Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.533
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 187(8): 1971-1989.e16, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38521060

RESUMEN

Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) share many clinical, pathological, and genetic features, but a detailed understanding of their associated transcriptional alterations across vulnerable cortical cell types is lacking. Here, we report a high-resolution, comparative single-cell molecular atlas of the human primary motor and dorsolateral prefrontal cortices and their transcriptional alterations in sporadic and familial ALS and FTLD. By integrating transcriptional and genetic information, we identify known and previously unidentified vulnerable populations in cortical layer 5 and show that ALS- and FTLD-implicated motor and spindle neurons possess a virtually indistinguishable molecular identity. We implicate potential disease mechanisms affecting these cell types as well as non-neuronal drivers of pathogenesis. Finally, we show that neuron loss in cortical layer 5 tracks more closely with transcriptional identity rather than cellular morphology and extends beyond previously reported vulnerable cell types.


Asunto(s)
Esclerosis Amiotrófica Lateral , Degeneración Lobar Frontotemporal , Corteza Prefrontal , Animales , Humanos , Ratones , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Demencia Frontotemporal/genética , Degeneración Lobar Frontotemporal/genética , Degeneración Lobar Frontotemporal/metabolismo , Degeneración Lobar Frontotemporal/patología , Perfilación de la Expresión Génica , Neuronas/metabolismo , Corteza Prefrontal/metabolismo , Corteza Prefrontal/patología , Análisis de Expresión Génica de una Sola Célula
2.
Annu Rev Biochem ; 91: 541-569, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35041460

RESUMEN

Controlled assembly and disassembly of multi-protein complexes is central to cellular signaling. Proteins of the widespread and functionally diverse HORMA family nucleate assembly of signaling complexes by binding short peptide motifs through a distinctive safety-belt mechanism. HORMA proteins are now understood as key signaling proteins across kingdoms, serving as infection sensors in a bacterial immune system and playing central roles in eukaryotic cell cycle, genome stability, sexual reproduction, and cellular homeostasis pathways. Here, we describe how HORMA proteins' unique ability to adopt multiple conformational states underlies their functions in these diverse contexts. We also outline how a dedicated AAA+ ATPase regulator, Pch2/TRIP13, manipulates HORMA proteins' conformational states to activate or inactivate signaling in different cellular contexts. The emergence of Pch2/TRIP13 as a lynchpin for HORMA protein action in multiple genome-maintenance pathways accounts for its frequent misregulation in human cancers and highlights TRIP13 as a novel therapeutic target.


Asunto(s)
Proteínas de Ciclo Celular , Transducción de Señal , ATPasas Asociadas con Actividades Celulares Diversas/genética , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Proteínas de Ciclo Celular/genética , Humanos , Conformación Proteica
3.
Cell ; 184(11): 2860-2877.e22, 2021 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-33964210

RESUMEN

Most human embryos are aneuploid. Aneuploidy frequently arises during the early mitotic divisions of the embryo, but its origin remains elusive. Human zygotes that cluster their nucleoli at the pronuclear interface are thought to be more likely to develop into healthy euploid embryos. Here, we show that the parental genomes cluster with nucleoli in each pronucleus within human and bovine zygotes, and clustering is required for the reliable unification of the parental genomes after fertilization. During migration of intact pronuclei, the parental genomes polarize toward each other in a process driven by centrosomes, dynein, microtubules, and nuclear pore complexes. The maternal and paternal chromosomes eventually cluster at the pronuclear interface, in direct proximity to each other, yet separated. Parental genome clustering ensures the rapid unification of the parental genomes on nuclear envelope breakdown. However, clustering often fails, leading to chromosome segregation errors and micronuclei, incompatible with healthy embryo development.


Asunto(s)
Embrión de Mamíferos/metabolismo , Desarrollo Embrionario/genética , Aneuploidia , Animales , Bovinos , Nucléolo Celular/metabolismo , Núcleo Celular/metabolismo , Centrosoma/metabolismo , Segregación Cromosómica/fisiología , Cromosomas/metabolismo , Fertilización/genética , Humanos , Masculino , Microtúbulos/metabolismo , Mitosis , Oocitos/metabolismo , Espermatozoides/metabolismo , Cigoto/metabolismo
4.
Cell ; 176(4): 805-815.e8, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30639102

RESUMEN

Early embryogenesis is accompanied by reductive cell divisions requiring that subcellular structures adapt to a range of cell sizes. The interphase nucleus and mitotic spindle scale with cell size through both physical and biochemical mechanisms, but control systems that coordinately scale intracellular structures are unknown. We show that the nuclear transport receptor importin α is modified by palmitoylation, which targets it to the plasma membrane and modulates its binding to nuclear localization signal (NLS)-containing proteins that regulate nuclear and spindle size in Xenopus egg extracts. Reconstitution of importin α targeting to the outer boundary of extract droplets mimicking cell-like compartments recapitulated scaling relationships observed during embryogenesis, which were altered by inhibitors that shift levels of importin α palmitoylation. Modulation of importin α palmitoylation in human cells similarly affected nuclear and spindle size. These experiments identify importin α as a conserved surface area-to-volume sensor that scales intracellular structures to cell size.


Asunto(s)
División Celular/fisiología , alfa Carioferinas/metabolismo , alfa Carioferinas/fisiología , Transporte Activo de Núcleo Celular , Animales , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Tamaño de la Célula , Citoplasma/metabolismo , Lipoilación , Proteínas de la Membrana/metabolismo , Proteínas Nucleares/metabolismo , Óvulo/citología , Huso Acromático/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo
5.
Annu Rev Cell Dev Biol ; 36: 219-236, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32603615

RESUMEN

As cells grow, the size and number of their internal organelles increase in order to keep up with increased metabolic requirements. Abnormal size of organelles is a hallmark of cancer and an important aspect of diagnosis in cytopathology. Most organelles vary in either size or number, or both, as a function of cell size, but the mechanisms that create this variation remain unclear. In some cases, organelle size appears to scale with cell size through processes of relative growth, but in others the size may be set by either active measurement systems or genetic programs that instruct organelle biosynthetic activities to create organelles of a size appropriate to a given cell type.


Asunto(s)
Fracciones Subcelulares/metabolismo , Animales , Humanos , Modelos Biológicos , Orgánulos/metabolismo
6.
Cell ; 175(3): 796-808.e14, 2018 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-30340043

RESUMEN

During cell division, mitotic motors organize microtubules in the bipolar spindle into either polar arrays at the spindle poles or a "nematic" network of aligned microtubules at the spindle center. The reasons for the distinct self-organizing capacities of dynamic microtubules and different motors are not understood. Using in vitro reconstitution experiments and computer simulations, we show that the human mitotic motors kinesin-5 KIF11 and kinesin-14 HSET, despite opposite directionalities, can both organize dynamic microtubules into either polar or nematic networks. We show that in addition to the motor properties the natural asymmetry between microtubule plus- and minus-end growth critically contributes to the organizational potential of the motors. We identify two control parameters that capture system composition and kinetic properties and predict the outcome of microtubule network organization. These results elucidate a fundamental design principle of spindle bipolarity and establish general rules for active filament network organization.


Asunto(s)
Cinesinas/metabolismo , Microtúbulos/metabolismo , Simulación de Dinámica Molecular , Huso Acromático/metabolismo , Animales , Humanos , Cinesinas/química , Microtúbulos/química , Células Sf9 , Huso Acromático/química , Spodoptera
7.
Cell ; 173(4): 839-850.e18, 2018 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-29628142

RESUMEN

Maize abnormal chromosome 10 (Ab10) encodes a classic example of true meiotic drive that converts heterochromatic regions called knobs into motile neocentromeres that are preferentially transmitted to egg cells. Here, we identify a cluster of eight genes on Ab10, called the Kinesin driver (Kindr) complex, that are required for both neocentromere motility and preferential transmission. Two meiotic drive mutants that lack neocentromere activity proved to be kindr epimutants with increased DNA methylation across the entire gene cluster. RNAi of Kindr induced a third epimutant and corresponding loss of meiotic drive. Kinesin gliding assays and immunolocalization revealed that KINDR is a functional minus-end-directed kinesin that localizes specifically to knobs containing 180 bp repeats. Sequence comparisons suggest that Kindr diverged from a Kinesin-14A ancestor ∼12 mya and has driven the accumulation of > 500 Mb of knob repeats and affected the segregation of thousands of genes linked to knobs on all 10 chromosomes.


Asunto(s)
Centrómero/metabolismo , Cinesinas/metabolismo , Meiosis , Proteínas de Plantas/metabolismo , Zea mays/metabolismo , Centrómero/genética , Cromosomas de las Plantas , Evolución Molecular , Haplotipos , Hibridación Fluorescente in Situ , Cinesinas/antagonistas & inhibidores , Cinesinas/clasificación , Cinesinas/genética , Modelos Genéticos , Mutagénesis , Filogenia , Proteínas de Plantas/antagonistas & inhibidores , Proteínas de Plantas/clasificación , Proteínas de Plantas/genética , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Secuenciación Completa del Genoma , Zea mays/genética
8.
Annu Rev Cell Dev Biol ; 34: 381-403, 2018 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-30028643

RESUMEN

Fertilizable eggs develop from diploid precursor cells termed oocytes. Once every menstrual cycle, an oocyte matures into a fertilizable egg in the ovary. To this end, the oocyte eliminates half of its chromosomes into a small cell termed a polar body. The egg is then released into the Fallopian tube, where it can be fertilized. Upon fertilization, the egg completes the second meiotic division, and the mitotic division of the embryo starts. This review highlights recent work that has shed light on the cytoskeletal structures that drive the meiotic divisions of the oocyte in mammals. In particular, we focus on how mammalian oocytes assemble a microtubule spindle in the absence of centrosomes, how they position the spindle in preparation for polar body extrusion, and how the spindle segregates the chromosomes. We primarily focus on mouse oocytes as a model system but also highlight recent insights from human oocytes.


Asunto(s)
Meiosis/genética , Oocitos/crecimiento & desarrollo , Huso Acromático/genética , Cigoto/crecimiento & desarrollo , Animales , Centrosoma , Cromosomas/genética , Femenino , Fertilización/genética , Humanos , Ratones , Microtúbulos/genética
9.
Genes Dev ; 37(5-6): 171-190, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36859339

RESUMEN

Both the presence of an abnormal complement of chromosomes (aneuploidy) and an increased frequency of chromosome missegregation (chromosomal instability) are hallmarks of cancer. Analyses of cancer genome data have identified certain aneuploidy patterns in tumors; however, the bases behind their selection are largely unexplored. By establishing time-resolved long-term adaptation protocols, we found that human cells adapt to persistent spindle assembly checkpoint (SAC) inhibition by acquiring specific chromosome arm gains and losses. Independently adapted populations converge on complex karyotypes, which over time are refined to contain ever smaller chromosomal changes. Of note, the frequencies of chromosome arm gains in adapted cells correlate with those detected in cancers, suggesting that our cellular adaptation approach recapitulates selective traits that dictate the selection of aneuploidies frequently observed across many cancer types. We further engineered specific aneuploidies to determine the genetic basis behind the observed karyotype patterns. These experiments demonstrated that the adapted and engineered aneuploid cell lines limit CIN by extending mitotic duration. Heterozygous deletions of key SAC and APC/C genes recapitulated the rescue phenotypes of the monosomic chromosomes. We conclude that aneuploidy-induced gene dosage imbalances of individual mitotic regulators are sufficient for altering mitotic timing to reduce CIN.


Asunto(s)
Puntos de Control de la Fase M del Ciclo Celular , Neoplasias , Humanos , Puntos de Control de la Fase M del Ciclo Celular/genética , Aneuploidia , Neoplasias/genética , Inestabilidad Cromosómica/genética , Cariotipo , Huso Acromático/genética , Mitosis
10.
Annu Rev Genet ; 56: 279-314, 2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36055650

RESUMEN

Kinetochores are molecular machines that power chromosome segregation during the mitotic and meiotic cell divisions of all eukaryotes. Aristotle explains how we think we have knowledge of a thing only when we have grasped its cause. In our case, to gain understanding of the kinetochore, the four causes correspond to questions that we must ask: (a) What are the constituent parts, (b) how does it assemble, (c) what is the structure and arrangement, and (d) what is the function? Here we outline the current blueprint for the assembly of a kinetochore, how functions are mapped onto this architecture, and how this is shaped by the underlying pericentromeric chromatin. The view of the kinetochore that we present is possible because an almost complete parts list of the kinetochore is now available alongside recent advances using in vitro reconstitution, structural biology, and genomics. In many organisms, each kinetochore binds to multiple microtubules, and we propose a model for how this ensemble-level architecture is organized, drawing on key insights from the simple one microtubule-one kinetochore setup in budding yeast and innovations that enable meiotic chromosome segregation.


Asunto(s)
Centrómero , Cinetocoros , Centrómero/genética , Segregación Cromosómica/genética , Microtúbulos/genética , Microtúbulos/metabolismo , Cromatina/genética , Cromatina/metabolismo
11.
Cell ; 162(3): 580-92, 2015 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-26213385

RESUMEN

Although it is known that the centrioles play instructive roles in pericentriolar material (PCM) assembly and that the PCM is essential for proper centriole formation, the mechanism that governs centriole-PCM interaction is poorly understood. Here, we show that ATF5 forms a characteristic 9-fold symmetrical ring structure in the inner layer of the PCM outfitting the proximal end of the mother centriole. ATF5 controls the centriole-PCM interaction in a cell-cycle- and centriole-age-dependent manner. Interaction of ATF5 with polyglutamylated tubulin (PGT) on the mother centriole and with PCNT in the PCM renders ATF5 as a required molecule in mother centriole-directed PCM accumulation and in PCM-dependent centriole formation. ATF5 depletion blocks PCM accumulation at the centrosome and causes fragmentation of centrioles, leading to the formation of multi-polar mitotic spindles and genomic instability. These data show that ATF5 is an essential structural protein that is required for the interaction between the mother centriole and the PCM.


Asunto(s)
Factores de Transcripción Activadores/metabolismo , Centriolos/metabolismo , Centrosoma/metabolismo , Citoesqueleto/metabolismo , Regulación hacia Abajo , Inestabilidad Genómica , Células HeLa , Humanos , Huso Acromático/metabolismo , Tubulina (Proteína)/metabolismo
12.
Genes Dev ; 36(7-8): 495-510, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35483740

RESUMEN

The identity of human protein-coding genes is well known, yet our in-depth knowledge of their molecular functions and domain architecture remains limited by shortcomings in homology-based predictions and experimental approaches focused on whole-gene depletion. To bridge this knowledge gap, we developed a method that leverages CRISPR-Cas9-induced mutations across protein-coding genes for the a priori identification of functional regions at the sequence level. As a test case, we applied this method to 48 human mitotic genes, revealing hundreds of regions required for cell proliferation, including domains that were experimentally characterized, ones that were predicted based on homology, and novel ones. We validated screen outcomes for 15 regions, including amino acids 387-402 of Mad1, which were previously uncharacterized but contribute to Mad1 kinetochore localization and chromosome segregation fidelity. Altogether, we demonstrate that CRISPR-Cas9-based tiling mutagenesis identifies key functional domains in protein-coding genes de novo, which elucidates separation of function mutants and allows functional annotation across the human proteome.


Asunto(s)
Sistemas CRISPR-Cas , Sistemas CRISPR-Cas/genética , Humanos , Mutagénesis
13.
EMBO J ; 43(7): 1244-1256, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38424239

RESUMEN

During mitosis, motor proteins and microtubule-associated protein organize the spindle apparatus by cross-linking and sliding microtubules. Kinesin-5 plays a vital role in spindle formation and maintenance, potentially inducing twist in the spindle fibers. The off-axis power stroke of kinesin-5 could generate this twist, but its implications in microtubule organization remain unclear. Here, we investigate 3D microtubule-microtubule sliding mediated by the human kinesin-5, KIF11, and found that the motor caused right-handed helical motion of anti-parallel microtubules around each other. The sidestepping ratio increased with reduced ATP concentration, indicating that forward and sideways stepping of the motor are not strictly coupled. Further, the microtubule-microtubule distance (motor extension) during sliding decreased with increasing sliding velocity. Intriguingly, parallel microtubules cross-linked by KIF11 orbited without forward motion, with nearly full motor extension. Altering the length of the neck linker increased the forward velocity and pitch of microtubules in anti-parallel overlaps. Taken together, we suggest that helical motion and orbiting of microtubules, driven by KIF11, contributes to flexible and context-dependent filament organization, as well as torque regulation within the mitotic spindle.


Asunto(s)
Cinesinas , Microtúbulos , Humanos , Cinesinas/metabolismo , Microtúbulos/metabolismo , Huso Acromático/fisiología , Proteínas Asociadas a Microtúbulos/metabolismo , Mitosis
14.
EMBO J ; 43(5): 666-694, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38279026

RESUMEN

The efficacy of current antimitotic cancer drugs is limited by toxicity in highly proliferative healthy tissues. A cancer-specific dependency on the microtubule motor protein KIF18A therefore makes it an attractive therapeutic target. Not all cancers require KIF18A, however, and the determinants underlying this distinction remain unclear. Here, we show that KIF18A inhibition drives a modest and widespread increase in spindle assembly checkpoint (SAC) signaling from kinetochores which can result in lethal mitotic delays. Whether cells arrest in mitosis depends on the robustness of the metaphase-to-anaphase transition, and cells predisposed with weak basal anaphase-promoting complex/cyclosome (APC/C) activity and/or persistent SAC signaling through metaphase are uniquely sensitive to KIF18A inhibition. KIF18A-dependent cancer cells exhibit hallmarks of this SAC:APC/C imbalance, including a long metaphase-to-anaphase transition, and slow mitosis overall. Together, our data reveal vulnerabilities in the cell division apparatus of cancer cells that can be exploited for therapeutic benefit.


Asunto(s)
Ciclosoma-Complejo Promotor de la Anafase , Neoplasias , Humanos , Ciclosoma-Complejo Promotor de la Anafase/genética , Dineínas , Cinesinas/genética , Cinetocoros , Mitosis , Neoplasias/genética
15.
Mol Cell ; 80(1): 9-20, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32860741

RESUMEN

Cell division requires the assembly and organization of a microtubule spindle for the proper separation of chromosomes in mitosis and meiosis. Phase separation is an emerging paradigm for understanding spatial and temporal regulation of a variety of cellular processes, including cell division. Phase-separated condensates have been recently discovered at many structures during cell division as a possible mechanism for properly localizing, organizing, and activating proteins involved in cell division. Here, we review how these condensates play roles in regulating microtubule density and organization and spindle assembly and function and in activating some of the key players in cell division. We conclude with perspectives on areas of future research for this exciting and rapidly advancing field.


Asunto(s)
División Celular , Animales , Cromosomas/metabolismo , Humanos , Meiosis , Microtúbulos/metabolismo , Huso Acromático/metabolismo
16.
Trends Biochem Sci ; 48(12): 1058-1070, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37775421

RESUMEN

The tripartite attachment complex (TAC) of the single mitochondrion of trypanosomes allows precise segregation of its single nucleoid mitochondrial genome during cytokinesis. It couples the segregation of the duplicated mitochondrial genome to the segregation of the basal bodies of the flagella. Here, we provide a model of the molecular architecture of the TAC that explains how its eight essential subunits connect the basal body, across the mitochondrial membranes, with the mitochondrial genome. We also discuss how the TAC subunits are imported into the mitochondrion and how they assemble to form a new TAC. Finally, we present a comparative analysis of the trypanosomal TAC with open and closed mitotic spindles, which reveals conserved concepts between these diverse DNA segregation systems.


Asunto(s)
Trypanosoma brucei brucei , Trypanosoma , Trypanosoma brucei brucei/genética , Mitocondrias , Trypanosoma/genética , ADN Mitocondrial/genética , Membranas Mitocondriales/metabolismo
17.
Trends Biochem Sci ; 48(9): 761-775, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37482516

RESUMEN

The cell orchestrates the dance of chromosome segregation with remarkable speed and fidelity. The mitotic spindle is built from scratch after interphase through microtubule (MT) nucleation, which is dependent on the γ-tubulin ring complex (γ-TuRC), the universal MT template. Although several MT nucleation pathways build the spindle framework, the question of when and how γ-TuRC is targeted to these nucleation sites in the spindle and subsequently activated remains an active area of investigation. Recent advances facilitated the discovery of new MT nucleation effectors and their mechanisms of action. In this review, we illuminate each spindle assembly pathway and subsequently consider how the pathways are merged to build a spindle.


Asunto(s)
Proteínas Asociadas a Microtúbulos , Tubulina (Proteína) , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Microtúbulos/genética , Microtúbulos/metabolismo , Huso Acromático/genética , Huso Acromático/metabolismo , Centro Organizador de los Microtúbulos/metabolismo
18.
Trends Genet ; 40(1): 20-23, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37926636

RESUMEN

Proprioception - the sense of body position in space - is intimately linked to motor control. Here, we briefly review the current knowledge of the proprioceptive system and how advances in the genetic characterisation of proprioceptive sensory neurons in mice promise to dissect its role in health and disease.


Asunto(s)
Propiocepción , Células Receptoras Sensoriales , Ratones , Animales , Propiocepción/fisiología , Células Receptoras Sensoriales/fisiología
19.
EMBO J ; 42(21): e113647, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37592895

RESUMEN

During mitosis, spindle architecture alters as chromosomes segregate into daughter cells. The microtubule crosslinker protein regulator of cytokinesis 1 (PRC1) is essential for spindle stability, chromosome segregation and completion of cytokinesis, but how it recruits motors to the central spindle to coordinate the segregation of chromosomes is unknown. Here, we combine structural and cell biology approaches to show that the human CENP-E motor, which is essential for chromosome capture and alignment by microtubules, binds to PRC1 through a conserved hydrophobic motif. This binding mechanism is also used by Kinesin-4 Kif4A:PRC1. Using in vitro reconstitution, we demonstrate that CENP-E slides antiparallel PRC1-crosslinked microtubules. We find that the regulation of CENP-E -PRC1 interaction is spatially and temporally coupled with relocalization to overlapping microtubules in anaphase. Finally, we demonstrate that the PRC1-microtubule motor interaction is essential in anaphase to control chromosome partitioning, retain central spindle integrity and ensure cytokinesis. Taken together our findings reveal the molecular basis for the cell cycle regulation of motor-PRC1 complexes to couple chromosome segregation and cytokinesis.


Asunto(s)
Citocinesis , Cinesinas , Humanos , Citocinesis/fisiología , Cinesinas/genética , Cinesinas/metabolismo , Fosforilación , Huso Acromático/metabolismo , Mitosis , Proteínas de Ciclo Celular/metabolismo , Microtúbulos/metabolismo
20.
EMBO J ; 42(13): e112504, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37203876

RESUMEN

During cell division, kinetochores link chromosomes to spindle microtubules. The Ndc80 complex, a crucial microtubule binder, populates each kinetochore with dozens of copies. Whether adjacent Ndc80 complexes cooperate to promote microtubule binding remains unclear. Here we demonstrate that the Ndc80 loop, a short sequence that interrupts the Ndc80 coiled-coil at a conserved position, folds into a more rigid structure than previously assumed and promotes direct interactions between full-length Ndc80 complexes on microtubules. Mutations in the loop impair these Ndc80-Ndc80 interactions, prevent the formation of force-resistant kinetochore-microtubule attachments, and cause cells to arrest in mitosis for hours. This arrest is not due to an inability to recruit the kinetochore-microtubule stabilizing SKA complex and cannot be overridden by mutations in the Ndc80 tail that strengthen microtubule attachment. Thus, loop-mediated organization of adjacent Ndc80 complexes is crucial for stable end-on kinetochore-microtubule attachment and spindle assembly checkpoint satisfaction.


Asunto(s)
Cinetocoros , Microtúbulos , Segregación Cromosómica , Cinetocoros/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Mitosis , Unión Proteica , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA