Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(10)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38791440

RESUMEN

The pil gene cluster for Type IV pilus (Tfp) biosynthesis is commonly present and highly conserved in Streptococcus sanguinis. Nevertheless, Tfp-mediated twitching motility is less common among strains, and the factors determining twitching activity are not fully understood. Here, we analyzed the functions of three major pilin proteins (PilA1, PilA2, and PilA3) in the assembly and activity of Tfp in motile S. sanguinis CGMH010. Using various recombinant pilA deletion strains, we found that Tfp composed of different PilA proteins varied morphologically and functionally. Among the three PilA proteins, PilA1 was most critical in the assembly of twitching-active Tfp, and recombinant strains expressing motility generated more structured biofilms under constant shearing forces compared to the non-motile recombinant strains. Although PilA1 and PilA3 shared 94% identity, PilA3 could not compensate for the loss of PilA1, suggesting that the nature of PilA proteins plays an essential role in twitching activity. The single deletion of individual pilA genes had little effect on the invasion of host endothelia by S. sanguinis CGMH010. In contrast, the deletion of all three pilA genes or pilT, encoding the retraction ATPase, abolished Tfp-mediated invasion. Tfp- and PilT-dependent invasion were also detected in the non-motile S. sanguinis SK36, and thus, the retraction of Tfp, but not active twitching, was found to be essential for invasion.


Asunto(s)
Biopelículas , Proteínas Fimbrias , Fimbrias Bacterianas , Streptococcus sanguis , Proteínas Fimbrias/metabolismo , Proteínas Fimbrias/genética , Streptococcus sanguis/metabolismo , Streptococcus sanguis/genética , Fimbrias Bacterianas/metabolismo , Fimbrias Bacterianas/genética , Biopelículas/crecimiento & desarrollo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética
2.
J Contemp Dent Pract ; 25(3): 260-266, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38690700

RESUMEN

AIM AND BACKGROUND: This study aimed to explore the potential synergistic interaction of virgin coconut oil (VCO) and virgin olive oil (VOO) mixture against Streptococcus sanguinis, Streptococcus mutans, and Lactobacillus casei in a single and mixture species through the minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), antiadherence, and antibiofilm activities. MATERIALS AND METHODS: The broth microdilution technique was used to individually determine the MIC of both oils and an oil mixture (in the ratio of 1:1) in a 96-well microtiter plate. As for the MBC, the subcultured method was used. The fractional inhibitory concentration index (ΣFIC) was determined to identify the interaction types between both oils. The oil mixture at its MIC was then tested on its antibiofilm and antiadherence effect. RESULTS: The MIC of the oil mixture against the tested microbiota was 50-100%. The oil mixture was bactericidal at 100% concentration for all the mentioned microbes except S. mutans. The ΣFIC value was 2 to 4, indicating that the VCO and VOO acted additively against the microbiota. Meanwhile, the oil mixture at MIC (50% for S. sanguinis and L. casei; 100% for S. mutans and mixture species) exhibited antiadherence and antibiofilm activity toward the microbiota in mixture species. CONCLUSION: The oil mixture possesses antibacterial, antibiofilm, and antiadherence properties toward the tested microbiota, mainly at 50-100% concentration of oil mixture. There was no synergistic interaction found between VCO and VOO. CLINICAL SIGNIFICANCE: Children and individuals with special care may benefit from using the oil mixture, primarily to regulate the biofilm formation and colonization of the bacteria. Furthermore, the oil mixture is natural and nontoxic compared to chemical-based oral healthcare products. How to cite this article: Ng YM, Sockalingam SNMP, Shafiei Z, et al. Biological Activities of Virgin Coconut and Virgin Olive Oil Mixture against Oral Primary Colonizers: An In Vitro Study. J Contemp Dent Pract 2024;25(3):260-266.


Asunto(s)
Biopelículas , Aceite de Coco , Lacticaseibacillus casei , Pruebas de Sensibilidad Microbiana , Aceite de Oliva , Streptococcus mutans , Streptococcus sanguis , Aceite de Oliva/farmacología , Streptococcus mutans/efectos de los fármacos , Biopelículas/efectos de los fármacos , Aceite de Coco/farmacología , Técnicas In Vitro , Streptococcus sanguis/efectos de los fármacos , Lacticaseibacillus casei/efectos de los fármacos , Humanos , Antibacterianos/farmacología , Adhesión Bacteriana/efectos de los fármacos
3.
Int J Mol Sci ; 24(7)2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37047667

RESUMEN

This study probed in vitro the mechanisms of competition/coexistence between Streptococcus sanguinis (known for being correlated with health in the oral cavity) and Streptococcus mutans (responsible for aciduric oral environment and formation of caries) by means of quantitative Raman spectroscopy and imaging. In situ Raman assessments of live bacterial culture/coculture focusing on biofilm exopolysaccharides supported the hypothesis that both species engaged in antagonistic interactions. Experiments of simultaneous colonization always resulted in coexistence, but they also revealed fundamental alterations of the biofilm with respect to their water-insoluble glucan structure. Raman spectra (collected at fixed time but different bacterial ratios) showed clear changes in chemical bonds in glucans, which pointed to an action by Streptococcus sanguinis to discontinue the impermeability of the biofilm constructed by Streptococcus mutans. The concurrent effects of glycosidic bond cleavage in water-insoluble α - 1,3-glucan and oxidation at various sites in glucans' molecular chains supported the hypothesis that secretion of oxygen radicals was the main "chemical weapon" used by Streptococcus sanguinis in coculture.


Asunto(s)
Caries Dental , Streptococcus sanguis , Humanos , Streptococcus mutans , Biopelículas , Boca/microbiología , Glucanos/farmacología
4.
Int J Mol Sci ; 24(21)2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-37958670

RESUMEN

Bacterial surface proteins assembled into amyloids contribute to biofilm formation and host immune evasion. Streptococcus sanguinis, a pioneer colonizer of teeth commonly involved in cardiovascular infections, expresses about thirty-three proteins anchored to the cell wall by sortase A. Here, we characterized the production of amyloid in S. sanguinis strains differing in biofilm and immune evasion phenotypes and investigated the role of sortase A in amyloidogenesis. Amyloid was identified in biofilms formed by nine strains, using Congo red (CR) staining and cross-polarized light microscopy. Additionally, EGCG, an amyloid inhibitor, impaired biofilm maturation in a strain-specific fashion. The amounts of amyloid-like components quantified in culture fluids of nine strains using thioflavin T and fluorimetry negatively correlated with bacterial binding to complement-activating proteins (SAP, C1q), C3b deposition and rates of opsonophagocytosis in PMNs, implying amyloid production in immune evasion. The deletion of the sortase A gene (srtA) in strain SK36 compromised amyloid production and sucrose-independent biofilm maturation. The srtA mutant further showed increased susceptibility to C3b deposition and altered interactions with PMNs as well as reduced persistence in human blood. These findings highlight the contribution of amyloids to biofilm formation and host immune evasion in S. sanguinis strains, further indicating the participation of sortase A substrates in amyloidogenesis.


Asunto(s)
Evasión Inmune , Streptococcus sanguis , Humanos , Streptococcus sanguis/genética , Streptococcus sanguis/metabolismo , Amiloide/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biopelículas
5.
Mol Microbiol ; 115(4): 658-671, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33084151

RESUMEN

Streptococcus sanguinis is a primary colonizer of teeth and is associated with oral health. When it enters the bloodstream, however, this bacterium may cause the serious illness infective endocarditis. The genes required for survival and proliferation in blood have not been identified. The products of these genes could provide a rich source of targets for endocarditis-specific antibiotics possessing greater efficacy for endocarditis, and also little or no activity against those bacteria that remain in the mouth. We previously created a comprehensive library of S. sanguinis mutants lacking every nonessential gene. We have now screened each member of this library for growth in human serum and discovered 178 mutants with significant abundance changes. The main biological functions disrupted in these mutants, including purine metabolism, were highlighted via network analysis. The components of an ECF-family transporter were required for growth in serum and were shown for the first time in any bacterium to be essential for endocarditis virulence. We also identified two mutants whose growth was reduced in serum but not in saliva. This strategy promises to enable selective targeting of bacteria based on their location in the body, in this instance, treating or preventing endocarditis while leaving the oral microbiome intact.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Sangre/microbiología , Aptitud Genética , Proteínas de Transporte de Membrana/genética , Streptococcus sanguis/genética , Streptococcus sanguis/metabolismo , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , ADN Bacteriano , Endocarditis Bacteriana/microbiología , Estudio de Asociación del Genoma Completo/métodos , Humanos , Masculino , Proteínas de Transporte de Membrana/metabolismo , Redes y Vías Metabólicas , Mutación , Purinas/metabolismo , Conejos , Saliva/microbiología , Organismos Libres de Patógenos Específicos , Infecciones Estreptocócicas/microbiología , Streptococcus sanguis/patogenicidad , Virulencia , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
6.
Appl Environ Microbiol ; 88(18): e0140322, 2022 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-36094177

RESUMEN

Type IV pili (Tfp) are known to mediate several biological activities, including surface-dependent twitching motility. Although a pil gene cluster for Tfp biosynthesis is found in all sequenced Streptococcus sanguinis strains, Tfp-mediated twitching motility is less commonly detected. Upon examining 81 clinical strains, 39 strains generated twitching zones on blood agar plates (BAP), while 27 strains displayed twitching on Todd-Hewitt (TH) agar. Although BAP appears to be more suitable for the development of twitching zones, 5 strains exhibited twitching motility only on TH agar, indicating that twitching motility is not only strain specific but also sensitive to growth media. Furthermore, different twitching phenotypes were observed in strains expressing comparable levels of pilT, encoding the retraction ATPase, suggesting that the twitching phenotype on agar plates is regulated by multiple factors. By using a PilT-null and a pilin protein-null derivative (CHW02) of twitching-active S. sanguinis CGMH010, we found that Tfp retraction was essential for biofilm stability. Further, biofilm growth was amplified in CHW02 in the absence of shearing force, indicating that S. sanguinis may utilize other ligands for biofilm formation in the absence of Tfp. Similar to SK36, Tfp from CGMH010 were required for colonization of host cells, but PilT only marginally affected adherence and only in the twitching-active strain. Taken together, the results suggest that Tfp participates in host cell adherence and that Tfp retraction facilitates biofilm stability. IMPORTANCE Although the gene clusters encoding Tfp are commonly present in Streptococcus sanguinis, not all strains express surface-dependent twitching motility on agar surfaces. Regardless of whether the Tfp could drive motility, Tfp can serve as a ligand for the colonization of host cells. Though many S. sanguinis strains lack twitching activity, motility can enhance biofilm stability in a twitching-active strain; thus, perhaps motility provides little or no advantage to the survival of bacteria within dental plaque. Rather, Tfp retraction could provide additional advantages for the bacteria to establish infections outside the oral cavity.


Asunto(s)
Proteínas Fimbrias , Streptococcus sanguis , Adenosina Trifosfatasas/metabolismo , Agar/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biopelículas , Proteínas Fimbrias/genética , Fimbrias Bacterianas/genética , Fimbrias Bacterianas/metabolismo , Ligandos , Prevalencia , Streptococcus sanguis/genética , Streptococcus sanguis/metabolismo
7.
J Formos Med Assoc ; 121(9): 1841-1849, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35144835

RESUMEN

BACKGROUND/PURPOSE: The association between herpetic/bacterial co-infection and periodontal diseases has been reported. However, how interactions between herpesviruses and periodontal bacteria dampen periodontal inflammation is still unclear. This study determined effects of co-infection with oral bacteria, including Streptococcus sanguinis, Fusobacterium nucleatum or Aggregatibacter actinomycetemcomitans, in herpes simplex virus type 1 (HSV-1)-infected oral epithelial cells. METHODS: Cell viability was determined by detection the activity of mitochondrial dehydrogenase. Viral production was measured using the plaque assay. Levels of bacterial and viral DNA were determined by real-time polymerase chain reaction. Secretion of interleukin (IL)-6 and IL-8 was measured using the enzyme-linked immunosorbent assay. RESULTS: Viability was not further reduced by bacterial co-infection in HSV-1-infected cells. Co-infection with HSV-1 and S. sanguinis or F. nucleatum reduced the viral yield whereas co-infection with HSV-1 and A. actinomycetemcomitans significantly enhanced the viral yield in oral epithelial cells. The enhancing effect of A. actinomycetemcomitans was not affected by bacterial heat-inactivation. Co-infection with HSV-1/A. actinomycetemcomitans increased intracellular levels of both viral and bacterial DNA. Secretion of IL-6 and IL-8 stimulated by A. actinomycetemcomitans infection was partly reduced by co-infection with HSV-1 in oral epithelial cells. CONCLUSION: In contrast to S. sanguinis and F. nucleatum, A. actinomycetemcomitans enhanced the yield of HSV-1. Either HSV-1 or A. actinomycetemcomitans may be benefited from co-infection, in aspects of increases in production of viral and bacterial DNA as well as reductions in cytokine secretion. These findings echoed with previous clinical studies showing co-infection of HSV and A. actinomycetemcomitans in patients with aggressive periodontitis.


Asunto(s)
Periodontitis Agresiva , Coinfección , Herpesvirus Humano 1 , Aggregatibacter actinomycetemcomitans , ADN Bacteriano , Células Epiteliales , Humanos , Interleucina-6 , Interleucina-8
8.
Int J Mol Sci ; 23(24)2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36555374

RESUMEN

(1) Lasers have been used for the treatment of dentinal hypersensitivity and bacterial reductions in periodontology. The purpose of this in vitro study was to evaluate the effect of Carbon Dioxide (CO2) and Erbium-doped Yttrium Aluminum Garnet (Er:YAG) lasers with chlorhexidine (CHX), hydrogen peroxide (H2O2), sodium hypochlorite (NaOCl), or sodium fluoride (NaF) on the viability of oral bacteria associated with root caries. (2) Streptococcus mutans, Streptococcus sanguinis, and Enterococcus faecalis were grown in Brain Heart Infusion (BHI) broth, diluted to an OD660 of 0.5, and treated with antiseptics with or without simultaneous irradiation with the Er:YAG and CO2 lasers for 30 s repeated three times. The treatment groups consisted of 1: no treatment, 2: 0.5% H2O2 alone, 3: 0.5% NaOCl alone, 4: 0.12% CHX alone, 5: 2% NaF alone, 6: laser alone, 7: laser with 0.5% H2O2, 8: laser with 0.5% NaOCl, 9: laser with 0.12% CHX, and 10: laser with 2% NaF for both lasers. The microbial viability was determined through plating and viable colonies were counted, converted into CFU/mL, and transformed into log form. The statistical analysis was performed using a two-tailed paired t-test. (3) The use of CO2 and Er:YAG lasers alone failed to show statistically significant antibacterial activity against any of the bacteria. The only effective monotreatment was CHX for S. mutans. The combined treatment of 0.5% NaOCl with Er:YAG produced the greatest reduction in overall viability. (4) The combination of the Er:YAG laser with 0.5% NaOCl resulted in the largest reduction in bacterial survival when compared to monotherapies with antimicrobial solutions or lasers.


Asunto(s)
Láseres de Estado Sólido , Caries Radicular , Humanos , Hipoclorito de Sodio/farmacología , Peróxido de Hidrógeno/farmacología , Clorhexidina/farmacología , Fluoruro de Sodio/farmacología , Dióxido de Carbono/farmacología , Láseres de Estado Sólido/uso terapéutico , Bacterias , Enterococcus faecalis
9.
J Bacteriol ; 203(22): e0037521, 2021 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-34460310

RESUMEN

Genetic truncations in a gene encoding a putative glucose-phosphotransferase system (PTS) protein (manL, EIIABMan) were identified in subpopulations of two separate laboratory stocks of Streptococcus sanguinis SK36; the mutants had reduced PTS activities on glucose and other monosaccharides. To understand the emergence of these mutants, we engineered deletion mutants of manL and showed that the ManL-deficient strain had improved bacterial viability in the stationary phase and was better able to inhibit the growth of the dental caries pathogen Streptococcus mutans. Transcriptional analysis and biochemical assays suggested that the manL mutant underwent reprograming of central carbon metabolism that directed pyruvate away from production of lactate, increasing production of hydrogen peroxide (H2O2) and excretion of pyruvate. Addition of pyruvate to the medium enhanced the survival of SK36 in overnight cultures. Meanwhile, elevated pyruvate levels were detected in the cultures of a small but significant percentage (∼10%) of clinical isolates of oral commensal bacteria. Furthermore, the manL mutant showed higher expression of the arginine deiminase system than the wild type, which enhanced the ability of the mutant to raise environmental pH when arginine was present. To our surprise, significant discrepancies in genome sequence were identified between strain SK36 obtained from ATCC and the sequence deposited in GenBank. As the conditions that are likely associated with the emergence of spontaneous manL mutations, i.e., excess carbohydrates and low pH, are those associated with caries development, we propose that glucose-PTS strongly influences commensal-pathogen interactions by altering the production of ammonia, pyruvate, and H2O2. IMPORTANCE A health-associated dental microbiome provides a potent defense against pathogens and diseases. Streptococcus sanguinis is an abundant member of a health-associated oral flora that antagonizes pathogens by producing hydrogen peroxide. There is a need for a better understanding of the mechanisms that allow bacteria to survive carbohydrate-rich and acidic environments associated with the development of dental caries. We report the isolation and characterization of spontaneous mutants of S. sanguinis with impairment in glucose transport. The resultant reprograming of the central metabolism in these mutants reduced the production of lactic acid and increased pyruvate accumulation; the latter enables these bacteria to better cope with hydrogen peroxide and low pH. The implications of these discoveries in the development of dental caries are discussed.


Asunto(s)
Glucosa/metabolismo , Fosfotransferasas/metabolismo , Streptococcus sanguis/genética , Streptococcus sanguis/metabolismo , Proteínas Bacterianas/metabolismo , ADN Bacteriano , Eliminación de Gen , Regulación Bacteriana de la Expresión Génica , Peróxido de Hidrógeno/metabolismo , Ácido Láctico/metabolismo , Fosfotransferasas/genética , Ácido Pirúvico
10.
J Biol Chem ; 295(19): 6594-6604, 2020 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-32273343

RESUMEN

Type IV filaments (T4F), which are helical assemblies of type IV pilins, constitute a superfamily of filamentous nanomachines virtually ubiquitous in prokaryotes that mediate a wide variety of functions. The competence (Com) pilus is a widespread T4F, mediating DNA uptake (the first step in natural transformation) in bacteria with one membrane (monoderms), an important mechanism of horizontal gene transfer. Here, we report the results of genomic, phylogenetic, and structural analyses of ComGC, the major pilin subunit of Com pili. By performing a global comparative analysis, we show that Com pili genes are virtually ubiquitous in Bacilli, a major monoderm class of Firmicutes. This also revealed that ComGC displays extensive sequence conservation, defining a monophyletic group among type IV pilins. We further report ComGC solution structures from two naturally competent human pathogens, Streptococcus sanguinis (ComGCSS) and Streptococcus pneumoniae (ComGCSP), revealing that this pilin displays extensive structural conservation. Strikingly, ComGCSS and ComGCSP exhibit a novel type IV pilin fold that is purely helical. Results from homology modeling analyses suggest that the unusual structure of ComGC is compatible with helical filament assembly. Because ComGC displays such a widespread distribution, these results have implications for hundreds of monoderm species.


Asunto(s)
Proteínas Fimbrias/química , Fimbrias Bacterianas/química , Pliegue de Proteína , Streptococcus pneumoniae/química , Streptococcus sanguis/química , Proteínas Fimbrias/genética , Fimbrias Bacterianas/genética , Streptococcus pneumoniae/genética , Streptococcus sanguis/genética
11.
Molecules ; 26(2)2021 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-33440705

RESUMEN

Piper betle var. nigra is a tropical plant closely related to the common piper. P. betle has also been dubbed a promising source of natural antioxidants in herbal health products, antibacterial, antifungal, antimalarial, cytotoxic activity against the cancer cell lines K562 and HL-60, and antileishmanial. The aim of this study to observation Antimicrobial activity and isolation of chemical compound. The antimicrobial activity of P. betle extract was performed by well diffusion method against two oral pathogenic bacteria (Streptococcus mutans and Streptococcus sanguinis) and opportunistic pathogenic yeast (Candida albicans). The inoculum (bacterial and yeast suspension) was prepared from a 24-h culture on NB for bacterial suspension and on TSB for yeast suspension. Extraction and isolation using various method of chromatography. Isolated compounds were characterized by spectroscopic means. Our study showed antimicrobial activity from crude ethanol extract of leaves P. betle L. var. nigra against two oral pathogenic bacteria and opportunistic pathogenic yeast with concentration 0.5% and 1%. The first report of two new amides derivatives, piperenamide A (1) and piperenamide B (2) in P. betle L. var. nigra.


Asunto(s)
Amidas/análisis , Antiinfecciosos/análisis , Piper betle/química , Hojas de la Planta/química , Amidas/farmacología , Antiinfecciosos/farmacología , Candida albicans/efectos de los fármacos , Candidiasis/tratamiento farmacológico , Humanos , Indonesia , Extractos Vegetales/análisis , Extractos Vegetales/farmacología , Infecciones Estreptocócicas/tratamiento farmacológico , Streptococcus mutans/efectos de los fármacos , Streptococcus sanguis/efectos de los fármacos
12.
J Biol Chem ; 294(17): 6796-6808, 2019 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-30837269

RESUMEN

Type IV pili (Tfp) are functionally versatile filaments, widespread in prokaryotes, that belong to a large class of filamentous nanomachines known as type IV filaments (Tff). Although Tfp have been extensively studied in several Gram-negative pathogens where they function as key virulence factors, many aspects of their biology remain poorly understood. Here, we performed a global biochemical and structural analysis of Tfp in a recently emerged Gram-positive model, Streptococcus sanguinis In particular, we focused on the five pilins and pilin-like proteins involved in Tfp biology in S. sanguinis We found that the two major pilins, PilE1 and PilE2, (i) follow widely conserved principles for processing by the prepilin peptidase PilD and for assembly into filaments; (ii) display only one of the post-translational modifications frequently found in pilins, i.e. a methylated N terminus; (iii) are found in the same heteropolymeric filaments; and (iv) are not functionally equivalent. The 3D structure of PilE1, solved by NMR, revealed a classical pilin-fold with a highly unusual flexible C terminus. Intriguingly, PilE1 more closely resembles pseudopilins forming shorter Tff than bona fide Tfp-forming major pilins, underlining the evolutionary relatedness among different Tff. Finally, we show that S. sanguinis Tfp contain a low abundance of three additional proteins processed by PilD, the minor pilins PilA, PilB, and PilC. These findings provide the first global biochemical and structural picture of a Gram-positive Tfp and have fundamental implications for our understanding of a widespread class of filamentous nanomachines.


Asunto(s)
Fimbrias Bacterianas/metabolismo , Streptococcus/metabolismo , Biopolímeros/metabolismo , Proteínas Fimbrias/química , Proteínas Fimbrias/metabolismo , Metilación , Conformación Proteica
13.
Appl Environ Microbiol ; 86(21)2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32826216

RESUMEN

Imbalances within the dental biofilm trigger dental caries, currently considered a dysbiosis and the most prevalent noncommunicable disease. There is still a gap in knowledge about the dynamics of enamel colonization by bacteria from the dental biofilm in caries. The aim, therefore, was to test whether the sequence of enamel colonization by a typically commensal and a cariogenic species modifies biofilm's cariogenicity. Dual-species biofilms of Streptococcus mutans and Streptococcus sanguinis on saliva-coated enamel slabs were inoculated in different sequences: S. mutans followed by S. sanguinis (Sm-Ss), S. sanguinis followed by S. mutans (Ss-Sm), S. mutans and S. sanguinis inoculated at the same time (Sm=Ss), and the single-species controls S. mutans followed by S. mutans (Sm-Sm) and S. sanguinis followed by S. sanguinis (Ss-Ss). Biofilms were exposed to 10% sucrose 3 times per day for 5 days, and the slabs/biofilms were retrieved to assess demineralization, viable cells, biomass, proteins, polysaccharides, and H2O2 production. Compared with Sm-Sm, primary inoculation with S. sanguinis reduced demineralization (P < 0.05). Both Ss-Sm and Sm=Ss sequences showed reduction in biomass, protein, and polysaccharide content (P < 0.05). The highest S. sanguinis viable count and H2O2 production level and the lowest acidogenicity were observed when S. sanguinis colonized enamel before S. mutans (P < 0.05). Initial enamel adherence with commensal biofilms seems to induce more intense competition against more typically cariogenic species, reducing cariogenicity.IMPORTANCE The concept of caries as an ecological disease implies the understanding of the intricate relationships among the populating microorganisms. Under frequent sugar exposure, some bacteria from the dental biofilm develop pathogenic traits that lead to imbalances (dysbiosis). Depending on which microorganism colonizes the dental surface first, different competition strategies may be developed. Studying the interactions in the entire dental biofilm is not an easy task. In this study, therefore, we modeled the interplay among these microorganisms using a caries-inducing species (S. mutans) and a health-associated species (S. sanguinis). Initial enamel adherence with S. sanguinis seems to induce more intense competition against typically caries-inducing species. Besides continuous exposure with sugars, early colonization of the enamel by highly cariogenic species like S. mutans appears to be needed to develop caries lesions as well. Promoting early colonization by health-associated bacteria such as S. sanguinis could help to maintain oral health, delaying dysbiosis.


Asunto(s)
Biopelículas , Caries Dental/microbiología , Esmalte Dental/microbiología , Interacciones Microbianas , Streptococcus mutans/fisiología , Streptococcus sanguis/fisiología
14.
Platelets ; 31(8): 1028-1038, 2020 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-31856631

RESUMEN

Bacteria induce platelet aggregation triggered by several mechanisms. The goal of this work was to characterize platelet aggregates induced by different bacterial strains and to quantify the effect of aspirin treatment using aggregation tests, as well as a novel approach based on confocal analysis. Blood samples were obtained from either healthy donors (n = 27) or patients treated with long-term aspirin (n = 15). The bacterial species included were Staphylococcus aureus, Enterococcus faecalis, and Streptococcus sanguinis. The different aggregate's ultrastructures depending on the bacterial strain were analyzed using Scanning electron microscopy. Quantification of the size of the platelet aggregates, their mean number as well as the bacterial impregnation within the aggregates was performed using confocal laser scanning light microscopy. Light Transmission Aggregometry was also performed. Our results reported distinct characteristics of platelet aggregates depending on the bacterial strain. Using confocal analysis, we have shown that aspirin significantly reduced platelet aggregation induced by S. aureus (p = .003) and E. faecalis (p = .006) with no effect in the case of S. sanguinis (p = .529). The results of the aggregometry were concordant with those of the confocal technique in the case of S. aureus and S. sanguinis. Interestingly, aggregation induced by E. faecalis was detected only with confocal analysis. In conclusion, our confocal scanning microscopy allowed a detailed study of the platelet aggregation induced by bacteria. We showed that aspirin acts on bacterial-induced platelet aggregation depending on the species. These results are in favor of the use of aspirin considering the species and the bacterial strain involved.


Asunto(s)
Antiinflamatorios no Esteroideos/uso terapéutico , Aspirina/uso terapéutico , Bacteriemia/tratamiento farmacológico , Agregación Plaquetaria/efectos de los fármacos , Antiinflamatorios no Esteroideos/farmacología , Aspirina/farmacología , Femenino , Humanos , Masculino
15.
Lasers Med Sci ; 35(3): 709-718, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31713778

RESUMEN

The potential anti-cariogenic effect of blue light was evaluated using an oral biofilm model. Two species, Streptococcus mutans and Streptococcus sanguinis, were cultivated ex vivo on bovine enamel blocks for 24 h, either separately or mixed together, then exposed to blue light (wavelengths 400-500 nm) using 112 J/cm2. Twenty four or 48 h after exposure to light the biofilm structure and biomass were characterized and quantified using SEM and qPCR, respectively. Bacterial viability was analyzed by CLSM using live/dead bacterial staining. Gene expression was examined by RT-qPCR. After exposure to light, S. mutans biomass in mono-species biofilm was increased mainly by dead bacteria, relative to control. However, the bacterial biomass of S. mutans when grown in mixed biofilm and of S. sanguinis in mono-species biofilm was reduced after light exposure, with no significant change in viability when compared to control. Furthermore, when grown separately, an upregulation of gene expression related to biofilm formation of S. mutans, and downregulation of similar genes of S. sanguinis, were measured 24 h after exposure to blue light. However, in mixed biofilm, a downregulation of those genes in both species was observed, although not significant in S. mutans. In conclusion, blue light seems to effectively alter the bacterial biomass by reducing the viability and virulence characteristics in both bacterial species and may promote the anti-cariogenic balance between them, when grown in a mixed biofilm. Therefore, exposure of oral biofilm to blue light has the potential to serve as a complementary approach in preventive dentistry.


Asunto(s)
Biopelículas/efectos de la radiación , Luz , Modelos Biológicos , Boca/microbiología , Streptococcus mutans/efectos de la radiación , Streptococcus sanguis/efectos de la radiación , Animales , Biopelículas/crecimiento & desarrollo , Bovinos , Esmalte Dental/microbiología , Esmalte Dental/ultraestructura , Regulación Bacteriana de la Expresión Génica/efectos de la radiación , Streptococcus mutans/genética , Streptococcus mutans/ultraestructura , Streptococcus sanguis/genética , Streptococcus sanguis/ultraestructura
16.
Clin Oral Investig ; 24(11): 3899-3909, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32198658

RESUMEN

OBJECTIVES: Evidence about modifications of dental luting materials to minimize biological failure at the "marginal gap" between teeth and fixed prosthodontics is scarce. We compared a copper-modified (Co-ZOP) and a conventional zinc oxide phosphate cement (ZOP) in terms of antimicrobial and cytotoxic potentials in vitro and in vivo. MATERIALS AND METHODS: Specimens of ZOP and Co-ZOP were characterized by the mean arithmetic roughness (Ra) and surface free energy (SFE). Powder components were examined using scanning electron microscopy (SEM). Energy-dispersive X-ray spectroscopy (EDX) showed elemental material compositions. In vitro microbial adhesion was shown using SEM, luminescence, and fluorescence assays. CCK-8 assays of mouse fibroblasts (L929) and human gingival fibroblasts (GF-1) were performed after 6, 24, and 48 h of specimen incubation. In vivo, ZOP and Co-ZOP specimens were applied intraorally for 12 h; biofilm accumulation was shown using SEM. RESULTS: Ra of ZOP and Co-ZOP showed no significant differences; SFE was significantly higher for Co-ZOP. EDX exhibited minor copper radiation for Co-ZOP, none for ZOP. In vitro fungal adhesion to Co-ZOP was significantly higher than to ZOP; in vitro streptococcal adhesion, cytotoxicity, and in vivo biofilm formation were not significantly different. CONCLUSIONS: Co-ZOP showed low surface allocations of copper with no improved antimicrobial properties compared with conventional ZOP in vitro or in vivo. CLINICAL RELEVANCE: Antimicrobial effects and low cytotoxicity of biomaterials are important for the clinical outcome. Based on our in vitro and in vivo results, no clinical recommendation can be given for the tested Co-ZOP.


Asunto(s)
Antiinfecciosos , Óxido de Zinc , Antiinfecciosos/farmacología , Cobre , Cementos Dentales , Ensayo de Materiales , Microscopía Electrónica de Rastreo , Óxidos , Fosfatos , Propiedades de Superficie , Óxido de Zinc/toxicidad , Cemento de Fosfato de Zinc
17.
Biochem Biophys Res Commun ; 520(3): 507-513, 2019 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-31610917

RESUMEN

Atherosclerosis is exacerbated by periodontal pathogens, which induce vascular inflammation after entering the bloodstream. Among oral indigenous bacteria, Streptococcus sanguinis and S. anginosus are related to systemic disorders, such as infective endocarditis and abscess, and are sometimes detected in human atherosclerotic plaques or blood. Thus, these oral streptococci may contribute to the progression of atherosclerosis. To test this hypothesis, apolipoprotein E-deficient spontaneously hyperlipidemic mice were intraorally challenged with S. sanguinis or S. anginosus. Atherosclerotic plaque formation increased significantly in the S. sanguinis-challenged group compared with the carboxymethylcellulose-treated control group. Expression levels of mRNAs of proinflammatory cytokines in the aorta and levels of atherosclerosis-related mediators in blood increased upon S. sanguinis challenge. Adaptor molecule TNF receptor-associated factor 6 was also enhanced in the aorta when mice were challenged with S. sanguinis. Furthermore, challenge with S. anginosus induced systemic inflammation, but inflammation-related mRNA expression levels in the aorta only increased slightly and were accompanied by minimal expansion of the lesion area. By contrast, with the exception of IL-1α, the expression levels of inflammation-related genes did not change in gingival tissues of both bacteria- and sham-challenged groups. These results reveal that S. sanguinis causes aortic inflammation that leads to accelerated progression of atherosclerosis.


Asunto(s)
Aorta/microbiología , Aterosclerosis/microbiología , Hiperlipidemias/microbiología , Inflamación/microbiología , Infecciones Estreptocócicas/fisiopatología , Streptococcus , Administración Oral , Animales , Aorta/fisiopatología , Citocinas/metabolismo , Progresión de la Enfermedad , Encía/microbiología , Quinasas Asociadas a Receptores de Interleucina-1/metabolismo , Interleucina-1alfa/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Boca/microbiología , Placa Aterosclerótica/microbiología , Streptococcus anginosus , Streptococcus sanguis , Factor 6 Asociado a Receptor de TNF/metabolismo
18.
Appl Environ Microbiol ; 85(6)2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30635384

RESUMEN

Streptococcus sanguinis, dominant in the oral microbiome, is the only known streptococcal species possessing a pil gene cluster for the biosynthesis of type IV pili (Tfp). Although this cluster is commonly present in the genome of S. sanguinis, most of the strains do not express Tfp-mediated twitching motility. Thus, this study was designed to investigate the biological functions encoded by the cluster in the twitching-negative strain S. sanguinis SK36. We found that the cluster was transcribed as an operon, with three promoters located 5' to the cluster and one in the intergenic region between SSA_2307 and SSA_2305. Studies using promoter-cat fusion strains revealed that the transcription of the cluster was mainly driven by the distal 5' promoter, which is located more than 800 bases 5' to the first gene of the cluster, SSA_2318. Optimal expression of the cluster occurred at the early stationary growth phase in a CcpA-dependent manner, although a CcpA-binding consensus is absent in the promoter region. Expression of the cluster resulted in a short hairlike surface structure under transmission electron microscopy. Deletion of the putative pilin genes (SSA_2313 to SSA_2315) abolished the biosynthesis of this structure and significantly reduced the adherence of SK36 to HeLa and SCC-4 cells. Mutations in the pil genes downregulated biofilm formation by S. sanguinis SK36. Taken together, the results demonstrate that Tfp of SK36 are important for host cell adherence, but not for motility, and that expression of the pil cluster is subject to complex regulation.IMPORTANCE The proteins and assembly machinery of the type IV pili (Tfp) are conserved throughout bacteria and archaea, and yet the function of this surface structure differs from species to species and even from strain to strain. As seen in Streptococcus sanguinis SK36, the expression of the Tfp gene cluster results in a hairlike surface structure that is much shorter than the typical Tfp. This pilus is essential for the adherence of SK36 but is not involved in motility. Being a member of the highly diverse dental biofilm, perhaps S. sanguinis could more effectively utilize this structure to adhere to host cells and to interact with other microbes within the same niche.


Asunto(s)
Proteínas Fimbrias/metabolismo , Fimbrias Bacterianas/metabolismo , Familia de Multigenes , Streptococcus sanguis/genética , Adhesión Bacteriana , Proteínas Fimbrias/genética , Fimbrias Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Células HeLa , Humanos , Regiones Promotoras Genéticas , Infecciones Estreptocócicas/microbiología
19.
Infect Immun ; 86(3)2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29263111

RESUMEN

Small noncoding RNAs (sRNAs) have been identified as important regulators of gene expression in various cellular processes. cia-dependent small RNAs (csRNAs), a group of sRNAs that are controlled by the two-component regulatory system CiaRH, are widely conserved in streptococci, but their targets have been identified only in Streptococcus pneumoniaeStreptococcus sanguinis, a pioneer colonizer of teeth and one of the most predominant bacteria in the early oral biofilm, has been shown to have six csRNAs. Using computational target prediction and the luciferase reporter assay, we identified pilT, a constituent of the type IV pilus operon, as a negative regulatory target for one of the csRNAs, namely, csRNA1-1, in S. sanguinis RNA-RNA electrophoretic mobility shift assay using a nucleotide exchange mutant of csRNA1-1 revealed that csRNA1-1 binds directly to pilT mRNA. In addition, csRNA1-1 and csRNA1-2, a putative gene duplication product of csRNA1-1 that is tandemly located in the S. sanguinis genome, negatively regulated S. sanguinis biofilm formation. These results suggest the involvement of csRNAs in the colonization step of S. sanguinis.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/metabolismo , Biopelículas , Regulación Bacteriana de la Expresión Génica , ARN Bacteriano/genética , ARN Pequeño no Traducido/metabolismo , Infecciones Estreptocócicas/microbiología , Streptococcus sanguis/genética , Adenosina Trifosfatasas/genética , Proteínas Bacterianas/genética , Regulación hacia Abajo , Fimbrias Bacterianas/genética , Fimbrias Bacterianas/metabolismo , ARN Bacteriano/metabolismo , ARN Pequeño no Traducido/genética , Streptococcus sanguis/fisiología
20.
Infect Immun ; 86(4)2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29339459

RESUMEN

Streptococcus sanguinis is a pioneer species of teeth and a common opportunistic pathogen of infective endocarditis. In this study, we identified a two-component system, S. sanguinis SptRS (SptRS Ss ), affecting S. sanguinis survival in saliva and biofilm formation. Isogenic mutants of sptRSs (SKsptR) and sptSSs (SKsptS) showed reduced cell counts in ex vivo assays of viability in saliva compared to those of parent strain SK36 and complemented mutants. Reduced counts of the mutants in saliva were associated with reduced growth rates in nutrient-poor medium (RPMI) and increased susceptibility to the deposition of C3b and the membrane attach complex (MAC) of the complement system, a defense component of saliva and serum. Conversely, sptRSs and sptSSs mutants showed increased biofilm formation associated with higher levels of production of H2O2 and extracellular DNA. Reverse transcription-quantitative PCR (RT-qPCR) comparisons of strains indicated a global role of SptRS Ss in repressing genes for H2O2 production (2.5- to 15-fold upregulation of spxB, spxR, vicR, tpk, and ackA in sptRSs and sptSSs mutants), biofilm formation, and/or evasion of host immunity (2.1- to 11.4-fold upregulation of srtA, pcsB, cwdP, iga, and nt5e). Compatible with the homology of SptR Ss with AraC-type regulators, duplicate to multiple conserved repeats were identified in 1,000-bp regulatory regions of downstream genes, suggesting that SptR Ss regulates transcription by DNA looping. Significant transcriptional changes in the regulatory genes vicR, spxR, comE, comX, and mecA in the sptRSs and sptSSs mutants further indicated that SptRS Ss is part of a regulatory network that coordinates cell wall homeostasis, H2O2 production, and competence. This study reveals that SptRS Ss is involved in the regulation of crucial functions for S. sanguinis persistence in the oral cavity.


Asunto(s)
Biopelículas , Saliva/microbiología , Infecciones Estreptocócicas/microbiología , Streptococcus sanguis/fisiología , Proteínas Bacterianas/genética , Proteínas del Sistema Complemento/inmunología , Regulación Bacteriana de la Expresión Génica , Sitios Genéticos , Genoma Bacteriano , Genómica/métodos , Interacciones Huésped-Patógeno/inmunología , Peróxido de Hidrógeno/metabolismo , Viabilidad Microbiana/genética , Estrés Oxidativo , Eliminación de Secuencia , Infecciones Estreptocócicas/inmunología , Infecciones Estreptocócicas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA