Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.424
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 171(5): 1191-1205.e28, 2017 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-29149606

RESUMEN

Effective evaluation of costs and benefits is a core survival capacity that in humans is considered as optimal, "rational" decision-making. This capacity is vulnerable in neuropsychiatric disorders and in the aftermath of chronic stress, in which aberrant choices and high-risk behaviors occur. We report that chronic stress exposure in rodents produces abnormal evaluation of costs and benefits resembling non-optimal decision-making in which choices of high-cost/high-reward options are sharply increased. Concomitantly, alterations in the task-related spike activity of medial prefrontal neurons correspond with increased activity of their striosome-predominant striatal projection neuron targets and with decreased and delayed striatal fast-firing interneuron activity. These effects of chronic stress on prefronto-striatal circuit dynamics could be blocked or be mimicked by selective optogenetic manipulation of these circuits. We suggest that altered excitation-inhibition dynamics of striosome-based circuit function could be an underlying mechanism by which chronic stress contributes to disorders characterized by aberrant decision-making under conflict. VIDEO ABSTRACT.


Asunto(s)
Toma de Decisiones , Corteza Prefrontal/fisiopatología , Estrés Fisiológico , Animales , Ganglios Basales/metabolismo , Interneuronas/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Vías Nerviosas , Optogenética , Ratas , Ratas Long-Evans
2.
Proc Natl Acad Sci U S A ; 121(28): e2403143121, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38959041

RESUMEN

Currently, the nanofluidic synapse can only perform basic neuromorphic pulse patterns. One immediate problem that needs to be addressed to further its capability of brain-like computing is the realization of a nanofluidic spiking device. Here, we report the use of a poly(3,4-ethylenedioxythiophene) polystyrene sulfonate membrane to achieve bionic ionic current-induced spiking. In addition to the simulation of various electrical pulse patterns, our synapse could produce transmembrane ionic current-induced spiking, which is highly analogous to biological action potentials with similar phases and excitability. Moreover, the spiking properties could be modulated by ions and neurochemicals. We expect that this work could contribute to biomimetic spiking computing in solution.


Asunto(s)
Potenciales de Acción , Poliestirenos , Sinapsis , Potenciales de Acción/fisiología , Sinapsis/fisiología , Poliestirenos/química , Nanotecnología/métodos , Nanotecnología/instrumentación
3.
Proc Natl Acad Sci U S A ; 120(39): e2218173120, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37729206

RESUMEN

In biological neural systems, different neurons are capable of self-organizing to form different neural circuits for achieving a variety of cognitive functions. However, the current design paradigm of spiking neural networks is based on structures derived from deep learning. Such structures are dominated by feedforward connections without taking into account different types of neurons, which significantly prevent spiking neural networks from realizing their potential on complex tasks. It remains an open challenge to apply the rich dynamical properties of biological neural circuits to model the structure of current spiking neural networks. This paper provides a more biologically plausible evolutionary space by combining feedforward and feedback connections with excitatory and inhibitory neurons. We exploit the local spiking behavior of neurons to adaptively evolve neural circuits such as forward excitation, forward inhibition, feedback inhibition, and lateral inhibition by the local law of spike-timing-dependent plasticity and update the synaptic weights in combination with the global error signals. By using the evolved neural circuits, we construct spiking neural networks for image classification and reinforcement learning tasks. Using the brain-inspired Neural circuit Evolution strategy (NeuEvo) with rich neural circuit types, the evolved spiking neural network greatly enhances capability on perception and reinforcement learning tasks. NeuEvo achieves state-of-the-art performance on CIFAR10, DVS-CIFAR10, DVS-Gesture, and N-Caltech101 datasets and achieves advanced performance on ImageNet. Combined with on-policy and off-policy deep reinforcement learning algorithms, it achieves comparable performance with artificial neural networks. The evolved spiking neural circuits lay the foundation for the evolution of complex networks with functions.


Asunto(s)
Redes Neurales de la Computación , Neuronas , Cognición , Algoritmos , Comunicación Celular
4.
Proc Natl Acad Sci U S A ; 120(38): e2303765120, 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37695901

RESUMEN

This work reports that synchronization of Mott material-based nanoscale coupled spiking oscillators can be drastically different from that in conventional harmonic oscillators. We investigated the synchronization of spiking nanooscillators mediated by thermal interactions due to the close physical proximity of the devices. Controlling the driving voltage enables in-phase 1:1 and 2:1 integer synchronization modes between neighboring oscillators. Transition between these two integer modes occurs through an unusual stochastic synchronization regime instead of the loss of spiking coherence. In the stochastic synchronization regime, random length spiking sequences belonging to the 1:1 and 2:1 integer modes are intermixed. The occurrence of this stochasticity is an important factor that must be taken into account in the design of large-scale spiking networks for hardware-level implementation of novel computational paradigms such as neuromorphic and stochastic computing.

5.
J Neurosci ; 44(9)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38123981

RESUMEN

Excessive oscillatory activity across basal ganglia (BG) nuclei in the ß frequencies (12-30 Hz) is a hallmark of Parkinson's disease (PD). While the link between oscillations and symptoms remains debated, exaggerated ß oscillations constitute an important biomarker for therapeutic effectiveness in PD. The neuronal mechanisms of ß-oscillation generation however remain unknown. Many existing models rely on a central role of the subthalamic nucleus (STN) or cortical inputs to BG. Contrarily, neural recordings and optogenetic manipulations in normal and parkinsonian rats recently highlighted the central role of the external pallidum (GPe) in abnormal ß oscillations, while showing that the integrity of STN or motor cortex is not required. Here, we evaluate the mechanisms for the generation of abnormal ß oscillations in a BG network model where neuronal and synaptic time constants, connectivity, and firing rate distributions are strongly constrained by experimental data. Guided by a mean-field approach, we show in a spiking neural network that several BG sub-circuits can drive oscillations. Strong recurrent STN-GPe connections or collateral intra-GPe connections drive γ oscillations (>40 Hz), whereas strong pallidostriatal loops drive low-ß (10-15 Hz) oscillations. We show that pathophysiological strengthening of striatal and pallidal synapses following dopamine depletion leads to the emergence of synchronized oscillatory activity in the mid-ß range with spike-phase relationships between BG neuronal populations in-line with experiments. Furthermore, inhibition of GPe, contrary to STN, abolishes oscillations. Our modeling study uncovers the neural mechanisms underlying PD ß oscillations and may thereby guide the future development of therapeutic strategies.


Asunto(s)
Enfermedad de Parkinson , Núcleo Subtalámico , Ratas , Animales , Ganglios Basales/fisiología , Globo Pálido/fisiología , Neuronas/fisiología , Ritmo beta/fisiología
6.
J Neurosci ; 44(6)2024 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-38124002

RESUMEN

Recent results show that valuable objects can pop out in visual search, yet its neural mechanisms remain unexplored. Given the role of substantia nigra reticulata (SNr) in object value memory and control of gaze, we recorded its single-unit activity while male macaque monkeys engaged in efficient or inefficient search for a valuable target object among low-value objects. The results showed that efficient search was concurrent with stronger inhibition and higher spiking irregularity in the target-present (TP) compared with the target-absent (TA) trials in SNr. Importantly, the firing rate differentiation of TP and TA trials happened within ∼100 ms of display onset, and its magnitude was significantly correlated with the search times and slopes (search efficiency). Time-frequency analyses of local field potential (LFP) after display onset revealed significant modulations of the gamma band power with search efficiency. The greater reduction of SNr firing in TP trials in efficient search can create a stronger disinhibition of downstream superior colliculus, which in turn can facilitate saccade to obtain valuable targets in competitive environments.


Asunto(s)
Porción Reticular de la Sustancia Negra , Masculino , Animales , Sustancia Negra/fisiología , Neuronas/fisiología , Movimientos Sacádicos , Colículos Superiores
7.
Cereb Cortex ; 34(5)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38771239

RESUMEN

Brain energy budgets specify metabolic costs emerging from underlying mechanisms of cellular and synaptic activities. While current bottom-up energy budgets use prototypical values of cellular density and synaptic density, predicting metabolism from a person's individualized neuropil density would be ideal. We hypothesize that in vivo neuropil density can be derived from magnetic resonance imaging (MRI) data, consisting of longitudinal relaxation (T1) MRI for gray/white matter distinction and diffusion MRI for tissue cellularity (apparent diffusion coefficient, ADC) and axon directionality (fractional anisotropy, FA). We present a machine learning algorithm that predicts neuropil density from in vivo MRI scans, where ex vivo Merker staining and in vivo synaptic vesicle glycoprotein 2A Positron Emission Tomography (SV2A-PET) images were reference standards for cellular and synaptic density, respectively. We used Gaussian-smoothed T1/ADC/FA data from 10 healthy subjects to train an artificial neural network, subsequently used to predict cellular and synaptic density for 54 test subjects. While excellent histogram overlaps were observed both for synaptic density (0.93) and cellular density (0.85) maps across all subjects, the lower spatial correlations both for synaptic density (0.89) and cellular density (0.58) maps are suggestive of individualized predictions. This proof-of-concept artificial neural network may pave the way for individualized energy atlas prediction, enabling microscopic interpretations of functional neuroimaging data.


Asunto(s)
Encéfalo , Aprendizaje Automático , Imagen por Resonancia Magnética , Neurópilo , Humanos , Masculino , Adulto , Femenino , Imagen por Resonancia Magnética/métodos , Neurópilo/metabolismo , Encéfalo/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Adulto Joven , Tomografía de Emisión de Positrones/métodos , Persona de Mediana Edad , Sustancia Gris/diagnóstico por imagen , Redes Neurales de la Computación , Procesamiento de Imagen Asistido por Computador/métodos
8.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35042792

RESUMEN

To rapidly process temporal information at a low metabolic cost, biological neurons integrate inputs as an analog sum, but communicate with spikes, binary events in time. Analog neuromorphic hardware uses the same principles to emulate spiking neural networks with exceptional energy efficiency. However, instantiating high-performing spiking networks on such hardware remains a significant challenge due to device mismatch and the lack of efficient training algorithms. Surrogate gradient learning has emerged as a promising training strategy for spiking networks, but its applicability for analog neuromorphic systems has not been demonstrated. Here, we demonstrate surrogate gradient learning on the BrainScaleS-2 analog neuromorphic system using an in-the-loop approach. We show that learning self-corrects for device mismatch, resulting in competitive spiking network performance on both vision and speech benchmarks. Our networks display sparse spiking activity with, on average, less than one spike per hidden neuron and input, perform inference at rates of up to 85,000 frames per second, and consume less than 200 mW. In summary, our work sets several benchmarks for low-energy spiking network processing on analog neuromorphic hardware and paves the way for future on-chip learning algorithms.


Asunto(s)
Redes Neurales de la Computación , Potenciales de Acción/fisiología , Algoritmos , Encéfalo/fisiología , Computadores , Modelos Biológicos , Modelos Neurológicos , Modelos Teóricos , Neuronas/fisiología
9.
Proc Natl Acad Sci U S A ; 119(43): e2207912119, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36256810

RESUMEN

Persistent activity in populations of neurons, time-varying activity across a neural population, or activity-silent mechanisms carried out by hidden internal states of the neural population have been proposed as different mechanisms of working memory (WM). Whether these mechanisms could be mutually exclusive or occur in the same neuronal circuit remains, however, elusive, and so do their biophysical underpinnings. While WM is traditionally regarded to depend purely on neuronal mechanisms, cortical networks also include astrocytes that can modulate neural activity. We propose and investigate a network model that includes both neurons and glia and show that glia-synapse interactions can lead to multiple stable states of synaptic transmission. Depending on parameters, these interactions can lead in turn to distinct patterns of network activity that can serve as substrates for WM.


Asunto(s)
Astrocitos , Memoria a Corto Plazo , Astrocitos/fisiología , Sinapsis/fisiología , Neuronas/fisiología , Neuroglía
10.
Proc Natl Acad Sci U S A ; 119(34): e2205920119, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35972963

RESUMEN

Nuclear Ca2+ oscillations allow symbiosis signaling, facilitating plant recognition of beneficial microsymbionts, nitrogen-fixing rhizobia, and nutrient-capturing arbuscular mycorrhizal fungi. Two classes of channels, DMI1 and CNGC15, in a complex on the nuclear membrane, coordinate symbiotic Ca2+ oscillations. However, the mechanism of Ca2+ signature generation is unknown. Here, we demonstrate spontaneous activation of this channel complex, through gain-of-function mutations in DMI1, leading to spontaneous nuclear Ca2+ oscillations and spontaneous nodulation, in a CNGC15-dependent manner. The mutations destabilize a hydrogen-bond or salt-bridge network between two RCK domains, with the resultant structural changes, alongside DMI1 cation permeability, activating the channel complex. This channel complex was reconstituted in human HEK293T cell lines, with the resultant calcium influx enhanced by autoactivated DMI1 and CNGC15s. Our results demonstrate the mode of activation of this nuclear channel complex, show that DMI1 and CNGC15 are sufficient to create oscillatory Ca2+ signals, and provide insights into its native mode of induction.


Asunto(s)
Canales de Calcio , Señalización del Calcio , Medicago truncatula , Proteínas de Plantas , Nodulación de la Raíz de la Planta , Raíces de Plantas , Calcio/metabolismo , Canales de Calcio/genética , Canales de Calcio/metabolismo , Señalización del Calcio/fisiología , Núcleo Celular/metabolismo , Mutación con Ganancia de Función , Regulación de la Expresión Génica de las Plantas , Células HEK293 , Humanos , Medicago truncatula/genética , Medicago truncatula/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nodulación de la Raíz de la Planta/genética , Nodulación de la Raíz de la Planta/fisiología , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Simbiosis/fisiología
11.
Proc Natl Acad Sci U S A ; 119(19): e2120808119, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35500112

RESUMEN

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is highly effective in alleviating movement disability in patients with Parkinson's disease (PD). However, its therapeutic mechanism of action is unknown. The healthy striatum exhibits rich dynamics resulting from an interaction of beta, gamma, and theta oscillations. These rhythms are essential to selection and execution of motor programs, and their loss or exaggeration due to dopamine (DA) depletion in PD is a major source of behavioral deficits. Restoring the natural rhythms may then be instrumental in the therapeutic action of DBS. We develop a biophysical networked model of a BG pathway to study how abnormal beta oscillations can emerge throughout the BG in PD and how DBS can restore normal beta, gamma, and theta striatal rhythms. Our model incorporates STN projections to the striatum, long known but understudied, found to preferentially target fast-spiking interneurons (FSI). We find that DBS in STN can normalize striatal medium spiny neuron activity by recruiting FSI dynamics and restoring the inhibitory potency of FSIs observed in normal conditions. We also find that DBS allows the reexpression of gamma and theta rhythms, thought to be dependent on high DA levels and thus lost in PD, through cortical noise control. Our study highlights that DBS effects can go beyond regularizing BG output dynamics to restoring normal internal BG dynamics and the ability to regulate them. It also suggests how gamma and theta oscillations can be leveraged to supplement DBS treatment and enhance its effectiveness.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Núcleo Subtalámico , Ganglios Basales/fisiología , Cuerpo Estriado , Humanos , Enfermedad de Parkinson/terapia , Núcleo Subtalámico/fisiología
12.
Nano Lett ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38819288

RESUMEN

Analog neuromorphic computing systems emulate the parallelism and connectivity of the human brain, promising greater expressivity and energy efficiency compared to those of digital systems. Though many devices have emerged as candidates for artificial neurons and artificial synapses, there have been few device candidates for artificial dendrites. In this work, we report on biocompatible graphene-based artificial dendrites (GrADs) that can implement dendritic processing. By using a dual side-gate configuration, current applied through a Nafion membrane can be used to control device conductance across a trilayer graphene channel, showing spatiotemporal responses of leaky recurrent, alpha, and Gaussian dendritic potentials. The devices can be variably connected to enable higher-order neuronal responses, and we show through data-driven spiking neural network simulations that spiking activity is reduced by ≤15% without accuracy loss while low-frequency operation is stabilized. This positions the GrADs as strong candidates for energy efficient bio-interfaced spiking neural networks.

13.
J Neurosci ; 43(35): 6112-6125, 2023 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-37400253

RESUMEN

Oscillatory signals propagate in the basal ganglia from prototypic neurons in the external globus pallidus (GPe) to their target neurons in the substantia nigra pars reticulata (SNr), internal pallidal segment, and subthalamic nucleus. Neurons in the GPe fire spontaneously, so oscillatory input signals can be encoded as changes in timing of action potentials within an ongoing spike train. When GPe neurons were driven by an oscillatory current in male and female mice, these spike-timing changes produced spike-oscillation coherence over a range of frequencies extending at least to 100 Hz. Using the known kinetics of the GPe→SNr synapse, we calculated the postsynaptic currents that would be generated in SNr neurons from the recorded GPe spike trains. The ongoing synaptic barrage from spontaneous firing, frequency-dependent short-term depression, and stochastic fluctuations at the synapse embed the input oscillation into a noisy sequence of synaptic currents in the SNr. The oscillatory component of the resulting synaptic current must compete with the noisy spontaneous synaptic barrage for control of postsynaptic SNr neurons, which have their own frequency-dependent sensitivities. Despite this, SNr neurons subjected to synaptic conductance changes generated from recorded GPe neuron firing patterns also became coherent with oscillations over a broad range of frequencies. The presynaptic, synaptic, and postsynaptic frequency sensitivities were all dependent on the firing rates of presynaptic and postsynaptic neurons. Firing rate changes, often assumed to be the propagating signal in these circuits, do not encode most oscillation frequencies, but instead determine which signal frequencies propagate effectively and which are suppressed.SIGNIFICANCE STATEMENT Oscillations are present in all the basal ganglia nuclei, include a range of frequencies, and change over the course of learning and behavior. Exaggerated oscillations are a hallmark of basal ganglia pathologies, and each has a specific frequency range. Because of its position as a hub in the basal ganglia circuitry, the globus pallidus is a candidate origin for oscillations propagating between nuclei. We imposed low-amplitude oscillations on individual globus pallidus neurons at specific frequencies and measured the coherence between the oscillation and firing as a function of frequency. We then used these responses to measure the effectiveness of oscillatory propagation to other basal ganglia nuclei. Propagation was effective for oscillation frequencies as high as 100 Hz.


Asunto(s)
Porción Reticular de la Sustancia Negra , Núcleo Subtalámico , Masculino , Femenino , Ratones , Animales , Ganglios Basales/fisiología , Globo Pálido , Potenciales Sinápticos , Potenciales de Acción/fisiología
14.
J Neurosci ; 43(24): 4448-4460, 2023 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-37188513

RESUMEN

Microstimulation can modulate the activity of individual neurons to affect behavior, but the effects of stimulation on neuronal spiking are complex and remain poorly understood. This is especially challenging in the human brain where the response properties of individual neurons are sparse and heterogeneous. Here we use microelectrode arrays in the human anterior temporal lobe in 6 participants (3 female) to examine the spiking responses of individual neurons to microstimulation delivered through multiple distinct stimulation sites. We demonstrate that individual neurons can be driven with excitation or inhibition using different stimulation sites, which suggests an approach for providing direct control of spiking activity at the single-neuron level. Spiking responses are inhibitory in neurons that are close to the site of stimulation, while excitatory responses are more spatially distributed. Together, our data demonstrate that spiking responses of individual neurons can be reliably identified and manipulated in the human cortex.SIGNIFICANCE STATEMENT One of the major limitations in our ability to interface directly with the human brain is that the effects of stimulation on the activity of individual neurons remain poorly understood. This study examines the spiking responses of neurons in the human temporal cortex in response to pulses of microstimulation. This study finds that individual neurons can either be excited or inhibited depending on the site of stimulation. These data suggest an approach for modulating the spiking activity of individual neurons in the human brain.


Asunto(s)
Corteza Cerebral , Neuronas , Humanos , Femenino , Estimulación Eléctrica , Neuronas/fisiología , Lóbulo Temporal/fisiología , Encéfalo
15.
J Neurosci ; 43(23): 4234-4250, 2023 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-37197980

RESUMEN

Planning and execution of voluntary movement depend on the contribution of distinct classes of neurons in primary motor and premotor areas. However, timing and pattern of activation of GABAergic cells during specific motor behaviors remain only partly understood. Here, we directly compared the response properties of putative pyramidal neurons (PNs) and GABAergic fast-spiking neurons (FSNs) during spontaneous licking and forelimb movements in male mice. Recordings centered on the face/mouth motor field of the anterolateral motor cortex (ALM) revealed that FSNs fire longer than PNs and earlier for licking, but not for forelimb movements. Computational analysis revealed that FSNs carry vastly more information than PNs about the onset of movement. While PNs differently modulate their discharge during distinct motor acts, most FSNs respond with a stereotyped increase in firing rate. Accordingly, the informational redundancy was greater among FSNs than PNs. Finally, optogenetic silencing of a subset of FSNs reduced spontaneous licking movement. These data suggest that a global rise of inhibition contributes to the initiation and execution of spontaneous motor actions.SIGNIFICANCE STATEMENT Our study contributes to clarifying the causal role of fast-spiking neurons (FSNs) in driving initiation and execution of specific, spontaneous movements. Within the face/mouth motor field of mice premotor cortex, FSNs fire before pyramidal neurons (PNs) with a specific activation pattern: they reach their peak of activity earlier than PNs during the initiation of licking, but not of forelimb, movements; duration of FSNs activity is also greater and exhibits less selectivity for the movement type, as compared with that of PNs. Accordingly, FSNs appear to carry more redundant information than PNs. Optogenetic silencing of FSNs reduced spontaneous licking movement, suggesting that FSNs contribute to the initiation and execution of specific spontaneous movements, possibly by sculpting response selectivity of nearby PNs.


Asunto(s)
Corteza Motora , Masculino , Ratones , Animales , Corteza Motora/fisiología , Interneuronas/fisiología , Células Piramidales/fisiología , Movimiento/fisiología , Neuronas GABAérgicas
16.
Plant Cell Physiol ; 65(7): 1149-1159, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38581668

RESUMEN

Establishment of arbuscular mycorrhiza relies on a plant signaling pathway that can be activated by fungal chitinic signals such as short-chain chitooligosaccharides and lipo-chitooligosaccharides (LCOs). The tomato LysM receptor-like kinase SlLYK10 has high affinity for LCOs and is involved in root colonization by arbuscular mycorrhizal fungi (AMF); however, its role in LCO responses has not yet been studied. Here, we show that SlLYK10 proteins produced by the Sllyk10-1 and Sllyk10-2 mutant alleles, which both cause decreases in AMF colonization and carry mutations in LysM1 and 2, respectively, have similar LCO-binding affinities compared to the WT SlLYK10. However, the mutant forms were no longer able to induce cell death in Nicotiana benthamiana when co-expressed with MtLYK3, a Medicago truncatula LCO co-receptor, while they physically interacted with MtLYK3 in co-purification experiments. This suggests that the LysM mutations affect the ability of SlLYK10 to trigger signaling through a potential co-receptor rather than its ability to bind LCOs. Interestingly, tomato lines that contain a calcium (Ca2+) concentration reporter [genetically encoded Ca2+ indicators (GECO)], showed Ca2+ spiking in response to LCO applications, but this occurred only in inner cell layers of the roots, while short-chain chitooligosaccharides also induced Ca2+ spiking in the epidermis. Moreover, LCO-induced Ca2+ spiking was decreased in Sllyk10-1*GECO plants, suggesting that the decrease in AMF colonization in Sllyk10-1 is due to abnormal LCO signaling.


Asunto(s)
Micorrizas , Proteínas de Plantas , Raíces de Plantas , Transducción de Señal , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/enzimología , Solanum lycopersicum/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/genética , Micorrizas/fisiología , Quitina/metabolismo , Lipopolisacáridos/farmacología , Oligosacáridos/metabolismo , Mutación/genética , Regulación de la Expresión Génica de las Plantas , Nicotiana/genética , Nicotiana/metabolismo , Quitosano/metabolismo , Medicago truncatula/genética , Medicago truncatula/metabolismo , Medicago truncatula/enzimología
17.
Eur J Neurosci ; 59(11): 3093-3116, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38616566

RESUMEN

The amygdala (AMY) is widely implicated in fear learning and fear behaviour, but it remains unclear how the many biological components present within AMY interact to achieve these abilities. Building on previous work, we hypothesize that individual AMY nuclei represent different quantities and that fear conditioning arises from error-driven learning on the synapses between AMY nuclei. We present a computational model of AMY that (a) recreates the divisions and connections between AMY nuclei and their constituent pyramidal and inhibitory neurons; (b) accommodates scalable high-dimensional representations of external stimuli; (c) learns to associate complex stimuli with the presence (or absence) of an aversive stimulus; (d) preserves feature information when mapping inputs to salience estimates, such that these estimates generalize to similar stimuli; and (e) induces a diverse profile of neural responses within each nucleus. Our model predicts (1) defensive responses and neural activities in several experimental conditions, (2) the consequence of artificially ablating particular nuclei and (3) the tendency to generalize defensive responses to novel stimuli. We test these predictions by comparing model outputs to neural and behavioural data from animals and humans. Despite the relative simplicity of our model, we find significant overlap between simulated and empirical data, which supports our claim that the model captures many of the neural mechanisms that support fear conditioning. We conclude by comparing our model to other computational models and by characterizing the theoretical relationship between pattern separation and fear generalization in healthy versus anxious individuals.


Asunto(s)
Amígdala del Cerebelo , Extinción Psicológica , Miedo , Generalización Psicológica , Modelos Neurológicos , Miedo/fisiología , Amígdala del Cerebelo/fisiología , Extinción Psicológica/fisiología , Humanos , Animales , Generalización Psicológica/fisiología , Condicionamiento Clásico/fisiología , Neuronas/fisiología , Potenciales de Acción/fisiología
18.
Biochem Biophys Res Commun ; 709: 149725, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38579617

RESUMEN

Proteinoids are synthetic polymers that have structural similarities to natural proteins, and their formation is achieved through the application of heat to amino acid combinations in a dehydrated environment. The thermal proteins, initially synthesised by Sidney Fox during the 1960s, has the ability to undergo self-assembly, resulting in the formation of microspheres that resemble cells. These microspheres have fascinating biomimetic characteristics. In recent studies, substantial advancements have been made in elucidating the electrical signalling phenomena shown by proteinoids, hence showcasing their promising prospects in the field of neuro-inspired computing. This study demonstrates the advancement of experimental prototypes that employ proteinoids in the construction of fundamental neural network structures. The article provides an overview of significant achievements in proteinoid systems, such as the demonstration of electrical excitability, emulation of synaptic functions, capabilities in pattern recognition, and adaptability of network structures. This study examines the similarities and differences between proteinoid networks and spontaneous neural computation. We examine the persistent challenges associated with deciphering the underlying mechanisms of emergent proteinoid-based intelligence. Additionally, we explore the potential for developing bio-inspired computing systems using synthetic thermal proteins in forthcoming times. The results of this study offer a theoretical foundation for the advancement of adaptive, self-assembling electronic systems that operate using artificial bio-neural principles.


Asunto(s)
Aminoácidos , Proteínas , Proteínas/metabolismo , Calor , Redes Neurales de la Computación
19.
J Comput Neurosci ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38967732

RESUMEN

We derive a next generation neural mass model of a population of quadratic-integrate-and-fire neurons, with slow adaptation, and conductance-based AMPAR, GABAR and nonlinear NMDAR synapses. We show that the Lorentzian ansatz assumption can be satisfied by introducing a piece-wise polynomial approximation of the nonlinear voltage-dependent magnesium block of NMDAR current. We study the dynamics of the resulting system for two example cases of excitatory cortical neurons and inhibitory striatal neurons. Bifurcation diagrams are presented comparing the different dynamical regimes as compared to the case of linear NMDAR currents, along with sample comparison simulation time series demonstrating different possible oscillatory solutions. The omission of the nonlinearity of NMDAR currents results in a shift in the range (and possible disappearance) of the constant high firing rate regime, along with a modulation in the amplitude and frequency power spectrum of oscillations. Moreover, nonlinear NMDAR action is seen to be state-dependent and can have opposite effects depending on the type of neurons involved and the level of input firing rate received. The presented model can serve as a computationally efficient building block in whole brain network models for investigating the differential modulation of different types of synapses under neuromodulatory influence or receptor specific malfunction.

20.
J Comput Neurosci ; 52(2): 165-181, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38512693

RESUMEN

Gamma oscillations are widely seen in the cerebral cortex in different states of the wake-sleep cycle and are thought to play a role in sensory processing and cognition. Here, we study the emergence of gamma oscillations at two levels, in networks of spiking neurons, and a mean-field model. At the network level, we consider two different mechanisms to generate gamma oscillations and show that they are best seen if one takes into account the synaptic delay between neurons. At the mean-field level, we show that, by introducing delays, the mean-field can also produce gamma oscillations. The mean-field matches the mean activity of excitatory and inhibitory populations of the spiking network, as well as their oscillation frequencies, for both mechanisms. This mean-field model of gamma oscillations should be a useful tool to investigate large-scale interactions through gamma oscillations in the brain.


Asunto(s)
Potenciales de Acción , Ritmo Gamma , Modelos Neurológicos , Red Nerviosa , Inhibición Neural , Neuronas , Neuronas/fisiología , Ritmo Gamma/fisiología , Red Nerviosa/fisiología , Inhibición Neural/fisiología , Animales , Potenciales de Acción/fisiología , Humanos , Redes Neurales de la Computación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA