Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Microb Cell Fact ; 22(1): 157, 2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37592258

RESUMEN

BACKGROUND: New bioinsecticides with novel modes of action are urgently needed to minimise the environmental and safety hazards associated with the use of synthetic chemical pesticides and to combat growing levels of pesticide resistance. The pea seed albumin PA1b knottin peptide is the only known proteinaceous inhibitor of insect vacuolar adenosine triphosphatase (V-ATPase) rotary proton pumps. Oral toxicity towards insect pests and an absence of activity towards mammals makes Pa1b an attractive candidate for development as a bioinsecticide. The purpose of this study was to investigate if Pichia pastoris could be used to express a functional PA1b peptide and if it's insecticidal activity could be enhanced via engineering to produce a fusion protein comprising the pea albumin protein fused to the mannose-specific snowdrop lectin (Galanthus nivalis agglutinin; GNA). RESULTS: We report the production of a recombinant full-length pea albumin protein (designated PAF) and a fusion protein (PAF/GNA) comprised of PAF fused to the N-terminus of GNA in the yeast Pichia pastoris. PAF was orally toxic to pea (Acyrthosiphon pisum) and peach potato (Myzus persicae) aphids with respective, Day 5 LC50 values of 54 µM and 105 µM derived from dose-response assays. PAF/GNA was significantly more orally toxic as compared to PAF, with LC50 values tenfold (5 µM) and 3.3-fold (32 µM) lower for pea and peach potato aphids, respectively. By contrast, no phenotypic effects were observed for worker bumble bees (Bombus terristrus) fed PAF, GNA or PAF/GNA in acute toxicity assays. Confocal microscopy of pea aphid guts after pulse-chase feeding fluorescently labelled proteins provides evidence that enhanced efficacy of the fusion protein is attributable to localisation and retention of PAF/GNA to the gut epithelium. In contact assays the fusion protein was also found to be significantly more toxic towards A. pisum as compared to PAF, GNA or a combination of the two proteins. CONCLUSIONS: Our results suggest that GNA mediated binding to V-type ATPase pumps acts to potentiate the oral and contact aphicidal activity of PAF. This work highlights potential for the future commercial development of plant protein-based bioinsecticides that offer enhanced target specificity as compared to chemical pesticides, and compatibility with integrated pest management strategies.


Asunto(s)
Insecticidas , Plaguicidas , Animales , Abejas , Insecticidas/farmacología , Pisum sativum , Albúminas , Ingeniería de Proteínas , Mamíferos
2.
Proc Biol Sci ; 281(1787)2014 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-24898372

RESUMEN

Evidence is accumulating that commonly used pesticides are linked to decline of pollinator populations; adverse effects of three neonicotinoids on bees have led to bans on their use across the European Union. Developing insecticides that pose negligible risks to beneficial organisms such as honeybees is desirable and timely. One strategy is to use recombinant fusion proteins containing neuroactive peptides/proteins linked to a 'carrier' protein that confers oral toxicity. Hv1a/GNA (Galanthus nivalis agglutinin), containing an insect-specific spider venom calcium channel blocker (ω-hexatoxin-Hv1a) linked to snowdrop lectin (GNA) as a 'carrier', is an effective oral biopesticide towards various insect pests. Effects of Hv1a/GNA towards a non-target species, Apis mellifera, were assessed through a thorough early-tier risk assessment. Following feeding, honeybees internalized Hv1a/GNA, which reached the brain within 1 h after exposure. However, survival was only slightly affected by ingestion (LD50>100 µg bee(-1)) or injection of fusion protein. Bees fed acute (100 µg bee(-1)) or chronic (0.35 mg ml(-1)) doses of Hv1a/GNA and trained in an olfactory learning task had similar rates of learning and memory to no-pesticide controls. Larvae were unaffected, being able to degrade Hv1a/GNA. These tests suggest that Hv1a/GNA is unlikely to cause detrimental effects on honeybees, indicating that atracotoxins targeting calcium channels are potential alternatives to conventional pesticides.


Asunto(s)
Abejas/efectos de los fármacos , Bloqueadores de los Canales de Calcio/toxicidad , Insecticidas/toxicidad , Lectinas de Unión a Manosa/toxicidad , Lectinas de Plantas/toxicidad , Venenos de Araña/toxicidad , Animales , Abejas/crecimiento & desarrollo , Bloqueadores de los Canales de Calcio/metabolismo , Galanthus/química , Insecticidas/metabolismo , Larva/efectos de los fármacos , Aprendizaje/efectos de los fármacos , Lectinas de Unión a Manosa/genética , Lectinas de Unión a Manosa/metabolismo , Lectinas de Plantas/genética , Lectinas de Plantas/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/toxicidad , Venenos de Araña/genética , Venenos de Araña/metabolismo
3.
Toxicon ; 239: 107616, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38218384

RESUMEN

The Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae), is a key vector of the phloem-limited bacteria Candidatus Liberibacter asiaticus (CLas) associated with huanglongbing (HLB), the most serious and currently incurable disease of citrus worldwide. Here we report the first investigation into the potential use of a spider venom-derived recombinant neurotoxin, ω/κ-HxTx-Hv1h (hereafter HxTx-Hv1h) when delivered alone or when fused to snowdrop lectin (Galanthus nivalis agglutinin; GNA) to control D. citri. Proteins, including GNA alone, were purified from fermented transformed yeast Pichia pastoris cultures. Recombinant HxTx-Hv1h, HxTx-Hv1h/GNA and GNA were all orally toxic to D. citri, with Day 5 median lethal concentrations (LC50) derived from dose-response artificial diet assays of 27, 20 and 52 µM, respectively. Western analysis of whole insect protein extracts confirmed that psyllid mortality was attributable to protein ingestion and that the fusion protein was stable to cleavage by D. citri proteases. When applied topically (either via droplet or spray) HxTx-Hv1h/GNA was the most effective of the proteins causing >70 % mortality 5 days post treatment, some 2 to 3-fold higher levels of mortality as compared to the toxin alone. By contrast, no significant mortality or phenotypic effects were observed for bumble bees (Bombus terrestris L.) fed on the recombinant proteins in acute toxicity assays. This suggests that HxTx-Hv1h/GNA has potential as a novel bioinsecticide for the management of D. citri offering both enhanced target specificity as compared to chemical pesticides and compatibility with integrated pest management (IPM) strategies.


Asunto(s)
Citrus , Hemípteros , Liberibacter , Animales , Hemípteros/fisiología , Neurotoxinas , Citrus/microbiología , Enfermedades de las Plantas/microbiología
4.
Pest Manag Sci ; 79(1): 284-294, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36161468

RESUMEN

BACKGROUND: Spear®-T sold as a contact foliar spray for the control of glasshouse pests such as aphids, thrips, spider mites and whiteflies, contains the recombinant spider venom peptide GS-ω/κ-HxTx-Hv1h (named as GS-ω/κ-HxTx-Hv1a by Vestaron) as the active ingredient. Here we investigate whether fusion of the peptide to snowdrop lectin, (Galanthus nivalis agglutinin; GNA) enhances the efficacy of this venom peptide towards aphid pests. RESULTS: Recombinant GS-ω/κ-HxTx-Hv1h (HxTx-Hv1h) and an HxTx-Hv1h/GNA fusion protein were produced using the yeast Pichia pastoris. Purified proteins showed comparable toxicity when injected into lepidopteran (Mamestra brassicae) larvae, but significant differences in oral and contact activity towards aphids. HxTx-Hv1h had comparable acute oral toxicity to pea (Acyrthosiphon pisum) and peach potato (Myzus persicae) aphids with respective Day (2) median lethal concentration (LC50 ) values of 111 and 108 µm derived from diet assays. The fusion protein also showed comparable oral toxicity to both species but D2 LC50 values were >3-fold lower (35 and 33 µm for pea and peach potato aphids, respectively) as compared to HxTx-Hv1h. Topically applied toxin and fusion protein, but not GNA, caused significant reductions in pea aphid survival. Contact effects on mortality were significantly greater for aphids exposed to fusion protein as compared to toxin alone. Whole aphid fluorescence microscopy and immunoblotting suggest that improved efficacy is due to enhanced persistence of HxTx-Hv1h when fused to GNA following internalisation of ingested or topically applied proteins. CONCLUSIONS: This is the first study to report on the insecticidal activity of HxTx-Hv1h towards aphids and results suggest that a fusion protein-based approach offers opportunities to significantly enhance oral and contact efficacy of naturally derived toxins, such as HxTx-Hv1h, towards crop pests. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Insecticidas , Venenos de Araña , Agentes de Control Biológico , Insecticidas/farmacología , Péptidos
5.
Cells ; 10(7)2021 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-34203435

RESUMEN

Betacoronaviruses, responsible for the "Severe Acute Respiratory Syndrome" (SARS) and the "Middle East Respiratory Syndrome" (MERS), use the spikes protruding from the virion envelope to attach and subsequently infect the host cells. The coronavirus spike (S) proteins contain receptor binding domains (RBD), allowing the specific recognition of either the dipeptidyl peptidase CD23 (MERS-CoV) or the angiotensin-converting enzyme ACE2 (SARS-Cov, SARS-CoV-2) host cell receptors. The heavily glycosylated S protein includes both complex and high-mannose type N-glycans that are well exposed at the surface of the spikes. A detailed analysis of the carbohydrate-binding specificity of mannose-binding lectins from plants, algae, fungi, and bacteria, revealed that, depending on their origin, they preferentially recognize either complex type N-glycans, or high-mannose type N-glycans. Since both complex and high-mannose glycans substantially decorate the S proteins, mannose-specific lectins are potentially useful glycan probes for targeting the SARS-CoV, MERS-CoV, and SARS-CoV-2 virions. Mannose-binding legume lectins, like pea lectin, and monocot mannose-binding lectins, like snowdrop lectin or the algal lectin griffithsin, which specifically recognize complex N-glycans and high-mannose glycans, respectively, are particularly adapted for targeting coronaviruses. The biomedical prospects of targeting coronaviruses with mannose-specific lectins are wide-ranging including detection, immobilization, prevention, and control of coronavirus infection.


Asunto(s)
Lectinas/farmacología , Coronavirus del Síndrome Respiratorio de Oriente Medio/metabolismo , SARS-CoV-2/metabolismo , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , COVID-19/virología , Cianobacterias/química , Sistemas de Liberación de Medicamentos/métodos , Hongos/química , Humanos , Lectinas/aislamiento & purificación , Lectinas/uso terapéutico , Coronavirus del Síndrome Respiratorio de Oriente Medio/fisiología , Plantas/química , Unión Proteica , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/fisiología , SARS-CoV-2/fisiología , Especificidad de la Especie , Internalización del Virus/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
6.
J Pest Sci (2004) ; 93(1): 391-402, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31997983

RESUMEN

The parasitic small hive beetle (Aethina tumida) feeds on pollen, honey and brood of the European honey bee (Apis mellifera); establishment in North America and Australia has resulted in severe economic damage to the apiculture industry. We report potential for the "in-hive" use of a novel biopesticide that is toxic to this invasive beetle pest but harmless to honeybees. Constructs encoding the spider venom neurotoxin ω-hexatoxin-Hv1a (Hv1a) linked to the N- or C-terminus of snowdrop lectin (GNA) were used to produce recombinant Hv1a/GNA and GNA/Hv1a fusion proteins. Both were similarly toxic to beetles by injection (respective LD50s 1.5 and 0.9 nmoles/g larvae), whereas no effects on adult honeybee survival were observed at injection doses of > 200 nmoles/g insect. When fed to A. tumida larvae, GNA/Hv1a was significantly more effective than Hv1a/GNA (LC50s of 0.52 and 1.14 mg/ml diet, respectively), whereas both proteins were similarly toxic to adults. Results suggested that the reduced efficacy of Hv1a/GNA against larvae was attributable to differences in the susceptibility of the fusion proteins to cleavage by gut serine proteases. In laboratory assays, A. tumida larval survival was significantly reduced when brood, inoculated with eggs, was treated with GNA/Hv1a.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA