888

RESUMEN

Hepcidin negatively regulates systemic iron levels by inhibiting iron entry into the circulation. Hepcidin production is increased in response to an increase in systemic iron via the activation of the bone morphogenetic protein (BMP) pathway. Regulation of hepcidin expression by iron status has been proposed on the basis of evidence mainly from rodents and humans. We evaluated the effect of iron administration on plasma hepcidin concentrations in calves and the expression of bovine hepcidin by the BMP pathway in a cell culture study. Hematocrit as well as levels of blood hemoglobin and plasma iron were lower than the reference level in calves aged 1-4 weeks. Although intramuscular administration of iron increased iron-related parameters, plasma hepcidin concentrations were unaffected. Treatment with BMP6 increased hepcidin expression in human liver-derived cells but not in bovine liver-derived cells. A luciferase-based reporter assay revealed that Smad4 was required for hepcidin reporter transcription induced by Smad1. The reporter activity of hepcidin was lower in the cells transfected with bovine Smad4 than in those transfected with murine Smad4. The lower expression levels of bovine Smad4 were responsible for the lower activity of the hepcidin reporter, which might be due to the instability of bovine Smad4 mRNA. In fact, the endogenous Smad4 protein levels were lower in bovine cells than in human and murine cells. Smad4 also confers TGF-ß/activin-mediated signaling. Induction of TGF-ß-responsive genes was also lower after treatment with TGF-ß1 in bovine hepatocytes than in human hepatoma cells. We revealed the unique regulation of bovine hepcidin expression and the characteristic TGF-ß family signaling mediated by bovine Smad4. The present study suggests that knowledge of the regulatory expression of hepcidin as well as TGF-ß family signaling obtained in murine and human cells is not always applicable to bovine cells.


Asunto(s)
Hepcidinas , Proteína Smad4 , Animales , Bovinos , Humanos , Ratones , Hepcidinas/genética , Hepcidinas/metabolismo , Proteína Smad4/genética , Proteína Smad4/metabolismo , Hierro/metabolismo , Transducción de Señal , Proteínas Morfogenéticas Óseas/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
17.
Am J Med Genet A ; : e63648, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38695688

RESUMEN

Juvenile polyposis syndrome (JPS) is a rare disease characterized by multiple hamartomatous polyps in the gastrointestinal tract, associated with pathogenic variants of BMPR1A and SMAD4. We present the description of SMAD4 mosaicism in a 30-year-old man who had caecum adenocarcinoma, 11 juvenile colon polyps and epistaxis since childhood. We conducted NGS polyposis and CRC panel analysis on DNA extracted from two polyps, revealing a likely pathogenic SMAD4 variant: NM_005359.5:c. 1600C>T, p.(Gln534*). This variant was then identified at a very low frequency on blood and normal colonic tissue, by targeted visualization of previously obtained NGS data. These findings support the presence of a likely pathogenic mosaic SMAD4 variant that aligns with the patient's phenotype. Given the relatively frequent occurrence of de novo SMAD4 mutations, somatic mosaicism could account for a significant proportion of sporadic JPS patients with unidentified pathogenic variants. This case underscores the diagnosis challenge of detecting mosaicism and emphasizes the importance of somatic analyses.

18.
Am J Med Genet A ; : e63605, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38752492

RESUMEN

Germline SMAD4 pathogenic variants (PVs) cause juvenile polyposis syndrome (JPS), which is known for an increased risk of gastrointestinal juvenile polyps and gastrointestinal cancer. Many patients with SMAD4 PV also show signs of hereditary hemorrhagic telangiectasia (HHT) and some patients have aneurysms and dissections of the thoracic aorta. Here we describe two patients with a germline SMAD4 PV and a remarkable clinical presentation including multiple medium-sized arterial aneurysms. More data are needed to confirm whether the more extensive vascular phenotype and the other described features in our patients are indeed part of a broader JPS spectrum.

19.
Am J Med Genet A ; : e63638, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38779990

RESUMEN

Myhre syndrome is an increasingly diagnosed ultrarare condition caused by recurrent germline autosomal dominant de novo variants in SMAD4. Detailed multispecialty evaluations performed at the Massachusetts General Hospital (MGH) Myhre Syndrome Clinic (2016-2023) and by collaborating specialists have facilitated deep phenotyping, genotyping and natural history analysis. Of 47 patients (four previously reported), most (81%) patients returned to MGH at least once. For patients followed for at least 5 years, symptom progression was observed in all. 55% were female and 9% were older than 18 years at diagnosis. Pathogenic variants in SMAD4 involved protein residues p.Ile500Val (49%), p.Ile500Thr (11%), p.Ile500Leu (2%), and p.Arg496Cys (38%). Individuals with the SMAD4 variant p.Arg496Cys were less likely to have hearing loss, growth restriction, and aortic hypoplasia than the other variant groups. Those with the p.Ile500Thr variant had moderate/severe aortic hypoplasia in three patients (60%), however, the small number (n = 5) prevented statistical comparison with the other variants. Two deaths reported in this cohort involved complex cardiovascular disease and airway stenosis, respectively. We provide a foundation for ongoing natural history studies and emphasize the need for evidence-based guidelines in anticipation of disease-specific therapies.

20.
Cell Commun Signal ; 22(1): 248, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38689334

RESUMEN

BACKGROUND: Bone morphogenetic protein 4 (BMP4) is a potent inhibitor of breast cancer metastasis. However, a tumor-promoting effect of BMP4 is reported in other tumor types, especially when SMAD4 is inactive. METHODS: To assess the requirement for SMAD4 in BMP4-mediated suppression of metastasis, we knocked down SMAD4 in two different breast tumors and enforced SMAD4 expression in a third line with endogenous SMAD4 deletion. In addition, we assessed the requirement for SMAD4 in tumor cell-specific BMP signalling by expression of a constitutively active BMP receptor. Delineation of genes regulated by BMP4 in the presence or absence of SMAD4 was assessed by RNA sequencing and a BMP4-induced gene, MYO1F was assessed for its role in metastasis. Genes regulated by BMP4 and/or SMAD4 were assessed in a publicly available database of gene expression profiles of breast cancer patients. RESULTS: In the absence of SMAD4, BMP4 promotes primary tumor growth that is accompanied by increased expression of genes associated with DNA replication, cell cycle, and MYC signalling pathways. Despite increased primary tumor growth, BMP4 suppresses metastasis in the absence of tumor cell expression of SMAD4. Consistent with the anti-metastatic activity of BMP4, enforced signalling through the constitutively active receptor in SMAD4 positive tumors that lacked BMP4 expression still suppressed metastasis, but in the absence of SMAD4, the suppression of metastasis was largely prevented. Thus BMP4 is required for suppression of metastasis regardless of tumor SMAD4 status. The BMP4 upregulated gene, MYO1F, was shown to be a potent suppressor of breast cancer metastasis. Gene signature upregulated by BMP4 in the absence of SMAD4 was associated with poor prognosis in breast cancer patients, whereas gene signature upregulated by BMP4 in the presence of SMAD4 was associated with improved prognosis. CONCLUSIONS: BMP4 expression is required for suppression of metastasis regardless of the SMAD4 status of the tumor cells. Since BMP4 is a secreted protein, we conclude that it can act both in an autocrine manner in SMAD4-expressing tumor cells and in a paracrine manner on stromal cells to suppress metastasis. Deletion of SMAD4 from tumor cells does not prevent BMP4 from suppressing metastasis via a paracrine mechanism.


Asunto(s)
Proteína Morfogenética Ósea 4 , Neoplasias de la Mama , Metástasis de la Neoplasia , Transducción de Señal , Proteína Smad4 , Proteína Smad4/genética , Proteína Smad4/metabolismo , Proteína Morfogenética Ósea 4/genética , Proteína Morfogenética Ósea 4/metabolismo , Humanos , Animales , Femenino , Línea Celular Tumoral , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Regulación Neoplásica de la Expresión Génica , Ratones , Proliferación Celular/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA