Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Naturwissenschaften ; 102(9-10): 61, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26373559

RESUMEN

Organismal fecundity (F) and its relationship with body size (BS) are key factors in predicting species distribution under current and future scenarios of global change. A functional trait-based dynamic energy budget (FT-DEB) is proposed as a mechanistic approach to predict the variation of F and BS as function of environmental correlates using two marine bivalves as model species (Mytilus galloprovincialis and Brachidontes pharaonis). Validation proof of model skill (i.e., degree of correspondence between model predictions and field observations) and stationarity (i.e., ability of a model generated from data collected at one place/time to predict processes at another place/time) was provided to test model performance in predicting the bivalve distribution throughout the 22 sites in the Central Mediterranean Sea under local conditions of food density and body temperature. Model skill and stationarity were tested through the estimate of commission (i.e., proportion of species' absences predicted present) and omission (i.e., proportion of presences predicted absent) errors of predictions by comparing mechanistic predicted vs. observed F and BS values throughout the study area extrapolated by lab experiments and literature search. The resulting relationship was reliable for both species, and body size and fecundity were highly correlated in M. galloprovincialis compared to B. pharaonis; FT-DEB showed correct predictions of presence in more than 75 % of sites, and the regression between BS predicted vs. observed was highly significant in both species. Whilst recognising the importance of biotic interactions in shaping the distribution of species, our FT-DEB approach provided reliable quantitative estimates of where our species had sufficient F to support local populations or suggesting reproductive failure. Mechanistically, estimating F and BS as key traits of species life history can also be addressed within a broader, scale-dependent context that surpasses the limitations related to correlative species distribution models.


Asunto(s)
Distribución Animal/fisiología , Bivalvos/fisiología , Modelos Biológicos , Animales , Tamaño Corporal , Cambio Climático , Fertilidad , Mar Mediterráneo , Temperatura
2.
Int J Parasitol Parasites Wildl ; 17: 65-73, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34984169

RESUMEN

The distribution and abundance of organisms is typically shaped by multiple biotic and abiotic processes. Micropredators are parasite-like organisms that are smaller than their hosts and/or prey and feed on multiple hosts during a given life stage. Unlike typical parasites, however, they spend much or most of their time free-living, associating only temporarily with hosts. In the ocean, micropredators can impact multiple fish species, and in particular can have significant lethal and sub-lethal effects on newly settled fish. Although gnathiid isopods are abundant and primary micropredators in coral reef ecosystems, their impacts are relatively unexplored within sub-tidal temperate rocky reefs. We investigated the distribution of juvenile gnathiid isopods along sub-tidal temperate rocky reefs and tested trap methodology. We also quantified both the sub-lethal and lethal impacts of feeding-stage juvenile gnathiid isopods on juvenile, post-settlement reef fish, Heterostichus rostratus (giant kelpfish). We were most interested in determining the relationship between gnathiid infestation level and fish swimming performance, in particular swimming metrics relevant to predator avoidance maneuvers. We found that Gnathia tridens was present in rocky reefs rather than embayments along the Southern California coastline and that within rocky reefs, gnathiids occurred in the highest densities in lighted traps. Surprisingly, we observed almost no influence of fish size or gnathiid sub-lethal infestation level on ambient or burst swimming performance metrics. However, burst duration was reduced by gnathiid infestation, which is important in predator avoidance. There were significant differences in survivorship among small fish compared to large fish as a result of gnathiid infestation. Larger fish survived higher numbers of gnathiids than smaller fish, indicating that parasite-induced mortality is greater for smaller fish. Investigations of the effects of micropredators on subsequent predator-mediated mortality, including the susceptibility of fishes and their individual responses to micropredators, can further contribute to our understanding of processes affecting recruitment in resident reef fish populations. Further research, especially within temperate sub-tidal ecosystems, is needed to understand and highlight the overlooked importance of micropredation in shaping fish populations within a reefscape.

3.
Sci Total Environ ; 645: 984-992, 2018 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-30248885

RESUMEN

Anthropogenic contaminants, including nutrient enrichment, frequently alter environmental conditions in marine systems and affect the development of communities on hard-substrata. Biofilms can influence the settlement of marine invertebrates and hence impact on the structure of fouling communities. Few studies have examined bacteria, invertebrates and nutrient-rich contaminants in concert, with none yet to examine the effects of nutrient-rich contaminants on both biofilms and the recruitment of sessile invertebrate communities in-situ to ascertain the mechanistic basis behind observed impacts. Biofilm treatments were allowed to develop under manipulated environmental conditions of either ambient or enriched nutrient levels. Enrichment conditions were elevated via slow-release fertiliser and invertebrate recruitment was prevented during initial biofilm development. Biofilm treatments (including a no film control) were then subject to either ambient or enriched water-borne nutrients (in a fully-factorial design) during a period of invertebrate colonisation in the field. Effects of nutrient-rich contaminants on invertebrate recruitment were observed as changes to community composition and the abundances of taxonomic groups. Communities on no biofilm control treatments differed from those with pre-developed biofilms. Naturally developed biofilms promoted recruitment by all organisms, except barnacles, which preferred nutrient-enriched biofilms. Water-borne nutrients increased the recruitment of ascidians and barnacles, but suppressed bryozoan, serpulid polychaete and sponge recruitment. The direct and indirect impacts observed on biofilm and invertebrate communities suggest that increasing nutrient levels via nutrient-rich contaminants will result in structural community shifts that may ultimately impact ecosystem functioning within estuaries.

4.
Sci Total Environ ; 592: 295-305, 2017 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-28319716

RESUMEN

Coastal systems are increasingly impacted by human activities. While the direct effects of individual contaminants have been investigated, the potential for multiple contaminants to impact adjacent hard substrate habitats is poorly understood. Sediment-bound contaminants pose a risk to water column organisms through resuspension and the fluxing of dissolved nutrients and metals. This study experimentally manipulated contaminated coastal sediments in mesocosms with additions of a common fertiliser to investigate the impact on both bacterial biofilms and macrofouling communities on nearby hard substrates. Field mesocosms were deployed sub-tidally for two weeks in a fully crossed design with two levels of metal contamination (ambient or high) and three levels of organic enrichment (ambient, low and high). Developing biofilm and macrofaunal communities were collected on acetate settlement sheets above the mesocosm sediments and censused with a combination of high-throughput sequencing (biofilm) and microscopy (macrofauna). Organic enrichment of sediments induced compositional shifts in biofilm communities, reducing their diversity, evenness and richness. Furthermore, co-occurrence networks built from microbial assemblages exposed to contaminated sediments displayed reduced connectivity compared to controls, suggesting a more stochastic assembly dynamic, where microbial interactions are reduced. Macrofouling community composition shifted in response to increased enrichment with separate and interactive effects of metals also observed for individual taxa. Specifically, antagonistic stressor interactions were observed for colonial ascidians and arborescent bryozoans; metal contamination decreased abundances of these taxa, except under high enrichment conditions. Together these micro- and macrofaunal responses indicate selection for depauperate, but contaminant-tolerant, communities and a potential breakdown in biotic connectivity through multiple stressor impacts across habitat boundaries.


Asunto(s)
Ecosistema , Sedimentos Geológicos , Metales/análisis , Contaminantes Químicos del Agua/análisis , Animales , Organismos Acuáticos , Bacterias , Biopelículas , Monitoreo del Ambiente
5.
Environ Sci Pollut Res Int ; 23(15): 14945-56, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27074931

RESUMEN

Concern about leakage of carbon dioxide (CO2) from deep-sea storage in geological reservoirs is increasing because of its possible adverse effects on marine organisms locally or at nearby coastal areas both in sediment and water column. In the present study, we examined how elevated CO2 affects various intertidal epibenthic (benthic copepod), intertidal endobenthic (Manila clam and Venus clam), sub-tidal benthic (brittle starfish), and free-living (marine medaka) organisms in areas expected to be impacted by leakage. Acute lethal and sub-lethal effects were detected in the adult stage of all test organisms exposed to varying concentrations of CO2, due to the associated decline in pH (8.3 to 5.2) during 96-h exposure. However, intertidal organisms (such as benthic copepods and clams) showed remarkable resistance to elevated CO2, with the Venus clam being the most tolerant (LpH50 = 5.45). Sub-tidal species (such as brittle starfish [LpH50 = 6.16] and marine medaka [LpH50 = 5.91]) were more sensitive to elevated CO2 compared to intertidal species, possibly because they have fewer defensive capabilities. Of note, the exposure duration might regulate the degree of acute sub-lethal effects, as evidenced by the Venus clam, which showed a time-dependent effect to elevated CO2. Finally, copper was chosen as a model toxic element to find out the synergistic or antagonistic effects between ocean acidification and metal pollution. Combination of CO2 and Cu exposure enhances the adverse effects to organisms, generally supporting a synergistic effect scenario. Overall, the significant variation in the degree to which CO2 adversely affected organisms (viz., working range and strength) was clearly observed, supporting the general concept of species-dependent effects of elevated CO2.


Asunto(s)
Organismos Acuáticos/efectos de los fármacos , Dióxido de Carbono/toxicidad , Peces/crecimiento & desarrollo , Contaminantes Químicos del Agua/toxicidad , Animales , Organismos Acuáticos/crecimiento & desarrollo , Bivalvos/efectos de los fármacos , Bivalvos/crecimiento & desarrollo , Dióxido de Carbono/análisis , Cobre/análisis , Cobre/toxicidad , Concentración de Iones de Hidrógeno , Metales/química , Agua de Mar/química , Estrellas de Mar/efectos de los fármacos , Estrellas de Mar/crecimiento & desarrollo , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA