Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
BMC Genomics ; 25(1): 362, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38609856

RESUMEN

BACKGROUND: Rose is recognized as an important ornamental plant worldwide, and it is also one of the most widely used flowers in gardens. At present, the improvement of rose traits is still difficult and uncertain, and molecular breeding can provide new ideas for the improvement of modern rose varieties. Somatic embryos are quite good receptors for genetic transformation. However, little is known about the molecular mechanisms underlying during the regeneration process of rose somatic embryos. To elucidate the molecular regulation mechanism of somatic embryo plantlet regeneration, the relationship between the differences in traits of the two different regenerated materials and the significantly differentially expressed genes (DEGs) related to phytohormone pathways in the process of regeneration were be investigated. RESULTS: These representative two regenerated samples from single-piece cotyledonary somatic embryo (SPC) culture of Rosa hybrida 'John F. Kennedy', were harvested for transcriptome analysis, with the SPC explants at the initial culture (Day 0) as the control. The differentially expressed genes (DEGs) in the materials from two different types for regeneration approach (SBF type: the regeneration approach type of single bud formed from SPC explants; MBF type: the regeneration approach type of multiple buds formed from SPC explants) were be screened by means of the transcriptome sequencing technology. In this study, a total of about 396.24 million clean reads were obtained, of which 78.95-82.92% were localized to the reference genome, compared with the initial material (CK sample), there were 5594 specific genes in the material of SBF type and 6142 specific genes in the MBF type. The DEGs from the SBF type material were mainly concentrated in the biological processes of GO terms such as phytohormones, substance transport, cell differentiation, and redox reaction. The KEGG enrichment analysis revealed these DEGs were more active in ubiquinone and other terpenoid-quinone biosynthesis, fatty acid elongation, steroid biosynthesis, and glycosphingolipid biosynthesis-globo and isoglobo series. In contrast, the DEGs induced by the MBF type material were mainly associated with the biological processes such as phytohormones, phosphorylation, photosynthesis and signal transduction. According to KEGG analysis, these DEGs of MBF type were significantly enriched in the porphyrin and chlorophyll metabolism, brassinosteroid biosynthesis, carotenoid biosynthesis, and peroxisome. Furthermore, the results from the phytohormone pathways analysis showed that the auxin-responsive factor SAUR and the cell wall modifying enzyme gene XTH were upregulated for expression but the protein phosphatase gene PP2C was downregulated for expression in SBF type; the higher expression of the ethylene receptor ETR, the ethylene transduction genes EBF1/2, the transcription factor EIN3, and the ethylene-responsive transcription factor ERF1/2 were induced by MBF type. CONCLUSIONS: According to the GO and KEGG analysis, it indicated the DEGs between two different regenerated materials from somatic embryos were significantly different which might be causing morphological differences. That was somatic embryos from Rosa hybrida 'John F. Kennedy' could regenerate plantlet via both classic somatic embryogenesis (seed-like germination) and organogenesis, cotyledonary somatic embryos should be considered as one kind of intermediate materials similiar to callus, rather than the indicator materials for somatic embryogenesis.


Asunto(s)
Reguladores del Crecimiento de las Plantas , Rosa , Rosa/genética , Etilenos , Regeneración , Desarrollo Embrionario , Factores de Transcripción
2.
Int J Mol Sci ; 25(5)2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38474173

RESUMEN

Transgenic technology is a crucial tool for gene functional analysis and targeted genetic modification in the para rubber tree (Hevea brasiliensis). However, low efficiency of plant regeneration via somatic embryogenesis remains a bottleneck of successful genetic transformation in H. brasiliensis. Enhancing expression of GROWTH-REGULATING FACTOR 4 (GRF4)-GRF-INTERACTING FACTOR 1 (GIF1) has been reported to significantly improve shoot and embryo regeneration in multiple crops. Here, we identified endogenous HbGRF4 and HbGIF1 from the rubber clone Reyan7-33-97, the expressions of which dramatically increased along with somatic embryo (SE) production. Intriguingly, overexpression of HbGRF4 or HbGRF4-HbGIF1 markedly enhanced the efficiency of embryogenesis in two H. brasiliensis callus lines with contrasting rates of SE production. Transcriptional profiling revealed that the genes involved in jasmonic acid response were up-regulated, whereas those in ethylene biosynthesis and response as well as the S-adenosylmethionine-dependent methyltransferase activity were down-regulated in HbGRF4- and HbGRF4-HbGIF1-overexpressing H. brasiliensis embryos. These findings open up a new avenue for improving SE production in rubber tree, and help to unravel the underlying mechanisms of HbGRF4-enhanced somatic embryogenesis.


Asunto(s)
Hevea , Hevea/genética , Goma/metabolismo , Látex , Regulación de la Expresión Génica de las Plantas
3.
BMC Genomics ; 24(1): 665, 2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37924006

RESUMEN

BACKGROUND: Tree peony (Paeonia sect. Moutan DC.) is a famous flower native to China with high ornamental, medicinal, and oil value. However, the low regeneration rate of callus is one of the main constraints for the establishment of a genetic transformation system in tree peony. By histomorphological observation, transcriptomic analysis and metabolite determination, we investigated the molecular mechanism of somatic embryogenesis after the establishment of a culture system and the induction of somatic embryo(SE) formation. RESULTS: We found that SE formation was successfully induced when cotyledons were used as explants. A total of 3185 differentially expressed genes were screened by comparative transcriptomic analysis of embryogenic callus (EC), SE, and non-embryogenic callus (NEC). Compared to NEC, the auxin synthesis-related genes GH3.6 and PCO2 were up-regulated, whereas cytokinin dehydrogenase (CKX6) and CYP450 family genes were down-regulated in somatic embryogenesis. In SE, the auxin content was significantly higher than the cytokinin content. The methyltransferase-related gene S-adenosylmethionine synthase (SAMS) and the flavonoid biosynthesis-related gene (ANS and F3'5'H) were down-regulated in somatic embryogenesis. The determination of flavonoids showed that rhoifolin and hyperoside had the highest content in SE. The results of transcriptome analysis were consistent with the relative expression of 8 candidate genes by quantitative polymerase chain reaction analysis. CONCLUSION: The results revealed that auxin and cytokinin may play a key role in 'Fengdan' somatic embryogenesis. The genes related to somatic embryogenesis were revealed, which has partly elucidated the molecular mechanism of somatic embryogenesis in 'Fengdan'.


Asunto(s)
Paeonia , Paeonia/genética , Paeonia/metabolismo , Perfilación de la Expresión Génica , Transcriptoma , Ácidos Indolacéticos/metabolismo , Desarrollo Embrionario , Citocininas , Flavonoides , Regeneración , Regulación de la Expresión Génica de las Plantas , Técnicas de Embriogénesis Somática de Plantas
4.
BMC Plant Biol ; 23(1): 415, 2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37684590

RESUMEN

As one of the largest plant specific transcription factor families, NAC family members play an important role in plant growth, development and stress resistance. To investigate the function of NAC transcription factors during abiotic stress, as well as during somatic embryogenesis, we identified and characterized the NAC gene family in Liriodendron chinense. We found that most LcNAC members contain more than three exons, with a relatively conserved gene and motif structure, especially at the N-terminus. Interspecies collinearity analysis revealed a closer relationship between the L. chinense NACs and the P. trichocarpa NACs. We analyzed the expression of LcNAC in different tissues and under three abiotic stresses. We found that 12 genes were highly expressed during the ES3 and ES4 stages of somatic embryos, suggesting that they are involved in the development of somatic embryos. 6 LcNAC genes are highly expressed in flower organs. The expression pattern analysis of LcNACs based on transcriptome data and RT-qPCR obtained from L. chinense leaves indicated differential expression responses to drought, cold, and heat stress. Genes in the NAM subfamily expressed differently during abiotic stress, and LcNAC6/18/41/65 might be the key genes in response to abiotic stress. LcNAC6/18/41/65 were cloned and transiently transformed into Liriodendron protoplasts, where LcNAC18/65 was localized in cytoplasm and nucleus, and LcNAC6/41 was localized only in nucleus. Overall, our findings suggest a role of the NAC gene family during environmental stresses in L. chinense. This research provides a basis for further study of NAC genes in Liriodendron chinense.


Asunto(s)
Liriodendron , Acetilcisteína , Núcleo Celular , Citoplasma
5.
Int J Mol Sci ; 23(23)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36499403

RESUMEN

AGAMOUS-like 15 (AGL15) is a member of the MADS-domain transcription factor (TF) family. MADS proteins are named for a conserved domain that was originally from an acronym derived from genes expressed in a variety of eukaryotes (MCM1-AGAMOUS-DEFICIENS-SERUM RESPONSE FACTOR). In plants, this family has expanded greatly, with more than one-hundred members generally found in dicots, and the proteins encoded by these genes have often been associated with developmental identity. AGL15 transcript and protein accumulate primarily in embryos and has been found to promote an important process called plant regeneration via somatic embryogenesis (SE). To understand how this TF performs this function, we have previously used microarray technologies to assess direct and indirect responsive targets of this TF. We have now revisited this question using next generation sequencing (NGS) to both characterize in vivo binding sites for AGL15 as well as response to the accumulation of AGL15. We compared these data to the prior microarray results to evaluate the different platforms. The new NGS data brought to light an interaction with brassinosteroid (BR) hormone signaling that was "missed" in prior Gene Ontology analysis from the microarray studies.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Dominio MADS/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Proteínas de Arabidopsis/metabolismo , Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica de las Plantas
6.
Int J Mol Sci ; 23(12)2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35742942

RESUMEN

Partial desiccation treatment (PDT) is an effective technology for promoting the germination and conversion of conifer somatic embryos (SEs). PDT, as a drought stress, induces intensive physiological responses in phospholipid metabolism, which are not well understood in the conifer SEs. Here, we integrated lipidomics, transcriptomics and proteomics analyses to reveal the molecular basis of lipid remodeling under PDT in Picea asperata SEs. Among the 82 lipid molecular species determined by mass spectrometry, phosphatidic acid (PA) had a significant effect after PDT and was the most critical lipid in the response to PDT. The transcriptomics results showed that multiple transcripts in the glycerolipid and glycerophospholipid metabolism pathways were differentially expressed, and these included five PLDα1 transcripts that catalyze the conversion of phosphatidylcholine (PC) to PA. Furthermore, the enzyme activity of this phospholipase D (PLD) was significantly enhanced in response to PDT, and PDT also significantly increased the protein level of PLDα1 (MA_10436582g0020). In addition, PA is a key factor in gibberellin, abscisic acid and ethylene signal transduction. One GDI1, one DELLA, three ABI1s, two SnRK2s, one CTR and 12 ERFs showed significantly differential expression between SEs before and after PDT in this study. Our data suggest that the observed increases in the PA contents might result from the activation of PLDα by PDT. PA not only affects the physical and chemical properties of the cell membrane but also participates in plant hormone signal transduction. Our work provides novel insight into the molecular mechanism through which PDT promotes the germination of SEs of coniferous tree species and fills the gap in the understanding of the mechanism of somatic embryo lipid remodeling in response to PDT.


Asunto(s)
Fosfolipasa D , Picea , Desecación , Lipidómica , Ácidos Fosfatidicos/metabolismo , Fosfolipasa D/genética , Fosfolipasa D/metabolismo , Picea/genética , Transcriptoma
7.
BMC Genomics ; 22(1): 806, 2021 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-34749655

RESUMEN

BACKGROUND: Paphiopedilum, commonly known as slipper orchid, is an important genus of orchid family with prominent horticultural value. Compared with conventional methods such as tillers and in vitro shoots multiplication, induction and regeneration of protocorm-like bodies (PLBs) is an effective micropropagation method in Paphiopedilum. The PLB initiation efficiency varies among species, hybrids and varieties, which leads to only a few Paphiopedilum species can be large-scale propagated through PLBs. So far, little is known about the mechanisms behind the initiation and maintenance of PLB in Paphiopedilum. RESULTS: A protocol to induce PLB development from seed-derived protocorms of Paphiopedilum SCBG Huihuang90 (P. SCBG Prince × P. SCBG Miracle) was established. The morphological characterization of four key PLB developmental stages showed that significant polarity and cell size gradients were observed within each PLB. The endogenous hormone level was evaluated. The increase in the levels of indoleacetic acid (IAA) and jasmonic acid (JA) accompanying the PLBs differentiation, suggesting auxin and JA levels were correlated with PLB development. Gibberellic acid (GA) decreased to a very low level, indicated that GA inactivation may be necessary for shoot apical meristem (SAM) development. Comparative transcriptomic profiles of four different developmental stages of P. SCBG Huihuang90 PLBs explore key genes involved in PLB development. The numbers of differentially expressed genes (DEGs) in three pairwise comparisons (A vs B, B vs C, C vs D) were 1455, 349, and 3529, respectively. KEGG enrichment analysis revealed that DEGs were implicated in secondary metabolite metabolism and photosynthesis. DEGs related to hormone metabolism and signaling, somatic embryogenesis, shoot development and photosynthesis were discussed in detail. CONCLUSION: This study is the first report on PLB development in Paphiopedilum using transcriptome sequencing, which provides useful information to understand the mechanisms of PLB development.


Asunto(s)
Orchidaceae , Transcriptoma , Orchidaceae/genética , Reguladores del Crecimiento de las Plantas , Semillas
8.
Biochem J ; 477(19): 3743-3767, 2020 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-33045058

RESUMEN

Seeds are essential for human civilization, so understanding the molecular events underpinning seed development and the zygotic embryo it contains is important. In addition, the approach of somatic embryogenesis is a critical propagation and regeneration strategy to increase desirable genotypes, to develop new genetically modified plants to meet agricultural challenges, and at a basic science level, to test gene function. We briefly review some of the transcription factors (TFs) involved in establishing primary and apical meristems during zygotic embryogenesis, as well as TFs necessary and/or sufficient to drive somatic embryo programs. We focus on the model plant Arabidopsis for which many tools are available, and review as well as speculate about comparisons and contrasts between zygotic and somatic embryo processes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/embriología , Semillas/embriología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Semillas/genética
9.
Chem Biodivers ; 17(10): e2000366, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32734631

RESUMEN

The in vitro tissue culture of medicinal plants is considered as a potential source for plant-derived bioactive secondary metabolites. The in vitro tissue culture of American ginseng has wide commercial applications in pharmaceutical, nutraceutical, food, and cosmetic fields with regard to the production of bioactive compounds such as ginsenosides and polysaccharides. This review highlights the recent progress made on different types of tissue culture practices with American ginseng, including callus culture, somatic embryo culture, cell suspension culture, hairy root culture, and adventitious root culture. The tissue culture conditions for inducing ginseng callus, somatic embryos, cell suspension, hairy roots, and adventitious roots were analyzed. In addition, the optimized conditions for increasing the production of ginsenosides and polysaccharides were discussed. This review provides references for the use of modern biotechnology to improve the production of bioactive compounds from American ginseng, as well as references for the development and sustainable utilization of American ginseng resources.


Asunto(s)
Panax/citología , Raíces de Plantas/citología , Plantas Medicinales/citología , Ginsenósidos/biosíntesis , Ginsenósidos/química , Panax/química , Panax/metabolismo , Raíces de Plantas/química , Raíces de Plantas/metabolismo , Plantas Medicinales/química , Plantas Medicinales/metabolismo , Polisacáridos/biosíntesis , Polisacáridos/química
10.
Int J Mol Sci ; 20(21)2019 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-31717779

RESUMEN

This report presents an efficient protocol of the stable genetic transformation of coffee plants expressing the Cry10Aa protein of Bacillus thuringiensis. Embryogenic cell lines with a high potential of propagation, somatic embryo maturation, and germination were used. Gene expression analysis of cytokinin signaling, homedomains, auxin responsive factor, and the master regulators of somatic embryogenesis genes involved in somatic embryo maturation were evaluated. Plasmid pMDC85 containing the cry10Aa gene was introduced into a Typica cultivar of C. arabica L. by biobalistic transformation. Transformation efficiency of 16.7% was achieved, according to the number of embryogenic aggregates and transgenic lines developed. Stable transformation was proven by hygromycin-resistant embryogenic lines, green fluorescent protein (GFP) expression, quantitative analyses of Cry10Aa by mass spectrometry, Western blot, ELISA, and Southern blot analyses. Cry10Aa showed variable expression levels in somatic embryos and the leaf tissue of transgenic plants, ranging from 76% to 90% of coverage of the protein by mass spectrometry and from 3.25 to 13.88 µg/g fresh tissue, with ELISA. qPCR-based 2-ΔΔCt trials revealed high transcription levels of cry10Aa in somatic embryos and leaf tissue. This is the first report about the stable transformation and expression of the Cry10Aa protein in coffee plants with the potential for controlling the coffee berry borer.


Asunto(s)
Proteínas Bacterianas/genética , Coffea/genética , Endotoxinas/genética , Proteínas Hemolisinas/genética , Plantas Modificadas Genéticamente , Sustitución de Aminoácidos/genética , Animales , Toxinas de Bacillus thuringiensis , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/toxicidad , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/toxicidad , Coffea/fisiología , Café/genética , Escarabajos/crecimiento & desarrollo , Endotoxinas/metabolismo , Endotoxinas/toxicidad , Germinación , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/toxicidad , Técnicas de Embriogénesis Somática de Plantas/métodos , Semillas/metabolismo , Transformación Genética
11.
Cell Mol Biol (Noisy-le-grand) ; 64(2): 46-49, 2018 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-29433628

RESUMEN

Stevia rebaudiana (Bert.) from Asteraceae family is a useful medicinal plant that prevents and cures diabetes, blood pressure, weight gain and tooth decay. Due to self-incompatibility in stevia, somatic embryo investigation for artificial seed production is valuable in this plant. In order to evaluate the callus induction characteristics in stevia, a factorial experiment was laid out based on a completely randomized design with three replications. The factors included ten hormone combinations and control, two kinds of media (MS and B5) and two types of explants (leaf and internode). Callus induction characters including the percentage of callus formation, days to callus induction, fresh and dry callus weight were recorded. Analysis of variance showed significant differences (p<0.01) among hormone combinations, media and explant types as well as their interactions. The best treatment for callus induction with minimum time to callus formation was 1 mg/l NAA+1 mg/l BAP. The highest fresh and dry callus weight were obtained on B5 medium supplemented by 1 mg/l 2,4-D+1 mg/l BAP (in leaf explant) and 0.25 mg/l 2,4-D+ 0.1 mg/l BAP (in internode explant). These results can be used in suspension culture. To induce somatic embryogenesis in suspension culture, six hormone treatments were investigated. The highest somatic embryogenesis percentage was obtained in MS medium supplemented by 2 mg/l 2,4-D+ 0.5 mg/l NAA+0.5 mg/l BAP.


Asunto(s)
Hojas de la Planta/embriología , Técnicas de Embriogénesis Somática de Plantas/métodos , Tallos de la Planta/embriología , Stevia/embriología , Técnicas de Cultivo de Tejidos/métodos , Análisis de Varianza , Medios de Cultivo/química , Medios de Cultivo/farmacología , Reguladores del Crecimiento de las Plantas/farmacología , Hojas de la Planta/química , Tallos de la Planta/química , Plantas Medicinales/efectos de los fármacos , Plantas Medicinales/embriología , Stevia/efectos de los fármacos
12.
Plant Biotechnol J ; 15(1): 27-38, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27271942

RESUMEN

Partial desiccation treatment (PDT) stimulates germination and enhances the conversion of conifer somatic embryos. To better understand the mechanisms underlying the responses of somatic embryos to PDT, we used proteomic and physiological analyses to investigate these responses during PDT in Picea asperata. Comparative proteomic analysis revealed that, during PDT, stress-related proteins were mainly involved in osmosis, endogenous hormones, antioxidative proteins, molecular chaperones and defence-related proteins. Compared with those in cotyledonary embryos before PDT, these stress-related proteins remained at high levels on days 7 (D7) and 14 (D14) of PDT. The proteins that differentially accumulated in the somatic embryos on D7 were mapped to stress and/or stimuli. They may also be involved in the glyoxylate cycle and the chitin metabolic process. The most significant difference in the differentially accumulated proteins occurred in the metabolic pathways of photosynthesis on D14. Furthermore, in accordance with the changes in stress-related proteins, analyses of changes in water content, abscisic acid, indoleacetic acid and H2 O2 levels in the embryos indicated that PDT is involved in water-deficit tolerance and affects endogenous hormones. Our results provide insight into the mechanisms responsible for the transition from morphologically mature to physiologically mature somatic embryos during the PDT process in P. asperata.


Asunto(s)
Desecación , Proteínas de Choque Térmico/farmacología , Redes y Vías Metabólicas/efectos de los fármacos , Picea/embriología , Proteómica , Semillas/efectos de los fármacos , Semillas/fisiología , Ácido Abscísico/metabolismo , Quitina/metabolismo , Cotiledón , Ontología de Genes , Germinación/efectos de los fármacos , Proteínas de Choque Térmico/fisiología , Peróxido de Hidrógeno/metabolismo , Ácidos Indolacéticos/metabolismo , Ósmosis , Fotosíntesis/efectos de los fármacos , Picea/anatomía & histología , Picea/genética , Picea/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/aislamiento & purificación , Proteínas de Plantas/metabolismo , Técnicas de Embriogénesis Somática de Plantas/métodos , Semillas/anatomía & histología , Semillas/genética , Agua/química
13.
Cryobiology ; 77: 82-88, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28438561

RESUMEN

Oil palm (Elaeis guineensis Jacq.), a tropical plant, is the leading source of edible oil. This review deals with the cryopreservation of oil palm as a way to preserve this important tropical germplasm. Somatic embryos have been the most popular source of material for cryopreservation as they are propagules that are effectively produced during micropropagation. In contrast, fewer studies exist on the cryopreservation of pollen, zygotic embryos, seeds, kernels and embryogenic cell suspensions. This review highlights the ideal protocols, in detail, in a bid to offer guidance for further advances in oil palm cryopreservation.


Asunto(s)
Arecaceae , Criopreservación , Semillas
14.
Hereditas ; 153: 12, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28096774

RESUMEN

BACKGROUND: Obtaining dedifferentiated cells (callus) that can regenerate into whole plants is not always feasible for many plant species. Sugar beet is known to be recalcitrant for dedifferentiation and plant regeneration. These difficulties were major obstacles for obtaining transgenic sugar beets through an Agrobacterium-mediated transformation procedure. The sugar beet line 'NK-219mm-O' is an exceptional line that forms callus efficiently and is easy to regenerate, but the inheritance of these characters was unknown. Another concern was whether these characters could coexist with an annual habitat that makes it possible to breed short life-cycle sugar beet suitable for molecular genetic analysis. FINDINGS: Five sugar beet lines including NK-219mm-O were crossed with each other and subjected to in vitro culture to form callus. F1s with a NK-219mm-O background generally formed callus efficiently compared to the others, indicating that efficient callus formation is heritable. The regeneration potential was examined based on the phenotypes of calli after placement on regeneration medium. Five phenotypes were observed, of which two phenotypes regenerated shoots or somatic embryo-like structures. Vascular differentiation was evident in regenerable calli, whereas non-regenerable calli lacked normally developed vascular tissues. In a half-diallel cross, the callus-formation efficiency and the regeneration potential of reciprocal F1s progeny having a NK-219mm-O background were high. Finally, we crossed NK-219mm-O with an annual line that had a poor in vitro performance. The callus-formation efficiency and the regeneration potential of reciprocal F1 were high. The regenerated plants showed an annual habitat. CONCLUSIONS: Efficient callus formation and the high plant regeneration potential of NK-219mm-O were inherited and expressed in the F1. The annual habitat does not impair these high in vitro performances.


Asunto(s)
Beta vulgaris/crecimiento & desarrollo , Beta vulgaris/genética , Patrón de Herencia , Regeneración/genética , Cruzamientos Genéticos , Genotipo , Fenotipo , Fitomejoramiento
15.
Physiol Mol Biol Plants ; 22(3): 321-330, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27729718

RESUMEN

Developmental deficiency of somatic embryos and regeneration to plantlets, especially in the case of transformation, are major problems of somatic embryo regeneration in alfalfa. One of the ways to overcome these problems is the use of natural plant regulators and nutrients in the culture medium of somatic embryos. For investigating the influence of Cuscuta campestris extract on the efficiency of plant regeneration and transformation, chimeric tissue type plasminogen activator was transferred to explants using Agrobacterium tumefaciens, and transgenic plants were recovered using medium supplemented with different concentration of the extract. Transgenic plants were analyzed by PCR and RT-PCR. Somatic embryos of Medicago sativa L. developed into plantlets at high frequency level (52 %) in the maturation medium supplemented with 50 mg 1-1C. campestris extract as compared to the medium without extract (26 %). Transformation efficiency was 29.3 and 15.2 % for medium supplemented with dodder extract and without the extract, respectively. HPLC and GC/MS analysis of the extract indicated high level of ABA and some compounds such as Phytol, which can affect the somatic embryo maturation. The antibacterial assay showed that the extract was effective against some strains of A. tumefaciens. These results have provided a scientific basis for using of C. campestris extract as a good natural source of antimicrobial agents and plant growth regulator as well, that can be used in tissue culture of transgenic plants.

16.
J Proteome Res ; 14(1): 268-78, 2015 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-25367710

RESUMEN

Somatic embryo development (SED) in upland cotton shows low frequencies of embryo maturation and plantlet regeneration. Progress in increasing the regeneration rate has been limited. Here a global analysis of proteome dynamics between globular and cotyledonary embryos was performed using isobaric tags for relative and absolute quantitation to explore mechanisms underlying SED. Of 6318 proteins identified by a mass spectrometric analysis, 102 proteins were significantly up-regulated and 107 were significantly down-regulated in cotyledonary embryos. The differentially expressed proteins were classified into seven functional categories: stress responses, hormone synthesis and signal transduction, carbohydrate and energy metabolism, protein metabolism, cell wall metabolism, cell transport, and lipid metabolism. KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis showed that stress response, hormone homeostasis, and respiration and photosynthesis were involved in SED. Quantitative real-time PCR analysis confirmed the authenticity and accuracy of the proteomic analysis. Treatment of exogenous hormones showed that abscisic acid and jasmonic acid facilitate SED, whereas gibberellic acid inhibits SED and increases abnormal embryo frequency. Thus, global analysis of proteome dynamics reveals that stress response, hormone homeostasis, and respiration and photosynthesis determined cotton SED. The findings of this research improve the understanding of molecular processes, especially environmental stress response, involved in cotton SED.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/genética , Regulación de la Expresión Génica de las Plantas/genética , Gossypium/metabolismo , Proteínas de Plantas/metabolismo , Proteómica/métodos , Regeneración/fisiología , Semillas/embriología , Cotiledón/embriología , Cotiledón/metabolismo , Gossypium/genética , Proteínas de Plantas/clasificación , Reacción en Cadena en Tiempo Real de la Polimerasa , Semillas/metabolismo
17.
Plant Biotechnol J ; 12(2): 161-73, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24112122

RESUMEN

As a product of asexual reproduction in plants, the somatic embryo (SE) differentiates into a new plantlet via a zygotic embryogenesis-like process. Here, we present the phenotypic and cellular differences between SEs and zygotic embryos (ZEs) revealed by histological section scanning using three parallel development stages of the two types of embryos of cotton (Gossypium hirsutum cv. YZ1), including globular, torpedo and cotyledonary-stages. To identify the molecular characteristics of SE development in cotton, the digital gene expression system was used to profile the genes active during SE and ZE development. A total of 4242 differentially expressed genes (DEGs) were identified in at least one developmental stage. Expression pattern and functional classification analysis based on these DEGs reveals that SE development exhibits a transcriptional activation of stress responses. RT-PCR analysis further confirmed enhanced expression levels of stress-related genes in SEs than in ZEs. Experimental stress treatment, induced by NaCl and ABA, accelerated SE development and increased the transcription of genes related to stress response, in parallel with decelerated proliferation of embryogenic calluses under stress treatment. Our data reveal that SE development involves the activation of stress responses, which we suggest may regulate the balance between cell proliferation and differentiation. These results provide new insight into the molecular mechanisms of SE development and suggest strategies that can be used for regulating the developmental processes of somatic embryogenesis.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/genética , Regulación de la Expresión Génica de las Plantas/genética , Gossypium/genética , Estrés Fisiológico , Transcriptoma , Secuencia de Bases , Diferenciación Celular , Proliferación Celular , Análisis por Conglomerados , Perfilación de la Expresión Génica , Ontología de Genes , Gossypium/citología , Gossypium/embriología , Datos de Secuencia Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Técnicas de Embriogénesis Somática de Plantas , Semillas/citología , Semillas/embriología , Semillas/genética , Análisis de Secuencia de ADN , Transducción de Señal
18.
Front Plant Sci ; 15: 1322920, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38495377

RESUMEN

In commercial forestry and large-scale plant propagation, the utilization of artificial intelligence techniques for automated somatic embryo analysis has emerged as a highly valuable tool. Notably, image segmentation plays a key role in the automated assessment of mature somatic embryos. However, to date, the application of Convolutional Neural Networks (CNNs) for segmentation of mature somatic embryos remains unexplored. In this study, we present a novel application of CNNs for delineating mature somatic conifer embryos from background and residual proliferating embryogenic tissue and differentiating various morphological regions within the embryos. A semantic segmentation CNN was trained to assign pixels to cotyledon, hypocotyl, and background regions, while an instance segmentation network was trained to detect individual cotyledons for automated counting. The main dataset comprised 275 high-resolution microscopic images of mature Pinus radiata somatic embryos, with 42 images reserved for testing and validation sets. The evaluation of different segmentation methods revealed that semantic segmentation achieved the highest performance averaged across classes, achieving F1 scores of 0.929 and 0.932, with IoU scores of 0.867 and 0.872 for the cotyledon and hypocotyl regions respectively. The instance segmentation approach demonstrated proficiency in accurate detection and counting of the number of cotyledons, as indicated by a mean squared error (MSE) of 0.79 and mean absolute error (MAE) of 0.60. The findings highlight the efficacy of neural network-based methods in accurately segmenting somatic embryos and delineating individual morphological parts, providing additional information compared to previous segmentation techniques. This opens avenues for further analysis, including quantification of morphological characteristics in each region, enabling the identification of features of desirable embryos in large-scale production systems. These advancements contribute to the improvement of automated somatic embryogenesis systems, facilitating efficient and reliable plant propagation for commercial forestry applications.

19.
Am J Bot ; 100(11): 2121-31, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24136821

RESUMEN

PREMISE OF THE STUDY: Protocorm-like bodies (PLBs) of orchids are important in orchid micropropagation and outwardly resemble somatic embryos in form and development. To determine whether PLBs are truly embryogenetic, we compared PLBs with somatic embryos and zygotic embryos to determine whether they had similar surface molecules and whether hydroxyproline-rich glycoprotein (HRGP) inhibitors similarly alter their growth. METHODS: Embryogenic calluses (ECs), zygotic embryos, and protocorms were collected for histological and histochemical studies with light microscopy. The presence of JIM11 and JIM20 epitopes was determined using immunodot blots and immunolocalization procedures. The importance of wall proteins in the formation of PLBs was investigated using 3,4-dehydro-l-proline (3,4-DHP), an inhibitor of HRGP biosynthesis. KEY RESULTS: At the early stages of PLB formation, the cytoplasm of the globular cell clusters and meristemoids took on a vacuolated appearance. Starch granules and protein bodies appeared, albeit transitory in nature. Positive localizations of JIM11 and JIM20 were noted in the embryogenic culture and developing PLBs similar to zygotic embryos. The inclusion of an inhibitor to HRGPs inhibited PLB formation. CONCLUSIONS: This study demonstrates that during the early stages of PLB formation, the cells show cytological characteristics and cell wall markers similar to zygotic embryo development, justifying the statement that PLBs are indeed somatic embryos of orchids. Thus, these results suggest that PLBs could be used as an experimental embryological system for physiological or molecular characterization.


Asunto(s)
Glicoproteínas/antagonistas & inhibidores , Orchidaceae/crecimiento & desarrollo , Proteínas de Plantas/antagonistas & inhibidores , Técnicas de Embriogénesis Somática de Plantas , Semillas/crecimiento & desarrollo , Animales , Anticuerpos/metabolismo , Orchidaceae/embriología , Proteínas de Plantas/metabolismo , Semillas/embriología
20.
Plants (Basel) ; 12(11)2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37299152

RESUMEN

This study aimed to establish an efficient plant regeneration system from leaf-derived embryogenic structure cultures of Daphne genkwa. To induce embryogenic structures, fully expanded leaf explants of D. genkwa were cultured on Murashige and Skoog (MS) medium supplemented with 0, 0.1, 0.5, 1, 2, and 5 mg·L-1 2,4-dichlorophenoxyacetic acid (2,4-D), respectively. After 8 weeks of incubation, the highest frequency of embryogenic structure formation reached 100% when the leaf explants were cultivated on MS medium supplemented with 0.1 to 1 mg·L-1 2,4-D. At higher concentrations of 2,4-D (over 2 mg·L-1 2,4-D), the frequency of embryogenic structure formation significantly declined. Similar to 2,4-D, indole butyric acid (IBA) and α-naphthaleneacetic acid (NAA) treatments were also able to form embryogenic structures. However, the frequency of embryogenic structure formation was lower than that of 2,4-D. In particular, the yellow embryonic structure (YES) and white embryonic structure (WES) were simultaneously developed from the leaf explants of D. genkwa on culture medium containing 2,4-D, IBA, and NAA, respectively. Embryogenic calluses (ECs) were formed from the YES after subsequent rounds of subculture on MS medium supplemented with 1 mg·L-1 2,4-D. To regenerate whole plants, the embryogenic callus (EC) and the two embryogenic structures (YES and WES) were transferred onto MS medium supplemented with 0.1 mg·L-1 6-benzyl aminopurine (BA). The YES had the highest plant regeneration potential via somatic embryo and shoot development compared to the EC and WES. To our knowledge, this is the first successful report of a plant regeneration system via the somatic embryogenesis of D. genkwa. Thus, the embryogenic structures and plant regeneration system of D. genkwa could be applied to mass proliferation and genetic modification for pharmaceutical metabolite production in D. genkwa.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA