Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Hum Brain Mapp ; 43(11): 3524-3544, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35411565

RESUMEN

As the size of the neuroimaging cohorts being increased to address key questions in the field of cognitive neuroscience, cognitive aging, and neurodegenerative diseases, the accuracy of the spatial normalization as an essential preprocessing step becomes extremely important. Existing spatial normalization methods have poor accuracy particularly when dealing with the highly convoluted human cerebral cortex and when brain morphology is severely altered (e.g., aging populations). To address this shortcoming, we propose a novel spatial normalization technique that takes advantage of the existing surface-based human brain parcellation to automatically identify and match regional landmarks. To simplify the nonlinear whole brain registration, the identified landmarks of each region and its counterpart are registered independently with topology-preserving deformation. Next, the regional warping fields are combined by an inverse distance weighted interpolation technique to have a global warping field for the whole brain. To ensure that the final warping field is topology-preserving, we used simultaneously forward and reverse maps with certain symmetric constraints to yield bijectivity. We have evaluated our proposed solution using both simulated and real (structural and functional) human brain images. Our evaluation shows that our solution can enhance structural correspondence compared to the existing methods. Such improvement also increases the sensitivity and specificity of the functional imaging studies, reducing the required number of subjects and subsequent study costs. We conclude that our proposed solution can effectively substitute existing substandard spatial normalization methods to deal with the demand of large cohorts which is now common in clinical and aging studies.


Asunto(s)
Algoritmos , Interpretación de Imagen Asistida por Computador , Encéfalo/anatomía & histología , Encéfalo/diagnóstico por imagen , Corteza Cerebral , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos
2.
Eur J Nucl Med Mol Imaging ; 49(9): 3073-3085, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35258689

RESUMEN

PURPOSE: A unique advantage of the brain positron emission tomography (PET) imaging is the ability to image different biological processes with different radiotracers. However, the diversity of the brain PET image patterns also makes their spatial normalization challenging. Since structural MR images are not always available in the clinical practice, this study proposed a PET-only spatial normalization method based on adaptive probabilistic brain atlas. METHODS: The proposed method (atlas-based method) consists of two parts, an adaptive probabilistic brain atlas generation algorithm, and a probabilistic framework for registering PET image to the generated atlas. To validate this method, the results of MRI-based method and template-based method (a widely used PET-only method) were treated as the gold standard and control, respectively. A total of 286 brain PET images, including seven radiotracers (FDG, PIB, FBB, AV-45, AV-1451, AV-133, [18F]altanserin) and four groups of subjects (Alzheimer disease, Parkinson disease, frontotemporal dementia, and healthy control), were spatially normalized using the three methods. The results were then quantitatively compared by using correlation analysis, meta region of interest (meta-ROI) standardized uptake value ratio (SUVR) analysis, and statistical parametric mapping (SPM) analysis. RESULTS: The Pearson correlation coefficient between the images computed by atlas-based method and the gold standard was 0.908 ± 0.005. The relative error of meta-ROI SUVR computed by atlas-based method was 2.12 ± 0.18%. Compared with template-based method, atlas-based method was also more consistent with the gold standard in SPM analysis. CONCLUSION: The proposed method provides a unified approach to spatially normalize brain PET images of different radiotracers accurately without MR images. A free MATLAB toolbox for this method has been provided.


Asunto(s)
Enfermedad de Alzheimer , Tomografía de Emisión de Positrones , Algoritmos , Enfermedad de Alzheimer/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Tomografía de Emisión de Positrones/métodos
3.
Eur J Nucl Med Mol Imaging ; 49(11): 3809-3829, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35624219

RESUMEN

Quantification approaches of positron emission tomography (PET) imaging provide user-independent evaluation of pathophysiological processes in living brains, which have been strongly recommended in clinical diagnosis of neurological disorders. Most PET quantification approaches depend on spatial normalization of PET images to brain template; however, the spatial normalization and quantification approaches have not been comprehensively reviewed. In this review, we introduced and compared PET template-based and magnetic resonance imaging (MRI)-aided spatial normalization approaches. Tracer-specific and age-specific PET brain templates were surveyed between 1999 and 2021 for 18F-FDG, 11C-PIB, 18F-Florbetapir, 18F-THK5317, and etc., as well as adaptive PET template methods. Spatial normalization-based PET quantification approaches were reviewed, including region-of-interest (ROI)-based and voxel-wise quantitative methods. Spatial normalization-based ROI segmentation approaches were introduced, including manual delineation on template, atlas-based segmentation, and multi-atlas approach. Voxel-wise quantification approaches were reviewed, including voxel-wise statistics and principal component analysis. Certain concerns and representative examples of clinical applications were provided for both ROI-based and voxel-wise quantification approaches. At last, a recipe for PET spatial normalization and quantification approaches was concluded to improve diagnosis accuracy of neurological disorders in clinical practice.


Asunto(s)
Enfermedades del Sistema Nervioso , Tomografía de Emisión de Positrones , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Fluorodesoxiglucosa F18 , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Enfermedades del Sistema Nervioso/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos
4.
Hum Brain Mapp ; 42(6): 1758-1776, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33449398

RESUMEN

Τhe accuracy of template-based neuroimaging investigations depends on the template's image quality and representativeness of the individuals under study. Yet a thorough, quantitative investigation of how available standardized and study-specific T1-weighted templates perform in studies on older adults has not been conducted. The purpose of this work was to construct a high-quality standardized T1-weighted template specifically designed for the older adult brain, and systematically compare the new template to several other standardized and study-specific templates in terms of image quality, performance in spatial normalization of older adult data and detection of small inter-group morphometric differences, and representativeness of the older adult brain. The new template was constructed with state-of-the-art spatial normalization of high-quality data from 222 older adults. It was shown that the new template (a) exhibited high image sharpness, (b) provided higher inter-subject spatial normalization accuracy and (c) allowed detection of smaller inter-group morphometric differences compared to other standardized templates, (d) had similar performance to that of study-specific templates constructed with the same methodology, and (e) was highly representative of the older adult brain.


Asunto(s)
Envejecimiento , Encéfalo/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/normas , Imagen por Resonancia Magnética/normas , Neuroimagen/normas , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Masculino , Neuroimagen/métodos
5.
Magn Reson Med ; 86(1): 487-498, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33533052

RESUMEN

PURPOSE: Spatial normalization is an essential step in resting-state functional MRI connectomic analysis with atlas-based parcellation, but brain lesions can confound it. Cost-function masking (CFM) is a popular compensation approach, but may not benefit modern normalization methods. This study compared three normalization methods with and without CFM and determined their impact on connectomic measures in patients with glioma. METHODS: Fifty patients with glioma were included. T1 -weighted images were normalized using three different methods in SPM12, with and without CFM, which were then overlaid on the ICBM152 template and scored by two neuroradiologists. The Dice coefficient of gray-matter correspondence was also calculated. Normalized resting-state functional MRI data were parcellated using the AAL90 atlas to construct an individual connectivity matrix and calculate connectomic measures. The R2 among the different normalization methods was calculated for the connectivity matrices and connectomic measures. RESULTS: The older method (Original) performed significantly worse than the modern methods (Default and DARTEL; P < .005 in observer ranking). The use of CFM did not significantly improve the normalization results. The Original method had lower correlation with the Default and DARTEL methods (R2 = 0.71-0.74) than Default with DARTEL (R2 = 0.96) in the connectivity matrix. The clustering coefficient appears to be the most, and modularity the least, sensitive connectomic measures to normalization performance. CONCLUSION: The spatial normalization method can have an impact on resting-state functional MRI connectome and connectomic measures derived using atlas-based brain parcellation. In patients with glioma, this study demonstrated that Default and DARTEL performed better than the Original method, and that CFM made no significant difference.


Asunto(s)
Conectoma , Glioma , Encéfalo/diagnóstico por imagen , Glioma/diagnóstico por imagen , Sustancia Gris , Humanos , Imagen por Resonancia Magnética
6.
Neuroimage ; 222: 117259, 2020 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-32798680

RESUMEN

Cerebral artery segmentation plays an important role in the direct visualization of the human brain to obtain vascular system information. On ultra-high field magnetic resonance imaging, cerebral arteries appearing hyperintense on T1 weighted (T1w) images could be segmented from brain tissues such as gray and white matter. In this study, we propose an automated method to segment the cerebral arteries using multi-contrast images including T1w images of a magnetization-prepared two rapid acquisition gradient echo (MP2RAGE) sequence at 7 T. The proposed method, termed MP2rase-CA (MP2rage based RApid SEgmentation Cerebral Artery), employed a seed-based region-growing strategy and Frangi filtering as well as our brain tissue segmentation (MP2rase Brain Tissue). Time-of-flight (TOF) magnetic resonance angiography (MRA) images were obtained as a reference to evaluate the MP2rase-CA. We successfully performed vessel segmentations, from T1w MP2RAGE images, which mostly overlapped with the segmentations of large cerebral arteries from the TOF-MRA. We also investigated the effect of the large cerebral arteries on spatial transformation of anatomical images to standard coordinate space using vessel segmentation by MP2rase-CA. As a result, the T1w image without the cerebral arteries by MP2rase-CA showed better agreement with the standard atlas compared with the T1w image containing the arteries. In addition, voxel-based morphology showed significant differences between T1w images with and without cerebral arteries in brain areas nearby large arteries. Thus, because MP2rase-CA using MP2RAGE images can obtain brain tissue anatomical information as well as relatively large cerebral artery information without need for additional structure acquisition, it is useful and time saving for functional and structural studies.


Asunto(s)
Encéfalo/irrigación sanguínea , Arterias Cerebrales/patología , Interpretación de Imagen Asistida por Computador , Imagen por Resonancia Magnética , Adulto , Encéfalo/anatomía & histología , Femenino , Humanos , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos , Masculino
7.
Neuroimage ; 183: 186-199, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30086410

RESUMEN

A common means of studying motor recovery in stroke patients is to extract Diffusion Tensor Imaging (DTI) parameters from the corticospinal tract (CST) and correlate them with clinical outcome scores. To that purpose, conducting group-level analyses through spatial normalization has become a popular approach. However, the reliability of such analyses depends on the accuracy of the particular registration strategy employed. To date, most studies have employed scalar-based registration using either high-resolution T1 images or Fractional Anisotropy (FA) maps to warp diffusion data to a common space. However, more powerful registration algorithms exist for aligning major white matter structures, such as Fiber Orientation Distribution (FOD)-based registration. Regardless of the strategy chosen, automatic normalization algorithms are prone to distortions caused by stroke lesions. While lesion masking is a common means to lessen such distortions, the extent of its effect on tract-related DTI parameters and their correlation with motor outcome has yet to be determined. Here, we aimed to address these concerns by first investigating the effect of common T1 and FA-based registration as well as novel FOD-based registration algorithms with and without lesion masking on lesion load and DTI parameter extraction of the CST in datasets typically acquired for subacute-chronic and acute stroke patients. Second, we studied how differences in these procedures influenced correlation strength between CST damage (through DTI parameters) and motor outcome. Our results showed that, for high-quality subacute-chronic stroke data, FOD-based registration captured significantly higher lesion loads and significantly larger FA asymmetries in the CST. This was also associated with significantly stronger correlations in motor outcome with respect to T1 or FA-based registration methods. For acute data acquired in a clinical setting, there were few observed differences, suggesting that commonly employed FA-based registration is appropriate for group-level analyses.


Asunto(s)
Imagen de Difusión por Resonancia Magnética/métodos , Trastornos del Movimiento/fisiopatología , Fibras Nerviosas , Tractos Piramidales/diagnóstico por imagen , Accidente Cerebrovascular/diagnóstico por imagen , Enfermedad Aguda , Anciano , Anciano de 80 o más Años , Enfermedad Crónica , Femenino , Humanos , Masculino , Persona de Mediana Edad , Trastornos del Movimiento/etiología , Tractos Piramidales/patología , Tractos Piramidales/fisiopatología , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/patología , Accidente Cerebrovascular/fisiopatología
8.
Hum Brain Mapp ; 39(9): 3769-3778, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29752765

RESUMEN

Accurate spatial normalization (SN) of amyloid positron emission tomography (PET) images for Alzheimer's disease assessment without coregistered anatomical magnetic resonance imaging (MRI) of the same individual is technically challenging. In this study, we applied deep neural networks to generate individually adaptive PET templates for robust and accurate SN of amyloid PET without using matched 3D MR images. Using 681 pairs of simultaneously acquired 11 C-PIB PET and T1-weighted 3D MRI scans of AD, MCI, and cognitively normal subjects, we trained and tested two deep neural networks [convolutional auto-encoder (CAE) and generative adversarial network (GAN)] that produce adaptive best PET templates. More specifically, the networks were trained using 685,100 pieces of augmented data generated by rotating 527 randomly selected datasets and validated using 154 datasets. The input to the supervised neural networks was the 3D PET volume in native space and the label was the spatially normalized 3D PET image using the transformation parameters obtained from MRI-based SN. The proposed deep learning approach significantly enhanced the quantitative accuracy of MRI-less amyloid PET assessment by reducing the SN error observed when an average amyloid PET template is used. Given an input image, the trained deep neural networks rapidly provide individually adaptive 3D PET templates without any discontinuity between the slices (in 0.02 s). As the proposed method does not require 3D MRI for the SN of PET images, it has great potential for use in routine analysis of amyloid PET images in clinical practice and research.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico por imagen , Amiloide/análisis , Encéfalo/diagnóstico por imagen , Aprendizaje Profundo , Tomografía de Emisión de Positrones/métodos , Aprendizaje Automático Supervisado , Algoritmos , Enfermedad de Alzheimer/patología , Compuestos de Anilina , Benzotiazoles , Encéfalo/patología , Radioisótopos de Carbono , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/patología , Femenino , Humanos , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética , Masculino , Radiofármacos , Tiazoles
9.
Hum Brain Mapp ; 38(11): 5331-5342, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28745021

RESUMEN

Spatial normalization of brains to a standardized space is a widely used approach for group studies in functional magnetic resonance imaging (fMRI) data. Commonly used template-based approaches are complicated by signal dropout and distortions in echo planar imaging (EPI) data. The most widely used software packages implement two common template-based strategies: (1) affine transformation of the EPI data to an EPI template followed by nonlinear registration to an EPI template (EPInorm) and (2) affine transformation of the EPI data to the anatomic image for a given subject, followed by nonlinear registration of the anatomic data to an anatomic template, which produces a transformation that is applied to the EPI data (T1norm). EPI distortion correction can be used to adjust for geometric distortion of EPI relative to the T1 images. However, in practice, this EPI distortion correction step is often skipped. We compare these template-based strategies empirically in four large datasets. We find that the EPInorm approach consistently shows reduced variability across subjects, especially in the case when distortion correction is not applied. EPInorm also shows lower estimates for coregistration distances among subjects (i.e., within-dataset similarity is higher). Finally, the EPInorm approach shows higher T values in a task-based dataset. Thus, the EPInorm approach appears to amplify the power of the sample compared to the T1norm approach when not using distortion correction (i.e., the EPInorm boosts the effective sample size by 12-25%). In sum, these results argue for the use of EPInorm over the T1norm when no distortion correction is used. Hum Brain Mapp 38:5331-5342, 2017. © 2017 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Adolescente , Adulto , Trastorno Autístico/diagnóstico por imagen , Trastorno Autístico/fisiopatología , Encéfalo/fisiología , Encéfalo/fisiopatología , Niño , Preescolar , Humanos , Inhibición Psicológica , Persona de Mediana Edad , Actividad Motora/fisiología , Dinámicas no Lineales , Dolor/diagnóstico por imagen , Dolor/fisiopatología , Descanso , Adulto Joven
10.
Hum Brain Mapp ; 38(7): 3402-3414, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28397386

RESUMEN

Use of functional magnetic resonance imaging (fMRI) in studies of aging is often hampered by uncertainty about age-related differences in the amplitude and timing of the blood oxygenation level dependent (BOLD) response (i.e., hemodynamic impulse response function (HRF)). Such uncertainty introduces a significant challenge in the interpretation of the fMRI results. Even though this issue has been extensively investigated in the field of neuroimaging, there is currently no consensus about the existence and potential sources of age-related hemodynamic alterations. Using an event-related fMRI experiment with two robust and well-studied stimuli (visual and auditory), we detected a significant age-related difference in the amplitude of response to auditory stimulus. Accounting for brain atrophy by circumventing spatial normalization and processing the data in subjects' native space eliminated these observed differences. In addition, we simulated fMRI data using age differences in brain morphology while controlling HRF shape. Analyzing these simulated fMRI data using standard image processing resulted in differences in HRF amplitude, which were eliminated when the data were analyzed in subjects' native space. Our results indicate that age-related atrophy introduces inaccuracy in co-registration to standard space, which subsequently appears as attenuation in BOLD response amplitude. Our finding could explain some of the existing contradictory reports regarding age-related differences in the fMRI BOLD responses. Hum Brain Mapp 38:3402-3414, 2017. © 2017 Wiley Periodicals, Inc.

11.
NMR Biomed ; 30(11)2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28841761

RESUMEN

Automated analysis of diffusion tensor imaging (DTI) data is an appealing way to process large datasets in an unbiased manner. However, automation can sometimes be linked to a lack of interpretability. Two whole-brain, automated and voxelwise methods exist: voxel-based analysis (VBA) and tract-based spatial statistics (TBSS). In VBA, the amount of smoothing has been shown to influence the results. TBSS is free of this step, but a projection procedure is introduced to correct for residual misalignments. This projection assigns the local highest fractional anisotropy (FA) value to the mean FA skeleton, which represents white matter tract centers. For both methods, the normalization procedure has a major impact. These issues are well documented in humans but, to our knowledge, not in rodents. In this study, we assessed the quality of three different registration algorithms (ANTs SyN, DTI-TK and FNIRT) using study-specific templates and their impact on automated analysis methods (VBA and TBSS) in a rat pup model of diffuse white matter injury presenting large unilateral deformations. VBA and TBSS results were stable and anatomically coherent across the three pipelines. For VBA, in regions around the large deformations, interpretability was limited because of the increased partial volume effect. With TBSS, two of the three pipelines found a significant decrease in axial diffusivity (AD) at the known injury site. These results demonstrate that automated voxelwise analyses can be used in an animal model with large deformations.


Asunto(s)
Imagen de Difusión Tensora/métodos , Leucomalacia Periventricular/diagnóstico por imagen , Algoritmos , Animales , Modelos Animales de Enfermedad , Ratas , Ratas Sprague-Dawley , Sustancia Blanca
12.
Artículo en Japonés | MEDLINE | ID: mdl-28931770

RESUMEN

PURPOSE: Spatial normalization is a significant image pre-processing operation in statistical parametric mapping (SPM) analysis. The purpose of this study was to clarify the optimal method of spatial normalization for improving diagnostic accuracy in SPM analysis of arterial spin-labeling (ASL) perfusion images. METHODS: We evaluated the SPM results of five spatial normalization methods obtained by comparing patients with Alzheimer's disease or normal pressure hydrocephalus complicated with dementia and cognitively healthy subjects. We used the following methods: 3DT1-conventional based on spatial normalization using anatomical images; 3DT1-DARTEL based on spatial normalization with DARTEL using anatomical images; 3DT1-conventional template and 3DT1-DARTEL template, created by averaging cognitively healthy subjects spatially normalized using the above methods; and ASL-DARTEL template created by averaging cognitively healthy subjects spatially normalized with DARTEL using ASL images only. RESULTS: Our results showed that ASL-DARTEL template was small compared with the other two templates. Our SPM results obtained with ASL-DARTEL template method were inaccurate. Also, there were no significant differences between 3DT1-conventional and 3DT1-DARTEL template methods. In contrast, the 3DT1-DARTEL method showed higher detection sensitivity, and precise anatomical location. CONCLUSIONS: Our SPM results suggest that we should perform spatial normalization with DARTEL using anatomical images.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Anciano , Anciano de 80 o más Años , Femenino , Sustancia Gris/diagnóstico por imagen , Humanos , Imagenología Tridimensional , Masculino , Persona de Mediana Edad , Marcadores de Spin
13.
Neuroimage ; 100: 444-59, 2014 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-24952229

RESUMEN

The study of anatomical brain asymmetries has been a topic of great interest in the neuroimaging community in the past decades. However, the accuracy of brain asymmetry measurements has been rarely investigated. In this study, we propose a fully automatic methodology for the quantitative validation of brain tissue asymmetries as measured by Voxel Based Morphometry (VBM) from structural magnetic resonance (MR) images. Starting from a real MR image, the methodology generates simulated 3D MR images with a known and realistic pattern of inter-hemispheric asymmetry that models the left-occipital right-frontal petalia of a normal brain and the related rightward bending of the inter-hemispheric fissure. As an example, we generated a dataset of 64 simulated MR images and applied this dataset for the quantitative validation of optimized VBM measures of asymmetries in brain tissue composition. Our results suggested that VBM analysis strongly depended on the spatial normalization of the individual brain images, the selected template space, and the amount of spatial smoothing applied. The most accurate asymmetry detections were achieved by 9-degrees of freedom registration to the symmetrical template space with 4 to 8mm spatial smoothing.


Asunto(s)
Encéfalo/anatomía & histología , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
14.
Neuroimage ; 85 Pt 1: 117-26, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23578579

RESUMEN

Diffuse optical imaging (DOI) is increasingly becoming a valuable neuroimaging tool when fMRI is precluded. Recent developments in high-density diffuse optical tomography (HD-DOT) overcome previous limitations of sparse DOI systems, providing improved image quality and brain specificity. These improvements in instrumentation prompt the need for advancements in both i) realistic forward light modeling for accurate HD-DOT image reconstruction, and ii) spatial normalization for voxel-wise comparisons across subjects. Individualized forward light models derived from subject-specific anatomical images provide the optimal inverse solutions, but such modeling may not be feasible in all situations. In the absence of subject-specific anatomical images, atlas-based head models registered to the subject's head using cranial fiducials provide an alternative solution. In addition, a standard atlas is attractive because it defines a common coordinate space in which to compare results across subjects. The question therefore arises as to whether atlas-based forward light modeling ensures adequate HD-DOT image quality at the individual and group level. Herein, we demonstrate the feasibility of using atlas-based forward light modeling and spatial normalization methods. Both techniques are validated using subject-matched HD-DOT and fMRI data sets for visual evoked responses measured in five healthy adult subjects. HD-DOT reconstructions obtained with the registered atlas anatomy (i.e. atlas DOT) had an average localization error of 2.7mm relative to reconstructions obtained with the subject-specific anatomical images (i.e. subject-MRI DOT), and 6.6mm relative to fMRI data. At the group level, the localization error of atlas DOT reconstruction was 4.2mm relative to subject-MRI DOT reconstruction, and 6.1mm relative to fMRI. These results show that atlas-based image reconstruction provides a viable approach to individual head modeling for HD-DOT when anatomical imaging is not available.


Asunto(s)
Atlas como Asunto , Cabeza/anatomía & histología , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Modelos Anatómicos , Tomografía Óptica/métodos , Adulto , Mapeo Encefálico/métodos , Mapeo Encefálico/estadística & datos numéricos , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador/estadística & datos numéricos , Individualidad , Imagen por Resonancia Magnética/estadística & datos numéricos , Masculino , Dinámicas no Lineales , Consumo de Oxígeno/fisiología , Valores de Referencia , Tomografía Óptica/estadística & datos numéricos , Adulto Joven
15.
Hum Brain Mapp ; 35(9): 4663-77, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24638883

RESUMEN

Atlas construction generally includes first an image registration step to normalize all images into a common space and then an atlas building step to fuse the information from all the aligned images. Although numerous atlas construction studies have been performed to improve the accuracy of the image registration step, unweighted or simply weighted average is often used in the atlas building step. In this article, we propose a novel patch-based sparse representation method for atlas construction after all images have been registered into the common space. By taking advantage of local sparse representation, more anatomical details can be recovered in the built atlas. To make the anatomical structures spatially smooth in the atlas, the anatomical feature constraints on group structure of representations and also the overlapping of neighboring patches are imposed to ensure the anatomical consistency between neighboring patches. The proposed method has been applied to 73 neonatal MR images with poor spatial resolution and low tissue contrast, for constructing a neonatal brain atlas with sharp anatomical details. Experimental results demonstrate that the proposed method can significantly enhance the quality of the constructed atlas by discovering more anatomical details especially in the highly convoluted cortical regions. The resulting atlas demonstrates superior performance of our atlas when applied to spatially normalizing three different neonatal datasets, compared with other start-of-the-art neonatal brain atlases.


Asunto(s)
Atlas como Asunto , Encéfalo/anatomía & histología , Procesamiento de Imagen Asistido por Computador/métodos , Algoritmos , Femenino , Humanos , Lactante , Recién Nacido , Imagen por Resonancia Magnética , Masculino , Factores de Tiempo
16.
J Neurosci Methods ; 406: 110112, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38508496

RESUMEN

BACKGROUND: Visualizing edges is critical for neuroimaging. For example, edge maps enable quality assurance for the automatic alignment of an image from one modality (or individual) to another. NEW METHOD: We suggest that using the second derivative (difference of Gaussian, or DoG) provides robust edge detection. This method is tuned by size (which is typically known in neuroimaging) rather than intensity (which is relative). RESULTS: We demonstrate that this method performs well across a broad range of imaging modalities. The edge contours produced consistently form closed surfaces, whereas alternative methods may generate disconnected lines, introducing potential ambiguity in contiguity. COMPARISON WITH EXISTING METHODS: Current methods for computing edges are based on either the first derivative of the image (FSL), or a variation of the Canny Edge detection method (AFNI). These methods suffer from two primary limitations. First, the crucial tuning parameter for each of these methods relates to the image intensity. Unfortunately, image intensity is relative for most neuroimaging modalities making the performance of these methods unreliable. Second, these existing approaches do not necessarily generate a closed edge/surface, which can reduce the ability to determine the correspondence between a represented edge and another image. CONCLUSION: The second derivative is well suited for neuroimaging edge detection. We include this method as part of both the AFNI and FSL software packages, standalone code and online.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Imagen por Resonancia Magnética/normas , Encéfalo/diagnóstico por imagen , Imagenología Tridimensional/métodos , Imagenología Tridimensional/normas , Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos , Procesamiento de Imagen Asistido por Computador/normas , Neuroimagen/métodos , Neuroimagen/normas
17.
Front Neurosci ; 18: 1296357, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38298911

RESUMEN

Background: Voxel-based lesion symptom mapping (VLSM) assesses the relation of lesion location at a voxel level with a specific clinical or functional outcome measure at a population level. Spatial normalization, that is, mapping the patient images into an atlas coordinate system, is an essential pre-processing step of VLSM. However, no consensus exists on the optimal registration approach to compute the transformation nor are downstream effects on VLSM statistics explored. In this work, we evaluate four registration approaches commonly used in VLSM pipelines: affine (AR), nonlinear (NLR), nonlinear with cost function masking (CFM), and enantiomorphic registration (ENR). The evaluation is based on a standard VLSM scenario: the analysis of statistical relations of brain voxels and regions in imaging data acquired early after stroke onset with follow-up modified Rankin Scale (mRS) values. Materials and methods: Fluid-attenuated inversion recovery (FLAIR) MRI data from 122 acute ischemic stroke patients acquired between 2 and 3 days after stroke onset and corresponding lesion segmentations, and 30 days mRS values from a European multicenter stroke imaging study (I-KNOW) were available and used in this study. The relation of the voxel location with follow-up mRS was assessed by uni- as well as multi-variate statistical testing based on the lesion segmentations registered using the four different methods (AR, NLR, CFM, ENR; implementation based on the ANTs toolkit). Results: The brain areas evaluated as important for follow-up mRS were largely consistent across the registration approaches. However, NLR, CFM, and ENR led to distortions in the patient images after the corresponding nonlinear transformations were applied. In addition, local structures (for instance the lateral ventricles) and adjacent brain areas remained insufficiently aligned with corresponding atlas structures even after nonlinear registration. Conclusions: For VLSM study designs and imaging data similar to the present work, an additional benefit of nonlinear registration variants for spatial normalization seems questionable. Related distortions in the normalized images lead to uncertainties in the VLSM analyses and may offset the theoretical benefits of nonlinear registration.

18.
Nucl Med Mol Imaging ; 58(4): 246-254, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38932756

RESUMEN

Purpose: This study assesses the clinical performance of BTXBrain-Amyloid, an artificial intelligence-powered software for quantifying amyloid uptake in brain PET images. Methods: 150 amyloid brain PET images were visually assessed by experts and categorized as negative and positive. Standardized uptake value ratio (SUVR) was calculated with cerebellum grey matter as the reference region, and receiver operating characteristic (ROC) and precision-recall (PR) analysis for BTXBrain-Amyloid were conducted. For comparison, same image processing and analysis was performed using Statistical Parametric Mapping (SPM) program. In addition, to evaluate the spatial normalization (SN) performance, mutual information (MI) between MRI template and spatially normalized PET images was calculated and SPM group analysis was conducted. Results: Both BTXBrain and SPM methods discriminated between negative and positive groups. However, BTXBrain exhibited lower SUVR standard deviation (0.06 and 0.21 for negative and positive, respectively) than SPM method (0.11 and 0.25). In ROC analysis, BTXBrain had an AUC of 0.979, compared to 0.959 for SPM, while PR curves showed an AUC of 0.983 for BTXBrain and 0.949 for SPM. At the optimal cut-off, the sensitivity and specificity were 0.983 and 0.921 for BTXBrain and 0.917 and 0.921 for SPM12, respectively. MI evaluation also favored BTXBrain (0.848 vs. 0.823), indicating improved SN. In SPM group analysis, BTXBrain exhibited higher sensitivity in detecting basal ganglia differences between negative and positive groups. Conclusion: BTXBrain-Amyloid outperformed SPM in clinical performance evaluation, also demonstrating superior SN and improved detection of deep brain differences. These results suggest the potential of BTXBrain-Amyloid as a valuable tool for clinical amyloid PET image evaluation.

19.
Front Comput Neurosci ; 18: 1367148, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39040884

RESUMEN

The first step in spatial normalization of magnetic resonance (MR) images commonly is an affine transformation, which may be vulnerable to image imperfections (such as inhomogeneities or "unusual" heads). Additionally, common software solutions use internal starting estimates to allow for a more efficient computation, which may pose a problem in datasets not conforming to these assumptions (such as those from children). In this technical note, three main questions were addressed: one, does the affine spatial normalization step implemented in SPM12 benefit from an initial inhomogeneity correction. Two, does using a complexity-reduced image version improve robustness when matching "unusual" images. And three, can a blind "brute-force" application of a wide range of parameter combinations improve the affine fit for unusual datasets in particular. A large database of 2081 image datasets was used, covering the full age range from birth to old age. All analyses were performed in Matlab. Results demonstrate that an initial removal of image inhomogeneities improved the affine fit particularly when more inhomogeneity was present. Further, using a complexity-reduced input image also improved the affine fit and was beneficial in younger children in particular. Finally, blindly exploring a very wide parameter space resulted in a better fit for the vast majority of subjects, but again particularly so in infants and young children. In summary, the suggested modifications were shown to improve the affine transformation in the large majority of datasets in general, and in children in particular. The changes can easily be implemented into SPM12.

20.
Microorganisms ; 12(1)2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38258027

RESUMEN

In this paper, an automatic colony counting system based on an improved image preprocessing algorithm and convolutional neural network (CNN)-assisted automatic counting method was developed. Firstly, we assembled an LED backlighting illumination platform as an image capturing system to obtain photographs of laboratory cultures. Consequently, a dataset was introduced consisting of 390 photos of agar plate cultures, which included 8 microorganisms. Secondly, we implemented a new algorithm for image preprocessing based on light intensity correction, which facilitated clearer differentiation between colony and media areas. Thirdly, a U2-Net was used to predict the probability distribution of the edge of the Petri dish in images to locate region of interest (ROI), and then threshold segmentation was applied to separate it. This U2-Net achieved an F1 score of 99.5% and a mean absolute error (MAE) of 0.0033 on the validation set. Then, another U2-Net was used to separate the colony region within the ROI. This U2-Net achieved an F1 score of 96.5% and an MAE of 0.005 on the validation set. After that, the colony area was segmented into multiple components containing single or adhesive colonies. Finally, the colony components (CC) were innovatively rotated and the image crops were resized as the input (with 14,921 image crops in the training set and 4281 image crops in the validation set) for the ResNet50 network to automatically count the number of colonies. Our method achieved an overall recovery of 97.82% for colony counting and exhibited excellent performance in adhesion classification. To the best of our knowledge, the proposed "light intensity correction-based image preprocessing→U2-Net segmentation for Petri dish edge→U2-Net segmentation for colony region→ResNet50-based counting" scheme represents a new attempt and demonstrates a high degree of automation and accuracy in recognizing and counting single-colony and multi-colony targets.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA