Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 65(5): 832-847.e4, 2017 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-28257700

RESUMEN

R loop, a transcription intermediate containing RNA:DNA hybrids and displaced single-stranded DNA (ssDNA), has emerged as a major source of genomic instability. RNaseH1, which cleaves the RNA in RNA:DNA hybrids, plays an important role in R loop suppression. Here we show that replication protein A (RPA), an ssDNA-binding protein, interacts with RNaseH1 and colocalizes with both RNaseH1 and R loops in cells. In vitro, purified RPA directly enhances the association of RNaseH1 with RNA:DNA hybrids and stimulates the activity of RNaseH1 on R loops. An RPA binding-defective RNaseH1 mutant is not efficiently stimulated by RPA in vitro, fails to accumulate at R loops in cells, and loses the ability to suppress R loops and associated genomic instability. Thus, in addition to sensing DNA damage and replication stress, RPA is a sensor of R loops and a regulator of RNaseH1, extending the versatile role of RPA in suppression of genomic instability.


Asunto(s)
ADN/metabolismo , Inestabilidad Genómica , ARN/metabolismo , Proteína de Replicación A/metabolismo , Ribonucleasa H/metabolismo , Transcripción Genética , Sitios de Unión , ADN/química , ADN/genética , Células HEK293 , Células HeLa , Humanos , Conformación de Ácido Nucleico , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , ARN/química , ARN/genética , Interferencia de ARN , Proteína de Replicación A/química , Proteína de Replicación A/genética , Ribonucleasa H/química , Ribonucleasa H/genética , Relación Estructura-Actividad , Factores de Tiempo , Transfección
2.
Neurocase ; 30(2): 63-67, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38762762

RESUMEN

Krabbe disease (KD) is classed as the lysosomal storage disease with mutations in the galactosylceramidase (GALC) gene, and commonly showed as autosomal recessive pattern with 30-kb deletion in infantile subtype. In this case, we report a 39-years adult-onset KD (AOKD) patient with multiple sclerosis-like symptoms and neuroimaging changes. She carries the heterozygous mutations in GALC included a missense mutation of c.1901T>C from her mother, and a splicing mutation of c.908+5G>A from her father. The splicing mutations in KD are reviewed and confirmed that c.908+5G>A is a novel splicing mutation in AOKD.


Asunto(s)
Galactosilceramidasa , Leucodistrofia de Células Globoides , Humanos , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/patología , Adulto , Galactosilceramidasa/genética , Femenino , Mutación , Mutación Missense
3.
BMC Pulm Med ; 24(1): 343, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39014333

RESUMEN

BACKGROUND: Primary ciliary dyskinesia (PCD) is an autosomal recessive hereditary disease characterized by recurrent respiratory infections. In clinical manifestations, DNAH5 (NM_001361.3) is one of the recessive pathogenic genes. Primary familial brain calcification (PFBC) is a neurodegenerative disease characterized by bilateral calcification in the basal ganglia and other brain regions. PFBC can be inherited in an autosomal dominant or recessive manner. A family with PCD caused by a DNAH5 compound heterozygous variant and PFBC caused by a MYORG homozygous variant was analyzed. METHODS: In this study, we recruited three generations of Han families with primary ciliary dyskinesia combined with primary familial brain calcification. Their clinical phenotype data were collected, next-generation sequencing was performed to screen suspected pathogenic mutations in the proband and segregation analysis of families was carried out by Sanger sequencing. The mutant and wild-type plasmids were constructed and transfected into HEK293T cells instantaneously, and splicing patterns were detected by Minigene splicing assay. The structure and function of mutations were analyzed by bioinformatics analysis. RESULTS: The clinical phenotypes of the proband (II10) and his sister (II8) were bronchiectasis, recurrent pulmonary infection, multiple symmetric calcifications of bilateral globus pallidus and cerebellar dentate nucleus, paranasal sinusitis in the whole group, and electron microscopy of bronchial mucosa showed that the ciliary axoneme was defective. There was also total visceral inversion in II10 but not in II8. A novel splice variant C.13,338 + 5G > C and a frameshift variant C.4314delT (p. Asn1438lysfs *10) were found in the DNAH5 gene in proband (II10) and II8. c.347_348dupCTGGCCTTCCGC homozygous insertion variation was found in the MYORG of the proband. The two pathogenic genes were co-segregated in the family. Minigene showed that DNAH5 c.13,338 + 5G > C has two abnormal splicing modes: One is that part of the intron bases where the mutation site located is translated, resulting in early translation termination of DNAH5; The other is the mutation resulting in the deletion of exon76. CONCLUSIONS: The newly identified DNAH5 splicing mutation c.13,338 + 5G > C is involved in the pathogenesis of PCD in the family, and forms a compound heterozygote with the pathogenic variant DNAH5 c.4314delT lead to the pathogenesis of PCD.


Asunto(s)
Calcinosis , Mutación , Linaje , Humanos , Masculino , Calcinosis/genética , Calcinosis/patología , Femenino , Dineínas Axonemales/genética , Adulto , Trastornos de la Motilidad Ciliar/genética , Encefalopatías/genética , Fenotipo , Células HEK293 , China , Empalme del ARN/genética , Persona de Mediana Edad , Glicósido Hidrolasas
4.
Clin Genet ; 103(6): 693-698, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36705481

RESUMEN

Whole-genome sequencing (WGS) now allows identification of multiple variants in non-coding regions. The large number of variants identified by WGS however complicates their interpretation. Through identification of the first deep intronic variant in NPHS2, which encodes podocin, a protein implicated in autosomal recessive steroid resistant nephrotic syndrome (SRNS), we compare herein three different tools including a newly developed targeted NGS-based RNA-sequencing to explore the splicing effect of intronic variations. WGS identified two different variants in NPHS2 eventually involved in the disease. Through RT-PCR, exon-trapping Minigene assay and targeted RNA sequencing, we were able to identify the splicing defect in NPHS2 mRNA from patient kidney tissue. Only targeted RNA-seq simultaneously analyzed the effect of multiple variants and offered the opportunity to quantify consequences on splicing. Identifying deep intronic variants and their role in disease is of utmost importance. Alternative splicing can be predicted by in silico tools but always requires confirmation through functional testing with RNA analysis from the implicated tissue remaining the gold standard. When several variants with potential effects on splicing are identified by WGS, a targeted RNA sequencing panel could be of great value.


Asunto(s)
Síndrome Nefrótico , Humanos , Mutación , Secuenciación Completa del Genoma , Síndrome Nefrótico/genética , ARN Mensajero/genética
5.
Reprod Biol Endocrinol ; 21(1): 23, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36859276

RESUMEN

BACKGROUND: Kallmann syndrome (KS) is a common type of idiopathic hypogonadotropic hypogonadism. To date, more than 30 genes including ANOS1 and FGFR1 have been identified in different genetic models of KS without affirmatory genotype-phenotype correlation, and novel mutations have been found. METHODS: A total of 35 unrelated patients with clinical features of disorder of sex development were recruited. Custom-panel sequencing or whole-exome sequencing was performed to detect the pathogenic mutations. Sanger sequencing was performed to verify single-nucleotide variants. Copy number variation-sequencing (CNV-seq) was performed to determine CNVs. The pathogenicity of the identified variant was predicted in silico. mRNA transcript analysis and minigene reporter assay were performed to test the effect of the mutation on splicing. RESULTS: ANOS1 gene c.709 T > A and c.711 G > T were evaluated as pathogenic by several commonly used software, and c.1063-2 A > T was verified by transcriptional splicing assay. The c.1063-2 A > T mutation activated a cryptic splice acceptor site downstream of the original splice acceptor site and resulted in an aberrant splicing of the 24-basepair at the 5' end of exon 8, yielding a new transcript with c.1063-1086 deletion. FRFR1 gene c.1835delA was assessed as pathogenic according to the ACMG guideline. The CNV of del(8)(p12p11.22)chr8:g.36140000_38460000del was judged as pathogenic according to the ACMG & ClinGen technical standards. CONCLUSIONS: Herein, we identified three novel ANOS1 mutations and two novel FGFR1 variations in Chinese KS families. In silico prediction and functional experiment evaluated the pathogenesis of ANOS1 mutations. FRFR1 c.1835delA mutation and del(8)(p12p11.22)chr8:g.36140000_38460000del were assessed as pathogenic variations. Therefore, our study expands the spectrum of mutations associated with KS and provides diagnostic evidence for patients who carry the same mutation in the future.


Asunto(s)
Proteínas de la Matriz Extracelular , Síndrome de Kallmann , Proteínas del Tejido Nervioso , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos , Humanos , Variaciones en el Número de Copia de ADN , Exones , Síndrome de Kallmann/genética , Mutación , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Sitios de Empalme de ARN , Proteínas de la Matriz Extracelular/genética , Proteínas del Tejido Nervioso/genética
6.
Kidney Blood Press Res ; 48(1): 568-577, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37562365

RESUMEN

INTRODUCTION: Neurofibromatosis type 1 (NF-1) is caused by mutations in the NF1 gene that encodes neurofibromin, a negative regulator of RAS proto-oncogene. Approximately one-third of the reported pathogenic mutations in NF1 are splicing mutations, but most consequences are unclear. The objective of this study was to identify the pathogenicity of splicing mutation in a Chinese family with NF-1 and determine the effects of the pre-mRNA splicing mutation by in vitro functional analysis. METHODS: Next-generation sequencing was used to screen candidate mutations. We performed a minigene splicing assay to determine the effect of the splicing mutation on NF1 expression, and three-dimensional structure models of neurofibromin were generated using SWISS-MODEL and PROCHECK methods, respectively. RESULTS: A pathogenic splicing mutation c.479+1G>C in NF1 was found in the proband characterized by childhood-onset refractory hypertension. In vitro analysis demonstrated that c.479+1G>C mutation caused the skipping of exon 4, leading to a glutamine-to-valine substitution at position 97 in neurofibromin and an open reading frame shift terminating at codon 108. Protein modeling showed that several major domains were missing in the truncated neurofibromin protein. CONCLUSION: The splicing mutation c.479+1G>C identified in a Chinese patient with NF-1 and childhood-onset refractory hypertension caused the skipping of exon 4 and a truncated protein. Our findings offer new evidence for the molecular diagnosis of NF-1.


Asunto(s)
Hipertensión , Neurofibromatosis 1 , Niño , Humanos , Genes de Neurofibromatosis 1 , Hipertensión/genética , Mutación , Neurofibromatosis 1/genética , Neurofibromatosis 1/diagnóstico , Neurofibromina 1/genética
7.
Neurol Sci ; 43(5): 3265-3272, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34791569

RESUMEN

OBJECTIVE: To report a de novo splicing mutation in the CSF1R gene in a patient with hereditary diffuse leukoencephalopathy with spheroids (HDLS). METHODS: A 42-year-old Chinese woman with constant weakness on her left lower extremity was recruited in the current study. Detail medical history and clinical characteristics were reviewed. Brain magnetic resonance imaging (MRI), whole-exome sequencing, and Sanger sequencing were performed with bioinformatics analysis. RESULTS: The Chinese HDLS patient with no HDLS family history exhibited a de novo splicing mutation (c.1754-10 T > A) in the CSF1R gene. This mutation was located at the splice site of intron 12 and resulted in the skipping of exon 13 from the CSF1R mRNA. This finding constitutes the first de novo splicing mutation ever reported in HDLS. Furthermore, MRI abnormalities had been reported at least 6 months prior to the onset of the patient's clinical phenotype. CONCLUSION: Our study indicates that the diagnosis of HDLS should be considered even in the absence of a family history and can help deepen the clinical and genetic understanding of HDLS.


Asunto(s)
Leucoencefalopatías , Receptor de Factor Estimulante de Colonias de Macrófagos , China , Femenino , Humanos , Leucoencefalopatías/diagnóstico por imagen , Leucoencefalopatías/genética , Imagen por Resonancia Magnética , Mutación/genética , Receptor de Factor Estimulante de Colonias de Macrófagos/genética
8.
Hereditas ; 158(1): 6, 2021 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-33407909

RESUMEN

Marfan syndrome (MFS) is one of the most common hereditary connective tissue diseases, with great individual heterogeneity. We reported a Chinese pregnancy with Clinical diagnosis of MFS, performed whole-exome sequencing, and screened for the genetic abnormality. We also conducted an in vitro mini-gene splicing assay to demonstrate the predicted harmful effects of an intronic variant of FBN-1. Exome sequencing identified a novel intronic variant (c.6497-13 T>A) in intron 53 of the FBN-1 gene (NM_000138.4). It's predicted to insert 11 bp of intron 53 into the mature mRNA. The mini-gene splicing experiment demonstrated that c.6497-13 T>A could result in 11 bp retention in intron 53 to exon 54 (c.6496_6497ins gtttcttgcag) and the use of an alternative donor causing the frameshift p.Asp2166Glyfs*23. According to the results, the pregnant woman chose to continue the pregnancy and gave birth to a healthy baby. This study expands the genetic mutation spectrum of MFS patients and indicates the importance of intron sequencing.


Asunto(s)
Fibrilina-1/genética , Síndrome de Marfan/genética , Femenino , Humanos , Intrones , Síndrome de Marfan/diagnóstico , Mutación , Embarazo
9.
Int J Mol Sci ; 22(20)2021 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-34681668

RESUMEN

Acute intermittent porphyria (AIP) is an autosomal dominant genetic disease caused by a lack or decrease in hydroxymethylbilane synthase (HMBS) activity. It is characterized by acute nerve and visceral attacks caused by factors in the process of heme synthesis. The penetrance rate of this disease is low, and the heterogeneity is strong. Here, we reported two novel HMBS mutations from two unrelated Chinese AIP patients and confirmed the pathogenicity of these two mutations. We found the HMBS c.760-771+2delCTGAGGCACCTGGTinsGCTGCATCGCTGAA and HMBS c.88-1G>C mutations by second-generation sequencing and Sanger sequencing. The in vitro expression analysis showed that these mutations caused abnormal HMBS mRNA splicing and premature termination or partial missing of HMBS protein. Homologous modeling analysis showed that the HMBS mutants lacked the amino acids which are crucial for the enzyme activity or the protein stability. Consistently, enzyme activity analysis confirmed that the HMBS mutants' overexpression cells exhibited the reduced enzyme activity compared with the HMBS wildtype overexpression cells. Our study identified and confirmed two novel pathogenic HMBS mutations which will expand the molecular heterogeneity of AIP and provide further scientific basis for the clinical diagnosis of AIP.


Asunto(s)
Hidroximetilbilano Sintasa/genética , Porfiria Intermitente Aguda/diagnóstico , Empalme Alternativo , Secuencia de Aminoácidos , Pueblo Asiatico/genética , China , Genotipo , Células HEK293 , Humanos , Hidroximetilbilano Sintasa/química , Hidroximetilbilano Sintasa/metabolismo , Linaje , Polimorfismo Genético , Porfiria Intermitente Aguda/genética , Estructura Terciaria de Proteína , Alineación de Secuencia
10.
Biochem Biophys Res Commun ; 531(2): 172-179, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32788070

RESUMEN

Mutations in the retinitis pigmentosa GTPase regulator (RPGR) gene, are the major cause of X-linked retinitis pigmentosa (RP), in which exon open reading frame 15 (ORF15) of RPGR has been implicated to play a substantial role. We identified a novel hemizygous missense mutation E585K of RPGR from whole-exome sequencing of RP. RNA-Seq analysis and functional study were conducted to investigate the underlying pathogenic mechanism of the mutation. Our results showed that the mutation actually affected RPGR ORF15 splicing. RNA-Seq analysis of the human retina followed by validation in cells revealed a complex splicing pattern near the 3' boundary of RPGR exon 14 in the ORF15 region, resulting from a variety of alternative splicing events (ASEs). The wildtype RPGR mini-gene expressed in human 293T cells confirmed these ASEs in vitro. In contrast, without new RNA species detected, the mutant mini-gene disrupted the splicing pattern of the ORF15 region, and caused loss of RPGR transcript heterogeneity. The RNA species derived from the mutant mini-gene were predominated by a minor out-of-frame transcript that was also observed in wildtype RPGR, resulting from an upstream alternative 5' splice site in exon 14. Our findings therefore provide insights into the influence of RPGR exonic mutations on alternative splicing of the ORF15 region, and the underlying molecular mechanism of RP.


Asunto(s)
Proteínas del Ojo/genética , Mutación Missense/genética , Sistemas de Lectura Abierta/genética , Retinitis Pigmentosa/genética , Secuencia de Aminoácidos , Secuencia de Bases , Línea Celular , Proteínas del Ojo/química , Hemicigoto , Humanos , Masculino , Empalme del ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
11.
Int J Legal Med ; 134(6): 2161-2166, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32676886

RESUMEN

BACKGROUND: Marfan syndrome (MFS) is a connective tissue disease involving multiple organs and systems such as cardiovascular, skeletal, and ocular systems and is also an autosomal dominant inheritance disorder. METHOD: A 30-year-old woman was rushed into the hospital owing to sudden persistent pain in the abdomen and died suddenly 2 days later. To find the real cause of death, a forensic autopsy was conducted owing to suspected medical malpractice, and the diagnosis of MFS was made in accordance with the 2010 revised Ghent nosology. By sequencing the gene of Marfan, aneurysm, and related disorders, a novel splicing mutation in the fibrillin-1 gene (FBN1) was detected. For the clinical characteristic findings (wrist and thumb sign) of the daughter, we recommend genetic analysis for the family. To better understand the role of the variant in the disease, we also investigated functional validation of this mutation. RESULTS: According to the autopsy findings, the cause of death was acute cardiac tamponade caused by aortic rupture. DNA sequencing revealed a novel splicing mutation, c.5672-2delA, which was also detected in her daughter (II2). The functional validation of this mutation showed the base deletion at the same site in the PCR products using cDNA as a template. It is suggested that this mutation may cause abnormal spliceosome during transcription and may encode abnormal protein. CONCLUSION: A novel pathogenic splicing mutation (c.5672-2delA) was confirmed. Present work enriches the profile mutations in FBN1 associated with MFS and stresses the importance of postmortem genetic analysis in such cases.


Asunto(s)
Fibrilina-1/genética , Síndrome de Marfan/diagnóstico , Síndrome de Marfan/genética , Mutación , Empalme del ARN/genética , Adulto , Rotura de la Aorta/etiología , Autopsia , Taponamiento Cardíaco/etiología , Femenino , Humanos , Síndrome de Marfan/complicaciones , Análisis de Secuencia de ADN
12.
Mol Biol Rep ; 47(8): 5755-5761, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32666437

RESUMEN

Dysferlinopathies belong to the heterogeneous group of autosomal recessive muscular disorders, caused by mutations in the dysferlin gene and characterized by a high degree of clinical variability even though within the same family. This study aims to describe three cases, belonging to a consanguineous Tunisian family, sharing a new splicing mutation in the dysferlin gene and presenting intra-familial variability of dysferlinopathies: Proximal-distal weakness and distal myopathy with anterior tibial onset. We performed the next generation sequencing for mutation screening and reverse transcriptase-PCR for gene expression analysis. Routine muscle histology was used for muscle biopsy processing. The clinical presentation demonstrated heterogeneous phenotypes between the three cases: Two presented intermediate phenotypes of dysferlinopathy with proximal-distal weakness and the third had a distal myopathy with anterior tibial onset. Genetic analysis yielded a homozygous splicing mutation (c.4597-2A>G) in the dysferlin gene, giving rise to the suppression of 28 bp of the exon 43. The splicing mutation found in our family (c.4597-2A>G) is responsible for the suppression of 28 bp of the exon 43 and a wide clinical intra-familial variability.


Asunto(s)
Disferlina/genética , Enfermedades Musculares/genética , Distrofia Muscular de Cinturas/genética , Femenino , Predisposición Genética a la Enfermedad , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Masculino , Persona de Mediana Edad , Enfermedades Musculares/patología , Distrofia Muscular de Cinturas/patología , Mutación , Fenotipo , Empalme del ARN
13.
J Integr Neurosci ; 19(1): 125-129, 2020 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-32259893

RESUMEN

Autosomal recessive cerebellar ataxias comprise many types of diseases. The most frequent autosomal recessive cerebellar ataxias are Friedreich ataxia, but other types are relatively rare. We encountered a consanguineous family with two cases of late-onset cerebellar ataxia with neuropathy. We performed whole-exome sequencing in one patient and confirmed by Sanger sequencing in other family members. Neurological examination revealed cerebellar ataxia, hand tremor, and neck dystonia, distal muscle wasting, and diminished tendon reflexes. The patients had no conjunctival telangiectasia or immunodeficiency. Blood examination revealed slightly elevated α-fetoprotein. Brain MRI demonstrated marked cerebellar atrophy and mild brainstem atrophy. The electrophysiologic study and nerve biopsy showed axonal neuropathy. Whole-exome sequencing revealed a novel homozygous missense variant (NM_000051.3: c.496G > C) in the ataxia-telangiectasia mutated gene. This homozygous variant was found in another patient, co-segregated within the family members-this variant results in aberrant splicing (skipping exon 5) on RT-PCR analysis. We identified the ataxia-telangiectasia mutated variant in an adult, late-onset autosomal recessive cerebellar ataxias family. We should consider ataxia-telangiectasia even in late-onset autosomal recessive cerebellar ataxias without telangiectasia or immunodeficiency.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/genética , Degeneraciones Espinocerebelosas/genética , Degeneraciones Espinocerebelosas/patología , Adulto , Axones/patología , Encéfalo/patología , Femenino , Humanos , Masculino , Mutación , Linaje , Degeneraciones Espinocerebelosas/fisiopatología , Secuenciación del Exoma
14.
Am J Med Genet C Semin Med Genet ; 181(2): 226-229, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30614627

RESUMEN

Aromatic l-amino acid decarboxylase deficiency (AADCD) is a rare inherited disease prevalent in South East Asia. This disease is due to the founder mutation IVS 6 + 4A > T (c.714 + 4A > T), which accounts for most alleles. Patients with this mutation have severe phenotypes. About 90 % of these patients in South East Asia do not have head control and cannot sit, stand, or speak from birth to the time of observation. In 2012, a gene study to treat these patients with intraputamen injection of adeno-associated virus2-human AADC showed prominent motor improvement and an increased PDMS-2 score 12 months after treatment. In addition, systemic gene therapy in a mouse model of AADCD achieved widespread correction of the Ddc gene. In this article, we review the natural history, clinical course, and treatment effects seen in these clinical and mouse studies. Future studies focusing on noninvasive viral vector delivery or alternative emerging treatments may also benefit patients with AADCD.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/genética , Errores Innatos del Metabolismo de los Aminoácidos/terapia , Descarboxilasas de Aminoácido-L-Aromático/deficiencia , Terapia Genética/métodos , Mutación , Animales , Descarboxilasas de Aminoácido-L-Aromático/genética , Descarboxilasas de Aminoácido-L-Aromático/uso terapéutico , Efecto Fundador , Humanos , Ratones , Taiwán
15.
Am J Hum Genet ; 99(2): 511-20, 2016 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-27453579

RESUMEN

Primary microcephaly is a neurodevelopmental disorder that is caused by a reduction in brain size as a result of defects in the proliferation of neural progenitor cells during development. Mutations in genes encoding proteins that localize to the mitotic spindle and centrosomes have been implicated in the pathogenicity of primary microcephaly. In contrast, the contractile ring and midbody required for cytokinesis, the final stage of mitosis, have not previously been implicated by human genetics in the molecular mechanisms of this phenotype. Citron kinase (CIT) is a multi-domain protein that localizes to the cleavage furrow and midbody of mitotic cells, where it is required for the completion of cytokinesis. Rodent models of Cit deficiency highlighted the role of this gene in neurogenesis and microcephaly over a decade ago. Here, we identify recessively inherited pathogenic variants in CIT as the genetic basis of severe microcephaly and neonatal death. We present postmortem data showing that CIT is critical to building a normally sized human brain. Consistent with cytokinesis defects attributed to CIT, multinucleated neurons were observed throughout the cerebral cortex and cerebellum of an affected proband, expanding our understanding of mechanisms attributed to primary microcephaly.


Asunto(s)
Genes Recesivos/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Microcefalia/genética , Neuronas/patología , Proteínas Serina-Treonina Quinasas/genética , Cerebelo/patología , Niño , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Microcefalia/patología , Neocórtex/patología , Empalme del ARN/genética
16.
Hum Genomics ; 12(1): 35, 2018 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-29973277

RESUMEN

BACKGROUND AND PURPOSE: Retinitis pigmentosa is an important cause of severe visual dysfunction. This study reports a novel splicing mutation in the lecithin retinol acyltransferase (LRAT) gene associated with early onset retinitis pigmentosa and characterizes the effects of this mutation on mRNA splicing and structure. METHODS: Genome-wide linkage analysis followed by dideoxy sequencing of the linked candidate gene LRAT was performed in a consanguineous Pakistani family with autosomal recessive retinitis pigmentosa. In silico prediction and minigene assays were used to investigate the effects of the presumptive splicing mutation. RESULTS: ARRP in this family was linked to chromosome 4q31.21-q32.1 with a maximum LOD score of 5.40. A novel homozygous intronic mutation (NM_004744.4: c.541-15T>G) was detected in LRAT. In silico tools predicted that the AG-creating mutation would activate an intronic cryptic acceptor site, but cloning fragments of wild-type and mutant sequences of LRAT into Exontrap Cloning Vector pET01 and Expression Cloning Vector pCMV-(DYKD4K)-C showed that the primary effect of the sequence change was to weaken the nearby authentic acceptor site and cause exon skipping, with only a small fraction of transcripts utilizing the acceptor site producing the reference transcript. CONCLUSIONS: The c.541-15T>G mutation in LRAT results in aberrant splicing and is therefore predicted to be causal for the early onset retinitis pigmentosa in this family. In addition, this work suggests that minigenes adapted to the specific gene and exon may need to be designed for variants in the first and last exon and intron to mimic the authentic splicing mechanism in vivo.


Asunto(s)
Aciltransferasas/genética , Predisposición Genética a la Enfermedad , Empalme del ARN/genética , Retinitis Pigmentosa/genética , Adulto , Edad de Inicio , Exones/genética , Femenino , Ligamiento Genético , Genoma Humano , Homocigoto , Humanos , Intrones/genética , Masculino , Persona de Mediana Edad , Mutación , Linaje , Retinitis Pigmentosa/fisiopatología
17.
BMC Pediatr ; 19(1): 348, 2019 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-31607264

RESUMEN

BACKGROUND: Neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD) is an autosomal recessive disorder and one of the most common inherent causes of cholestatic jaundice in Asian infants. Mutations in the SLC25A13 gene, which encodes citrin protein expressed in the liver, have been identified as the genetic cause for NICCD. CASE PRESENTATION: Here, we report a 4-month-old female with clinical features including jaundice, hyperbilirubinemia, hyperlactacidemia, and abnormal liver function. The patient was diagnosed with NICCD by differential diagnosis using genetic analysis. Mutations in 60 jaundice-related genes were tested by using amplicon sequencing, which was performed on an Ion S5XL genetic analyzer. A compound heterozygous mutation in the SLC25A13 gene was identified, consisting of a known deletion SLC25A13:c.852_855delTATG and a novel splicing mutation SLC25A13:c.1841 + 3_1841 + 4delAA. Sanger sequencing for the proband and her parents was performed to validate the result and reveal the source of mutations. CONCLUSION: A compound heterozygous mutation in the SLC25A13 gene was identified in a 4-month-old female patient with NICCD. Our data suggest that amplicon sequencing is a helpful tool for the differential diagnosis of inherited diseases with similar symptoms. Further studies of the mutation spectrum of neonatal jaundice in China are warranted.


Asunto(s)
Proteínas de Unión al Calcio/deficiencia , Ictericia/genética , Proteínas de Transporte de Membrana Mitocondrial/genética , Mutación/genética , Transportadores de Anión Orgánico/deficiencia , Diagnóstico Diferencial , Femenino , Heterocigoto , Humanos , Lactante , Linaje
20.
Int Heart J ; 59(5): 1059-1068, 2018 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-30101859

RESUMEN

There are many inherited disorders associated with thoracic aortic aneurysms and dissections (TAADs), like Marfan syndrome and Loeys-Dietz syndrome (LDS). The 4 patients in this study all had TAADs and were initially diagnosed with suspected Marfan syndrome. We collected peripheral blood samples from the patients and their family members and then attempted to identify the causal mutation using different methods including PCR, Sanger sequencing, and next generation sequencing. We identified 3 novel heterozygous mutations including 2 splicing mutations of FBN1 and 1 missense mutation of TGFBR2 in our patients. Although these mutation sites have been reported in the Human Gene Mutation Database, the nucleotide changes are different. All novel mutations found in this study were confirmed to be absent in 50 unrelated normal individuals of the same ethnic background. The RT-PCR results of 2 splicing mutations verified that the mutations can lead to the skipping of exons. The RT-qPCR results indicated that FBN1 mRNA levels were nearly 50 percent lower in the patients than in normal controls, indicating that there is almost no expression of truncated fibrillin-1 because of the nonsense-mediated mRNA decay (NMD) mechanism. To the best of our knowledge, we are the first to report these 3 novel mutations. However, the pathogenicity of these mutations still needs further confirmation. Our study has confirmed or corrected the clinical diagnosis, and enlarged the mutation spectrum of FBN1 and TGFBR2. The results should be helpful for prenatal diagnosis and genetic counseling.


Asunto(s)
Aneurisma de la Aorta Torácica/genética , Disección Aórtica/genética , Fibrilina-1/genética , Síndrome de Loeys-Dietz/diagnóstico , Síndrome de Marfan/diagnóstico , Proteínas Serina-Treonina Quinasas/genética , Receptores de Factores de Crecimiento Transformadores beta/genética , Adulto , Disección Aórtica/diagnóstico , Disección Aórtica/patología , Aneurisma de la Aorta Torácica/diagnóstico , Aneurisma de la Aorta Torácica/patología , Niño , Exones/genética , Femenino , Fibrilinas/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Síndrome de Loeys-Dietz/sangre , Síndrome de Loeys-Dietz/genética , Masculino , Síndrome de Marfan/sangre , Síndrome de Marfan/genética , Mosaicismo , Mutación , Mutación Missense/genética , Receptor Tipo II de Factor de Crecimiento Transformador beta , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA