Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Vision Res ; 161: 12-17, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31129288

RESUMEN

Mild traumatic brain injuries (mTBI) frequently lead to the impairment of visual functions including blurred and/or distorted vision, due to the disruption of visual cortical mechanisms. Previous mTBI studies have focused on specific aspects of visual processing, e.g., stereopsis, using artificial, low-level, stimuli (e.g., Gaussian patches and gratings). In the current study we investigated high-level visual processing by employing images of real world natural scenes as our stimuli. Both an mTBI group and control group composed of healthy observers were tasked with detecting sinusoidal distortions added to the natural scene stimuli as a function of the distorting sinusoid's spatial frequency. It was found that the mTBI group were equally as sensitive to high frequency distortions as the control group. However, sensitivity decreased more rapidly with decreasing distortion frequency in the mTBI group relative to the controls. These data reflect a deficit in the mTBI group to spatially integrate over larger regions of the scene.


Asunto(s)
Lesiones Traumáticas del Encéfalo/diagnóstico , Trastornos de la Percepción/diagnóstico , Percepción Espacial/fisiología , Adulto , Lesiones Traumáticas del Encéfalo/fisiopatología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Trastornos de la Percepción/fisiopatología , Psicofísica , Adulto Joven
2.
Front Neuroanat ; 12: 110, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30568580

RESUMEN

Non-invasive in vivo neuroimaging techniques provide a wide array of possibilities to study human brain function. A number of approaches are available that improve our understanding of the anatomical location of brain activation patterns, including the development of probabilistic conversion tools to register individual in vivo data to population based neuroanatomical templates. Two elegant examples were published by Horn et al. (2017) in which a method was described to warp DBS electrode coordinates, and histological data to MNI-space (Ewert et al., 2017). The conversion of individual brain scans to a standard space is done assuming that individual anatomical scans provide a reliable image of the underlying neuroanatomy. It is unclear to what extent spatial distortions related to tissue properties, or MRI artifacts exist in these scans. Therefore, the question rises whether the anatomical information from the individual scans can be considered a real ground truth. To accommodate the knowledge-gap as a result of limited anatomical information, generative brain models have been developed circumventing these challenges through the application of assumption sets without recourse to any ground truth. We would like to argue that, although these efforts are valuable, the definition of an anatomical ground truth is preferred. Its definition requires a system in which non-invasive approaches can be validated using invasive methods of investigation. We argue that the application of post mortem MRI studies in combination with microscopy analyses brings an anatomical ground truth for the human brain within reach, which is of importance for all research within the human in vivo neuroimaging field.

3.
Front Psychol ; 8: 1158, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28751870

RESUMEN

Image skew is one of the prominent distortions that exist in optical elements, such as in spectacle lenses. The present study evaluates adaptation to image skew in dynamic natural images. Moreover, the cortical levels involved in skew coding were probed using retinal specificity of skew adaptation aftereffects. Left and right skewed natural image sequences were shown to observers as adapting stimuli. The point of subjective equality (PSE), i.e., the skew amplitude in simple geometrical patterns that is perceived to be unskewed, was used to quantify the aftereffect of each adapting skew direction. The PSE, in a two-alternative forced choice paradigm, shifted toward the adapting skew direction. Moreover, significant adaptation aftereffects were obtained not only at adapted, but also at non-adapted retinal locations during fixation. Skew adaptation information was transferred partially to non-adapted retinal locations. Thus, adaptation to skewed natural scenes induces coordinated plasticity in lower and higher cortical areas of the visual pathway.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA