Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Anal Chim Acta ; 1275: 341593, 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37524469

RESUMEN

Whole-cell biosensors have demonstrated promising capabilities in detecting target molecules. However, their limited selectivity and precision can be attributed to the broad substrate tolerance of natural proteins. In this study, we aim to enhance the performance of whole-cell biosensors by incorporating of logic AND gates. Specifically, we utilize the HrpR/S system, a widely employed hetero-regulation module from Pseudomonas syringae in synthetic biology, to construct an orthogonal AND gate in Escherichia coli. To accomplish this, we compare the HrpR/S system with self-associating split fluorescent proteins using the Spy Tag/Spy Catcher system. Our objective is to selectively activate a reporter gene in the presence of both IPTG and Hg(II) ions. Through systematic genetic engineering and evaluation of various biological parts under diverse working conditions, our research demonstrates the utility of self-associating split fluorescent proteins in developing high-performance whole-cell biosensors. This approach offers advantages such as engineering simplicity, reduced basal activity, and improved selectivity. Furthermore, the comparison with the HrpR/S system serves as a valuable control model, providing insights into the relative advantages and limitations of each approach. These findings present a systematic and adaptable strategy to overcome the substrate tolerance challenge faced by whole-cell biosensors.

2.
Plant Methods ; 18(1): 15, 2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35130941

RESUMEN

BACKGROUND: RNA live-cell imaging systems have been used to visualize subcellular mRNA distribution in living cells. The RNA-binding protein (RBP)-based RNA imaging system exploits specific RBP and the corresponding RNA recognition sequences to indirectly label mRNAs. Co-expression of fluorescent protein-fused RBP and target mRNA conjugated with corresponding RNA recognition sequences allows for visualizing mRNAs by confocal microscopy. To minimize the background fluorescence in the cytosol, the nuclear localization sequence has been used to sequester the RBP not bound to mRNA in the nucleus. However, strong fluorescence in the nucleus may limit the visualization of nucleus-localized RNA and sometimes may interfere in detecting fluorescence signals in the cytosol, especially in cells with low signal-to-noise ratio. RESULTS: We eliminated the background fluorescence in the nucleus by using the split fluorescent protein-based approach. We fused two different RBPs with the N- or C-terminus of split fluorescent proteins (FPs). Co-expression of RBPs with the target mRNA conjugated with the corresponding RNA recognition sequences can bring split FPs together to reconstitute functional FPs for visualizing target mRNAs. We optimized the system with minimal background fluorescence and used the imaging system to visualize mRNAs in living plant cells. CONCLUSIONS: We established a background-free RNA live-cell imaging system that provides a platform to visualize subcellular mRNA distribution in living plant cells.

3.
Cell Chem Biol ; 26(10): 1407-1416.e5, 2019 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-31378710

RESUMEN

A protein-fragment complementation assay (PCA) for detecting and localizing intracellular protein-protein interactions (PPIs) was built by bisection of miniSOG, a fluorescent flavoprotein derived from the light, oxygen, voltage (LOV)-2 domain of Arabidopsis phototropin. When brought together by interacting proteins, the fragments reconstitute a functional reporter that permits tagged protein complexes to be visualized by fluorescence light microscopy (LM), and then by standard as well as "multicolor" electron microscopy (EM) via the photooxidation of 3-3'-diaminobenzidine and its derivatives.


Asunto(s)
Proteínas de Arabidopsis/química , Flavoproteínas/química , Proteínas Luminiscentes/química , 3,3'-Diaminobencidina/química , Arabidopsis/química , Células Cultivadas , Células HEK293 , Células HeLa , Humanos , Microscopía Electrónica , Microscopía Fluorescente , Oxidación-Reducción , Procesos Fotoquímicos , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA