Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26.459
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 187(18): 4964-4980.e21, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39059380

RESUMEN

The highly conserved and essential Plasmodium falciparum reticulocyte-binding protein homolog 5 (PfRH5) has emerged as the leading target for vaccines against the disease-causing blood stage of malaria. However, the features of the human vaccine-induced antibody response that confer highly potent inhibition of malaria parasite invasion into red blood cells are not well defined. Here, we characterize 236 human IgG monoclonal antibodies, derived from 15 donors, induced by the most advanced PfRH5 vaccine. We define the antigenic landscape of this molecule and establish that epitope specificity, antibody association rate, and intra-PfRH5 antibody interactions are key determinants of functional anti-parasitic potency. In addition, we identify a germline IgG gene combination that results in an exceptionally potent class of antibody and demonstrate its prophylactic potential to protect against P. falciparum parasite challenge in vivo. This comprehensive dataset provides a framework to guide rational design of next-generation vaccines and prophylactic antibodies to protect against blood-stage malaria.


Asunto(s)
Anticuerpos Monoclonales , Anticuerpos Antiprotozoarios , Antígenos de Protozoos , Inmunoglobulina G , Vacunas contra la Malaria , Malaria Falciparum , Plasmodium falciparum , Proteínas Protozoarias , Animales , Humanos , Ratones , Anticuerpos Monoclonales/inmunología , Anticuerpos Antiprotozoarios/inmunología , Antígenos de Protozoos/inmunología , Proteínas Portadoras/inmunología , Epítopos/inmunología , Eritrocitos/parasitología , Eritrocitos/inmunología , Inmunoglobulina G/inmunología , Vacunas contra la Malaria/inmunología , Malaria Falciparum/inmunología , Malaria Falciparum/prevención & control , Malaria Falciparum/parasitología , Plasmodium falciparum/inmunología , Proteínas Protozoarias/inmunología
2.
Cell ; 186(20): 4386-4403.e29, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37774678

RESUMEN

Altered microglial states affect neuroinflammation, neurodegeneration, and disease but remain poorly understood. Here, we report 194,000 single-nucleus microglial transcriptomes and epigenomes across 443 human subjects and diverse Alzheimer's disease (AD) pathological phenotypes. We annotate 12 microglial transcriptional states, including AD-dysregulated homeostatic, inflammatory, and lipid-processing states. We identify 1,542 AD-differentially-expressed genes, including both microglia-state-specific and disease-stage-specific alterations. By integrating epigenomic, transcriptomic, and motif information, we infer upstream regulators of microglial cell states, gene-regulatory networks, enhancer-gene links, and transcription-factor-driven microglial state transitions. We demonstrate that ectopic expression of our predicted homeostatic-state activators induces homeostatic features in human iPSC-derived microglia-like cells, while inhibiting activators of inflammation can block inflammatory progression. Lastly, we pinpoint the expression of AD-risk genes in microglial states and differential expression of AD-risk genes and their regulators during AD progression. Overall, we provide insights underlying microglial states, including state-specific and AD-stage-specific microglial alterations at unprecedented resolution.


Asunto(s)
Enfermedad de Alzheimer , Microglía , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Regulación de la Expresión Génica , Inflamación/patología , Microglía/metabolismo , Factores de Transcripción/metabolismo , Transcriptoma , Epigenoma
3.
Cell ; 178(1): 216-228.e21, 2019 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-31204103

RESUMEN

The Plasmodium falciparum reticulocyte-binding protein homolog 5 (PfRH5) is the leading target for next-generation vaccines against the disease-causing blood-stage of malaria. However, little is known about how human antibodies confer functional immunity against this antigen. We isolated a panel of human monoclonal antibodies (mAbs) against PfRH5 from peripheral blood B cells from vaccinees in the first clinical trial of a PfRH5-based vaccine. We identified a subset of mAbs with neutralizing activity that bind to three distinct sites and another subset of mAbs that are non-functional, or even antagonistic to neutralizing antibodies. We also identify the epitope of a novel group of non-neutralizing antibodies that significantly reduce the speed of red blood cell invasion by the merozoite, thereby potentiating the effect of all neutralizing PfRH5 antibodies as well as synergizing with antibodies targeting other malaria invasion proteins. Our results provide a roadmap for structure-guided vaccine development to maximize antibody efficacy against blood-stage malaria.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antiprotozoarios/inmunología , Eritrocitos/parasitología , Vacunas contra la Malaria/inmunología , Malaria Falciparum/inmunología , Plasmodium falciparum/inmunología , Adolescente , Adulto , Animales , Sitios de Unión , Proteínas Portadoras/inmunología , Reacciones Cruzadas/inmunología , Epítopos/inmunología , Femenino , Células HEK293 , Voluntarios Sanos , Humanos , Malaria Falciparum/parasitología , Masculino , Merozoítos/fisiología , Persona de Mediana Edad , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/inmunología , Conejos , Ratas , Ratas Sprague-Dawley , Adulto Joven
4.
Cell ; 179(5): 1112-1128.e26, 2019 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-31730853

RESUMEN

Plasmodium gene functions in mosquito and liver stages remain poorly characterized due to limitations in the throughput of phenotyping at these stages. To fill this gap, we followed more than 1,300 barcoded P. berghei mutants through the life cycle. We discover 461 genes required for efficient parasite transmission to mosquitoes through the liver stage and back into the bloodstream of mice. We analyze the screen in the context of genomic, transcriptomic, and metabolomic data by building a thermodynamic model of P. berghei liver-stage metabolism, which shows a major reprogramming of parasite metabolism to achieve rapid growth in the liver. We identify seven metabolic subsystems that become essential at the liver stages compared with asexual blood stages: type II fatty acid synthesis and elongation (FAE), tricarboxylic acid, amino sugar, heme, lipoate, and shikimate metabolism. Selected predictions from the model are individually validated in single mutants to provide future targets for drug development.


Asunto(s)
Genoma de Protozoos , Estadios del Ciclo de Vida/genética , Hígado/metabolismo , Hígado/parasitología , Plasmodium berghei/crecimiento & desarrollo , Plasmodium berghei/genética , Alelos , Amino Azúcares/biosíntesis , Animales , Culicidae/parasitología , Eritrocitos/parasitología , Ácido Graso Sintasas/metabolismo , Ácidos Grasos/metabolismo , Técnicas de Inactivación de Genes , Genotipo , Modelos Biológicos , Mutación/genética , Parásitos/genética , Parásitos/crecimiento & desarrollo , Fenotipo , Plasmodium berghei/metabolismo , Ploidias , Reproducción
5.
Cell ; 174(2): 391-405.e19, 2018 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-29937225

RESUMEN

Transposable elements represent nearly half of mammalian genomes and are generally described as parasites, or "junk DNA." The LINE1 retrotransposon is the most abundant class and is thought to be deleterious for cells, yet it is paradoxically highly expressed during early development. Here, we report that LINE1 plays essential roles in mouse embryonic stem cells (ESCs) and pre-implantation embryos. In ESCs, LINE1 acts as a nuclear RNA scaffold that recruits Nucleolin and Kap1/Trim28 to repress Dux, the master activator of a transcriptional program specific to the 2-cell embryo. In parallel, LINE1 RNA mediates binding of Nucleolin and Kap1 to rDNA, promoting rRNA synthesis and ESC self-renewal. In embryos, LINE1 RNA is required for Dux silencing, synthesis of rRNA, and exit from the 2-cell stage. The results reveal an essential partnership between LINE1 RNA, Nucleolin, Kap1, and peri-nucleolar chromatin in the regulation of transcription, developmental potency, and ESC self-renewal.


Asunto(s)
Fosfoproteínas/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Diferenciación Celular , Línea Celular , Autorrenovación de las Células , Inmunoprecipitación de Cromatina , Retrovirus Endógenos/genética , Femenino , Proteínas de Homeodominio/antagonistas & inhibidores , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Hibridación Fluorescente in Situ , Masculino , Ratones , Ratones Endogámicos C57BL , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Oligorribonucleótidos Antisentido/metabolismo , Fosfoproteínas/antagonistas & inhibidores , Fosfoproteínas/genética , Interferencia de ARN , ARN Ribosómico/metabolismo , Proteínas de Unión al ARN/antagonistas & inhibidores , Proteínas de Unión al ARN/genética , Proteína 28 que Contiene Motivos Tripartito/antagonistas & inhibidores , Proteína 28 que Contiene Motivos Tripartito/genética , Proteína 28 que Contiene Motivos Tripartito/metabolismo , Regulación hacia Arriba , Nucleolina
6.
CA Cancer J Clin ; 72(6): 542-560, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35829644

RESUMEN

Previous studies using data from the early 2000s demonstrated that patients who were uninsured were more likely to present with late-stage disease and had worse short-term survival after cancer diagnosis in the United States. In this report, the authors provide comprehensive data on the associations of health insurance coverage type with stage at diagnosis and long-term survival in individuals aged 18-64 years who were diagnosed between 2010 and 2013 with 19 common cancers from the National Cancer Database, with survival follow-up through December 31, 2019. Compared with privately insured patients, Medicaid-insured and uninsured patients were significantly more likely to be diagnosed with late-stage (III/IV) cancer for all stageable cancers combined and separately. For all stageable cancers combined and for six cancer sites-prostate, colorectal, non-Hodgkin lymphoma, oral cavity, liver, and esophagus-uninsured patients with Stage I disease had worse survival than privately insured patients with Stage II disease. Patients without private insurance coverage had worse short-term and long-term survival at each stage for all cancers combined; patients who were uninsured had worse stage-specific survival for 12 of 17 stageable cancers and had worse survival for leukemia and brain tumors. Expanding access to comprehensive health insurance coverage is crucial for improving access to cancer care and outcomes, including stage at diagnosis and survival.


Asunto(s)
Seguro de Salud , Neoplasias de la Próstata , Masculino , Estados Unidos/epidemiología , Humanos , Cobertura del Seguro , Pacientes no Asegurados , Medicaid
7.
CA Cancer J Clin ; 71(2): 140-148, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33156543

RESUMEN

Until recently, cancer registries have only collected cancer clinical stage at diagnosis, before any therapy, and pathological stage after surgical resection, provided no treatment has been given before the surgery, but they have not collected stage data after neoadjuvant therapy (NAT). Because NAT is increasingly being used to treat a variety of tumors, it has become important to make the distinction between both the clinical and the pathological assessment without NAT and the assessment after NAT to avoid any misunderstanding of the significance of the clinical and pathological findings. It also is important that cancer registries collect data after NAT to assess response and effectiveness of this treatment approach on a population basis. The prefix y is used to denote stage after NAT. Currently, cancer registries of the American College of Surgeons' Commission on Cancer only partially collect y stage data, and data on the clinical response to NAT (yc or posttherapy clinical information) are not collected or recorded in a standardized fashion. In addition to NAT, nonoperative management after radiation and chemotherapy is being used with increasing frequency in rectal cancer and may be expanded to other treatment sites. Using examples from breast, rectal, and esophageal cancers, the pathological and imaging changes seen after NAT are reviewed to demonstrate appropriate staging.


Asunto(s)
Neoplasias de la Mama/diagnóstico , Neoplasias Esofágicas/diagnóstico , Terapia Neoadyuvante , Estadificación de Neoplasias/métodos , Neoplasias del Recto/diagnóstico , Neoplasias de la Mama/patología , Neoplasias de la Mama/terapia , Neoplasias Esofágicas/patología , Neoplasias Esofágicas/terapia , Femenino , Humanos , Masculino , Estadificación de Neoplasias/estadística & datos numéricos , Neoplasias del Recto/patología , Neoplasias del Recto/terapia , Sistema de Registros/estadística & datos numéricos , Resultado del Tratamiento , Estados Unidos
8.
Development ; 151(17)2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39250531

RESUMEN

miR-31 is a highly conserved microRNA that plays crucial roles in cell proliferation, migration and differentiation. We discovered that miR-31 and some of its validated targets are enriched on the mitotic spindle of the dividing sea urchin embryo and mammalian cells. Using the sea urchin embryo, we found that miR-31 inhibition led to developmental delay correlated with increased cytoskeletal and chromosomal defects. We identified miR-31 to directly suppress several actin remodeling transcripts, including ß-actin, Gelsolin, Rab35 and Fascin. De novo translation of Fascin occurs at the mitotic spindle of sea urchin embryos and mammalian cells. Importantly, miR-31 inhibition leads to a significant a increase of newly translated Fascin at the spindle of dividing sea urchin embryos. Forced ectopic localization of Fascin transcripts to the cell membrane and translation led to significant developmental and chromosomal segregation defects, highlighting the importance of the regulation of local translation by miR-31 at the mitotic spindle to ensure proper cell division. Furthermore, miR-31-mediated post-transcriptional regulation at the mitotic spindle may be an evolutionarily conserved regulatory paradigm of mitosis.


Asunto(s)
MicroARNs , Biosíntesis de Proteínas , Huso Acromático , Animales , MicroARNs/metabolismo , MicroARNs/genética , Huso Acromático/metabolismo , Regulación del Desarrollo de la Expresión Génica , Humanos , Proteínas de Microfilamentos/metabolismo , Proteínas de Microfilamentos/genética , Mitosis/genética , Proteínas Portadoras/metabolismo , Proteínas Portadoras/genética , Desarrollo Embrionario/genética , Embrión no Mamífero/metabolismo , Segregación Cromosómica/genética , Actinas/metabolismo , Actinas/genética , Erizos de Mar/embriología , Erizos de Mar/genética , Erizos de Mar/metabolismo
9.
Proc Natl Acad Sci U S A ; 121(36): e2407016121, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39196622

RESUMEN

The nature of microRNA (miRNA) dysfunction in carcinogenesis remains controversial because of the complex connection between miRNA structural diversity and biological processes. Here, we found that oncofetal IGF2BP3 regulates the selective production of a subset of 3'-isoforms (3'-isomiRs), including miR-21-5p and Let-7 family, which induces significant changes in their cellular seed occupancy and structural components, establishing a cancer-specific gene expression profile. The D-score, reflecting dominant production of a representative miR-21-5p+C (a 3'-isomiR), discriminated between clinical early-stage lung adenocarcinoma (LUAD) cases with low and high recurrence risks, and was associated with molecular features of cell cycle progression, epithelial-mesenchymal transition pressure, and immune evasion. We found that IGF2BP3 controls the production of miR-21-5p+C by directing the nuclear Drosha complex to select the cleavage site. IGF2BP3 was also involved in the production of 3'-isomiRs of miR-425-5p and miR-454-3p. IGF2BP3-regulated these three miRNAs are suggested to be associated with the regulation of p53, TGF-ß, and TNF pathways in LUAD. Knockdown of IGF2BP3 also induced a selective upregulation of Let-7 3'-isomiRs, leading to increased cellular Let-7 seed occupancy and broad repression of its target genes encoding cell cycle regulators. The D-score is an index that reflects this cellular situation. Our results suggest that the aberrant regulation of miRNA structural diversity is a critical component for controlling cellular networks, thus supporting the establishment of a malignant gene expression profile in early stage LUAD.


Asunto(s)
Adenocarcinoma del Pulmón , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares , MicroARNs , Proteínas de Unión al ARN , MicroARNs/genética , MicroARNs/metabolismo , Humanos , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/metabolismo , Adenocarcinoma del Pulmón/patología , Línea Celular Tumoral , Ribonucleasa III/metabolismo , Ribonucleasa III/genética , Transición Epitelial-Mesenquimal/genética
10.
Immunol Rev ; 316(1): 84-103, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37014087

RESUMEN

Nearly half of the world's population is at risk of malaria, a disease caused by the protozoan parasite Plasmodium, which is estimated to cause more than 240,000,000 infections and kill more than 600,000 people annually. The emergence of Plasmodia resistant to chemoprophylactic treatment highlights the urgency to develop more effective vaccines. In this regard, whole sporozoite vaccination approaches in murine models and human challenge studies have provided substantial insight into the immune correlates of protection from malaria. From these studies, CD8+ T cells have come to the forefront, being identified as critical for vaccine-mediated liver-stage immunity that can prevent the establishment of the symptomatic blood stages and subsequent transmission of infection. However, the unique biological characteristics required for CD8+ T cell protection from liver-stage malaria dictate that more work must be done to design effective vaccines. In this review, we will highlight a subset of studies that reveal basic aspects of memory CD8+ T cell-mediated protection from liver-stage malaria infection.


Asunto(s)
Vacunas contra la Malaria , Malaria , Plasmodium , Ratones , Humanos , Animales , Memoria Inmunológica , Hígado , Linfocitos T CD8-positivos
11.
Annu Rev Med ; 75: 233-245, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-37751367

RESUMEN

The MELD (model for end-stage liver disease) 3.0 score was developed to replace the MELD-Na score that is currently used to prioritize liver allocation for cirrhotic patients awaiting liver transplantation in the United States. The MELD 3.0 calculator includes new inputs from patient sex and serum albumin levels and has new weights for serum sodium, bilirubin, international normalized ratio, and creatinine levels. It is expected that use of MELD 3.0 scores will reduce overall waitlist mortality modestly and improve access for female liver transplant candidates. The utility of MELD 3.0 and PELDcre (pediatric end-stage liver disease, creatinine) scores for risk stratification in cirrhotic patients undergoing major abdominal surgery, placement of a transjugular intrahepatic portosystemic shunt, and other interventions requires further study. This article reviews the background of the MELD score and the rationale to create MELD 3.0 as well as potential implications of using this newer risk stratification tool in clinical practice.


Asunto(s)
Enfermedad Hepática en Estado Terminal , Humanos , Femenino , Estados Unidos , Niño , Enfermedad Hepática en Estado Terminal/cirugía , Creatinina , Índice de Severidad de la Enfermedad , Cirrosis Hepática/cirugía , Estudios Retrospectivos , Pronóstico
12.
Annu Rev Med ; 75: 205-217, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38039393

RESUMEN

Home-based dialysis modalities offer both clinical and practical advantages to patients. The use of the home-based modalities, peritoneal dialysis and home hemodialysis, has been increasing over the past decade after a long period of decline. Given the increasing frequency of use of these types of dialysis, it is important for clinicians to be familiar with how these types of dialysis are performed and key clinical aspects of care related to their use in patients with end-stage kidney disease.


Asunto(s)
Hemodiálisis en el Domicilio , Fallo Renal Crónico , Humanos , Diálisis Renal , Fallo Renal Crónico/terapia
13.
Mol Cell Proteomics ; 23(1): 100686, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38008179

RESUMEN

Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality worldwide, ranking fourth in frequency. The relationship between metabolic reprogramming and immune infiltration has been identified as having a crucial impact on HCC progression. However, a deeper understanding of the interplay between the immune system and metabolism in the HCC microenvironment is required. In this study, we used a proteomic dataset to identify three immune subtypes (IM1-IM3) in HCC, each of which has distinctive clinical, immune, and metabolic characteristics. Among these subtypes, IM3 was found to have the poorest prognosis, with the highest levels of immune infiltration and T-cell exhaustion. Furthermore, IM3 showed elevated glycolysis and reduced bile acid metabolism, which was strongly correlated with CD8 T cell exhaustion and regulatory T cell accumulation. Our study presents the proteomic immune stratification of HCC, revealing the possible link between immune cells and reprogramming of HCC glycolysis and bile acid metabolism, which may be a viable therapeutic strategy to improve HCC immunotherapy.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Proteoma , Proteómica , Microambiente Tumoral , Ácidos y Sales Biliares
14.
Proc Natl Acad Sci U S A ; 120(34): e2309043120, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37590416

RESUMEN

Toxoplasma gondii is responsible for toxoplasmosis, a disease that can be serious when contracted during pregnancy, but can also be a threat for immunocompromised individuals. Acute infection is associated with the tachyzoite form that spreads rapidly within the host. However, under stress conditions, some parasites can differentiate into cyst-forming bradyzoites, residing mainly in the central nervous system, retina and muscle. Because this latent form of the parasite is resistant to all currently available treatments, and is central to persistence and transmission of the parasite, specific therapeutic strategies targeting this developmental stage need to be found. T. gondii contains a plastid of endosymbiotic origin called the apicoplast, which is an appealing drug target because it is essential for tachyzoite viability and contains several key metabolic pathways that are largely absent from the mammalian host. Its function in bradyzoites, however, is unknown. Our objective was thus to study the contribution of the apicoplast to the viability and persistence of bradyzoites during chronic toxoplasmosis. We have used complementary strategies based on stage-specific promoters to generate conditional bradyzoite mutants of essential apicoplast genes. Our results show that specifically targeting the apicoplast in both in vitro or in vivo-differentiated bradyzoites leads to a loss of long-term bradyzoite viability, highlighting the importance of this organelle for this developmental stage. This validates the apicoplast as a potential area to look for therapeutic targets in bradyzoites, with the aim to interfere with this currently incurable parasite stage.


Asunto(s)
Apicoplastos , Quistes , Toxoplasma , Toxoplasmosis , Animales , Femenino , Embarazo , Humanos , Toxoplasma/genética , Sistema Nervioso Central , Mamíferos
15.
J Neurosci ; 44(5)2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38124010

RESUMEN

White matter dysmaturation is commonly seen in preterm infants admitted to the neonatal intensive care unit (NICU). Animal research has shown that active sleep is essential for early brain plasticity. This study aimed to determine the potential of active sleep as an early predictor for subsequent white matter development in preterm infants. Using heart and respiratory rates routinely monitored in the NICU, we developed a machine learning-based automated sleep stage classifier in a cohort of 25 preterm infants (12 females). The automated classifier was subsequently applied to a study cohort of 58 preterm infants (31 females) to extract active sleep percentage over 5-7 consecutive days during 29-32 weeks of postmenstrual age. Each of the 58 infants underwent high-quality T2-weighted magnetic resonance brain imaging at term-equivalent age, which was used to measure the total white matter volume. The association between active sleep percentage and white matter volume was examined using a multiple linear regression model adjusted for potential confounders. Using the automated classifier with a superior sleep classification performance [mean area under the receiver operating characteristic curve (AUROC) = 0.87, 95% CI 0.83-0.92], we found that a higher active sleep percentage during the preterm period was significantly associated with an increased white matter volume at term-equivalent age [ß = 0.31, 95% CI 0.09-0.53, false discovery rate (FDR)-adjusted p-value = 0.021]. Our results extend the positive association between active sleep and early brain development found in animal research to human preterm infants and emphasize the potential benefit of sleep preservation in the NICU setting.


Asunto(s)
Recien Nacido Prematuro , Sustancia Blanca , Lactante , Femenino , Humanos , Recién Nacido , Sustancia Blanca/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética , Sueño
16.
Genet Epidemiol ; 48(1): 27-41, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37970963

RESUMEN

Mendelian randomization (MR) is a statistical method that utilizes genetic variants as instrumental variables (IVs) to investigate causal relationships between risk factors and outcomes. Although MR has gained popularity in recent years due to its ability to analyze summary statistics from genome-wide association studies (GWAS), it requires a substantial number of single nucleotide polymorphisms (SNPs) as IVs to ensure sufficient power for detecting causal effects. Unfortunately, the complex genetic heritability of many traits can lead to the use of invalid IVs that affect both the risk factor and the outcome directly or through an unobserved confounder. This can result in biased and imprecise estimates, as reflected by a larger mean squared error (MSE). In this study, we focus on the widely used two-stage least squares (2SLS) method and derive formulas for its bias and MSE when estimating causal effects using invalid IVs. Using those formulas, we identify conditions under which the 2SLS estimate is unbiased and reveal how the independent or correlated pleiotropic effects influence the accuracy and precision of the 2SLS estimate. We validate these formulas through extensive simulation studies and demonstrate the application of those formulas in an MR study to evaluate the causal effect of the waist-to-hip ratio on various sleeping patterns. Our results can aid in designing future MR studies and serve as benchmarks for assessing more sophisticated MR methods.


Asunto(s)
Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Humanos , Análisis de la Aleatorización Mendeliana/métodos , Modelos Genéticos , Factores de Riesgo , Causalidad , Sesgo
17.
Genet Epidemiol ; 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38533840

RESUMEN

Copy number variants (CNVs) are prevalent in the human genome and are found to have a profound effect on genomic organization and human diseases. Discovering disease-associated CNVs is critical for understanding the pathogenesis of diseases and aiding their diagnosis and treatment. However, traditional methods for assessing the association between CNVs and disease risks adopt a two-stage strategy conducting quantitative CNV measurements first and then testing for association, which may lead to biased association estimation and low statistical power, serving as a major barrier in routine genome-wide assessment of such variation. In this article, we developed One-Stage CNV-disease Association Analysis (OSCAA), a flexible algorithm to discover disease-associated CNVs for both quantitative and qualitative traits. OSCAA employs a two-dimensional Gaussian mixture model that is built upon the PCs from copy number intensities, accounting for technical biases in CNV detection while simultaneously testing for their effect on outcome traits. In OSCAA, CNVs are identified and their associations with disease risk are evaluated simultaneously in a single step, taking into account the uncertainty of CNV identification in the statistical model. Our simulations demonstrated that OSCAA outperformed the existing one-stage method and traditional two-stage methods by yielding a more accurate estimate of the CNV-disease association, especially for short CNVs or CNVs with weak signals. In conclusion, OSCAA is a powerful and flexible approach for CNV association testing with high sensitivity and specificity, which can be easily applied to different traits and clinical risk predictions.

18.
J Biol Chem ; 300(9): 107608, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39084459

RESUMEN

Vacuolar type ATPases (V-type ATPases) are highly conserved hetero-multisubunit proton pumping machineries found in all eukaryotes. They utilize ATP hydrolysis to pump protons, acidifying intracellular or extracellular compartments, and are thus crucial for various biological processes. Despite their evolutionary conservation in malaria parasites, this proton pump remains understudied. To understand the localization and biological functions of Plasmodium falciparum V-type ATPase, we employed CRISPR/Cas9 to endogenously tag the subunit A of the V1 domain. V1A (PF3D7_1311900) was tagged with a triple hemagglutinin epitope and the TetR-DOZI-aptamer system for conditional expression under the regulation of anhydrotetracycline. Via immunofluorescence assays, we identified that V-type ATPase is expressed throughout the intraerythrocytic developmental cycle and is mainly localized to the digestive vacuole and parasite plasma membrane. Immuno-electron microscopy further revealed that V-type ATPase is also localized on secretory organelles in merozoites. Knockdown of V1A led to cytosolic pH imbalance and blockage of hemoglobin digestion in the digestive vacuole, resulting in an arrest of parasite development in the trophozoite-stage and, ultimately, parasite demise. Using bafilomycin A1, a specific inhibitor of V-type ATPases, we found that the P. falciparum V-type ATPase is likely involved in parasite invasion but is not critical for ring-stage development. Further, we detected a large molecular weight complex in blue native-PAGE (∼1.0 MDa), corresponding to the total molecular weights of V1 and Vo domains. Together, we show that V-type ATPase is localized to multiple subcellular compartments in P. falciparum, and its functionality throughout the asexual cycle varies depending on the parasite developmental stages.


Asunto(s)
Plasmodium falciparum , Proteínas Protozoarias , ATPasas de Translocación de Protón Vacuolares , Plasmodium falciparum/enzimología , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , ATPasas de Translocación de Protón Vacuolares/genética , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Eritrocitos/parasitología , Eritrocitos/metabolismo , Merozoítos/metabolismo , Merozoítos/crecimiento & desarrollo , Merozoítos/enzimología , Humanos , Vacuolas/metabolismo , Reproducción Asexuada , Concentración de Iones de Hidrógeno , Malaria Falciparum/parasitología , Malaria Falciparum/metabolismo
19.
Mol Microbiol ; 121(3): 394-412, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-37314965

RESUMEN

Plasmodium parasites, the eukaryotic pathogens that cause malaria, feature three distinct invasive forms tailored to the host environment they must navigate and invade for life cycle progression. One conserved feature of these invasive forms is the micronemes, apically oriented secretory organelles involved in egress, motility, adhesion, and invasion. Here we investigate the role of GPI-anchored micronemal antigen (GAMA), which shows a micronemal localization in all zoite forms of the rodent-infecting species Plasmodium berghei. ∆GAMA parasites are severely defective for invasion of the mosquito midgut. Once formed, oocysts develop normally, however, sporozoites are unable to egress and exhibit defective motility. Epitope-tagging of GAMA revealed tight temporal expression late during sporogony and showed that GAMA is shed during sporozoite gliding motility in a similar manner to circumsporozoite protein. Complementation of P. berghei knockout parasites with full-length P. falciparum GAMA partially restored infectivity to mosquitoes, indicating conservation of function across Plasmodium species. A suite of parasites with GAMA expressed under the promoters of CTRP, CAP380, and TRAP, further confirmed the involvement of GAMA in midgut infection, motility, and vertebrate infection. These data show GAMA's involvement in sporozoite motility, egress, and invasion, implicating GAMA as a regulator of microneme function.


Asunto(s)
Culicidae , Parásitos , Animales , Culicidae/metabolismo , Culicidae/parasitología , Parásitos/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Oocistos , Plasmodium berghei/genética , Plasmodium berghei/metabolismo , Esporozoítos/metabolismo
20.
Mol Microbiol ; 121(3): 328-340, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-37602900

RESUMEN

An essential step in the life cycle of malaria parasites is their egress from hepatocytes, which enables the transition from the asymptomatic liver stage to the pathogenic blood stage of infection. To exit the liver, Plasmodium parasites first disrupt the parasitophorous vacuole membrane that surrounds them during their intracellular replication. Subsequently, parasite-filled structures called merosomes emerge from the infected cell. Shrouded by host plasma membrane, like in a Trojan horse, parasites enter the vasculature undetected by the host immune system and travel to the lung where merosomes rupture, parasites are released, and the blood infection stage begins. This complex, multi-step process must be carefully orchestrated by the parasite and requires extensive manipulation of the infected host cell. This review aims to outline the known signaling pathways that trigger exit, highlight Plasmodium proteins that contribute to the release of liver-stage merozoites, and summarize the accompanying changes to the hepatic host cell.


Asunto(s)
Malaria , Parásitos , Plasmodium , Animales , Humanos , Parásitos/metabolismo , Hígado/parasitología , Hepatocitos/parasitología , Plasmodium/metabolismo , Malaria/parasitología , Eritrocitos/parasitología , Proteínas Protozoarias/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA