RESUMEN
Recently, Bombyx mori silk fibroin (SF) has been shown to be a suitable material for vascular prostheses for small arteries. In this study, we developed a softer SF graft by coating water-dispersed biodegradable polyurethane (PU) based on polycaprolactone and an SF composite sponge on the knitted SF vascular graft. Three kinds of 13C solid-state nuclear magnetic resonance (NMR), namely carbon-13 (13C) cross-polarization/magic angle spinning (MAS), 13C dipolar decoupled MAS, and 13C refocused insensitive nuclei enhanced by polarization transfer (r-INEPT) NMR, were used to characterize the PU-SF coating sponge. Especially the 13C r-INEPT NMR spectrum of water-dispersed biodegradable PU showed that both main components of the non-crystalline domain of PU and amorphous domain of SF were highly mobile in the hydrated state. Then, the small-diameter SF artificial vascular grafts coated with this sponge were evaluated through implantation experiments with rats. The implanted PU-SF-coated SF grafts showed a high patency rate. It was confirmed that the inside of the SF grafts was covered with vascular endothelial cells 4 weeks after implantation. These results showed that the water-dispersed biodegradable PU-SF-coated SF graft created in this study could be a strong candidate for small-diameter artificial vascular graft.
Asunto(s)
Prótesis Vascular , Fibroínas/química , Poliuretanos/química , Seda/química , Animales , Bombyx/química , Células Endoteliales/efectos de los fármacos , Humanos , Espectroscopía de Resonancia Magnética , Ensayo de Materiales , Poliuretanos/farmacología , Ratas , Seda/farmacología , Andamios del Tejido/química , Agua/químicaRESUMEN
OBJECTIVE: There is a need for small diameter vascular substitutes in the absence of available autologous material. A small diameter, long tissue engineered vascular graft was developed using a completely autologous approach called "in body tissue architecture technology (iBTA)". The aim of this pilot study was to evaluate "Biotubes", iBTA induced autologous collagenous tubes, for their potential use as small diameter vascular bypass conduits. METHODS: Biotubes (internal diameter 4 mm, length 50 cm, wall thickness 0.85 mm) were prepared by subcutaneous embedding of plastic moulds (Biotube Maker) in three goats for approximately two months. Allogenic Biotubes (length 10 cm [n = 2], 15 cm [n = 2], 22 cm [n = 2]) were bypassed to both carotid arteries by end to side anastomosis with their ligation between the anastomoses in another three goats. Residual Biotubes were examined for their mechanical properties. After four weeks, the harvested Biotubes were evaluated histologically. RESULTS: All Biotubes had sufficient pressure resistance, approximately 3000 mmHg. Although wall thickening occurred at two proximal anastomosis sites, all six grafts were patent without luminal thrombus formation, stenosis, or aneurysm deformation throughout the implantation period. Endothelial cells covered both anastomosis sites almost completely, with partial covering in the central portion of the grafts. Furthermore, α smooth muscle actin positive cells infiltrated the middle layer along almost the entire graft length. CONCLUSION: This preliminary study showed that small diameter, long, tissue engineered Biotubes could function properly as arterial bypass conduits in a large animal for one month without any abnormal change in vascular shape. Thus, small diameter, long Biotubes are potentially viable conduits, which are biocompatible and labour non-intensive, and therefore, suitable for clinical practice. Additionally, Biotubes can start the regeneration process in a short period of time.
RESUMEN
In recent years, the demand for functional small-diameter (< 6 mm) artificial vascular grafts has greatly increased due to an increase in the number of patients with vascular heart disease. However, currently, there are no available commercial small-diameter grafts. The objective of this research was to develop a porous silk fibroin (SF)-coated poly(ethylene terephthalate) (PET) graft with a diameter < 6 mm. The graft was compared with a gelatin-coated PET graft because the latter PET graft with a diameter ~ 6 mm was widely used as a commercial vascular graft. Initially, porous SF was prepared using Glyc as the porogen [termed SF(Glyc)] and the PET grafts were prepared through the double-Raschel knitting method. Subsequently, the degradation of the SF coating was monitored using protease XIV in vitro and was compared with that observed in gelatin-coated PET grafts. Finally, these grafts were also implanted into rats for an in vivo comparison. In degradation experiments, after 7 days, the SF was clearly digested by protease XIV, but the gelatin on the graft was still remained at the outer surface. In implantation experiments in rats, the SF(Glyc)-coated PET graft was rapidly degraded in vivo and remodeling to self-tissues was promoted compared with the gelatin-coated PET graft. Thrombus formation and intimal hyperplasia were observed in the gelatin-coated PET graft; however, such side reactions were not observed in the SF(Glyc)-coated PET graft. Thus, the porous SF(Glyc)-coated PET graft with a small diameter < 6 mm may be useful as a commercial vascular graft.
Asunto(s)
Prótesis Vascular , Fibroínas/química , Animales , Implantación de Prótesis Vascular , Materiales Biocompatibles Revestidos/química , Gelatina/química , Humanos , Ensayo de Materiales , Poliésteres/química , Pronasa/metabolismo , Ratas , Ratas Sprague-Dawley , Factores de Tiempo , Remodelación VascularRESUMEN
Development of a small-diameter artificial vascular graft is urgent because existing materials often occlude within a short time. We have shown that small-diameter vascular graft using Bombyx mori silk fibroin is a potential candidate. Silk fibroin grafts are fabricated by coating silk fibroin on the knit tube prepared from silk fibroin fibers. However, there is a serious problem that the coated silk fibroin portion hardens when alcohol is used for insolubilization of the coated silk fibroin. This hardening prevents the desired biodegradation of the coated silk fibroin. In this study, we improved the silk fibroin coating method of the knit silk fibroin tube. Namely, the silk fibroin sponge coating was performed using glycerin, poly(ethylene glycol diglycidyl ether) or poly(ethylene glycol). In addition, silk fibroin grafts were prepared avoiding dryness during the coating process and were kept in the hydrated state until implantation into the abdominal aorta was complete. After implantation of the hydrated silk fibroin grafts, grafts were taken out at two weeks or three months, and histopathological examination was performed. The grafts coated with three types of silk fibroin sponges had a higher tissue infiltration rate than alcohol-treated grafts and were superior in the formation of smooth muscle cell and vascular endothelial cell remodeling. Biodegradations of the silk fibroin grafts prepared using the three types of silk fibroin sponge coatings and alcohol-treated silk fibroin grafts were also examined with protease XIV in vitro, and the grafts were observed by scanning electron microscopy before and 24 h after biodegradation. Faster biodegradations were observed for grafts coated with the three types of silk fibroin sponges. 13C solid-state nuclear magnetic resonance studies showed that the conformation of the silk fibroin sponge prepared using porogen was a random coil with high mobility in the hydrated state. We believe that small-diameter silk fibroin vascular grafts coated with quick biodegradable silk fibroin sponges can be developed based on these findings.