Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Genes Dev ; 31(21): 2186-2198, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-29212662

RESUMEN

Eukaryotic transfer RNAs (tRNAs) are exported from the nucleus, their site of synthesis, to the cytoplasm, their site of function for protein synthesis. The evolutionarily conserved ß-importin family member Los1 (Exportin-t) has been the only exporter known to execute nuclear export of newly transcribed intron-containing pre-tRNAs. Interestingly, LOS1 is unessential in all tested organisms. As tRNA nuclear export is essential, we previously interrogated the budding yeast proteome to identify candidates that function in tRNA nuclear export. Here, we provide molecular, genetic, cytological, and biochemical evidence that the Mex67-Mtr2 (TAP-p15) heterodimer, best characterized for its essential role in mRNA nuclear export, cofunctions with Los1 in tRNA nuclear export. Inactivation of Mex67 or Mtr2 leads to rapid accumulation of end-matured unspliced tRNAs in the nucleus. Remarkably, merely fivefold overexpression of Mex67-Mtr2 can substitute for Los1 in los1Δ cells. Moreover, in vivo coimmunoprecipitation assays with tagged Mex67 document that the Mex67 binds tRNAs. Our data also show that tRNA exporters surprisingly exhibit differential tRNA substrate preferences. The existence of multiple tRNA exporters, each with different tRNA preferences, may indicate that the proteome can be regulated by tRNA nuclear export. Thus, our data show that Mex67-Mtr2 functions in primary nuclear export for a subset of yeast tRNAs.


Asunto(s)
Transporte Activo de Núcleo Celular/genética , Proteoma/genética , ARN de Transferencia/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Silenciador del Gen , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Unión Proteica , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
2.
Angew Chem Int Ed Engl ; 61(28): e202203238, 2022 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-35412703

RESUMEN

Tracking spatial and temporal dynamics of bioactive molecules such as enzymes responding to therapeutic treatment is highly important for understanding of the related functions. However, in situ molecular imaging at subcellular level during photodynamic therapy (PDT) has been hampered by the limitations of existing methods. Herein, we present a multifunctional nanoplatform (termed as UR-HAPT) that is able to simultaneously monitor subcellular dynamics of human apurinic/apyrimidinic endonuclease 1 (APE1) during the near-infrared (NIR) light-mediated PDT. UR-HAPT was constructed by the combination of an upconversion nanoparticle-based PDT design and a mitochondria-targeting strategy with an APE1-responsive DNA reporter. Benefiting from the gain-of-function approach, activatable mitochondrial accumulation of APE1 in response to the oxidative stress was observed during the NIR light-triggered, mitochondria-targeted PDT process. We envision that this nanoplatform can be applicable to screen and evaluate potential enzyme inhibitors to improve the PDT efficacy.


Asunto(s)
Nanopartículas , Fotoquimioterapia , Línea Celular Tumoral , Humanos , Mitocondrias/metabolismo , Estrés Oxidativo , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/metabolismo , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico
3.
J Bacteriol ; 200(11)2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29555704

RESUMEN

The type VI secretion system (T6SS) inhibits the growth of neighboring bacterial cells through a contact-mediated mechanism. Here, we describe a detailed characterization of the protein localization dynamics in the Pseudomonas aeruginosa T6SS. It has been proposed that the type VI secretion process is driven by a conformational-change-induced contraction of the T6SS sheath. However, although the contraction of an optically resolvable TssBC sheath and the subsequent localization of ClpV are observed in Vibrio cholerae, coordinated assembly and disassembly of TssB and ClpV are observed without TssB contraction in P. aeruginosa These dynamics are inconsistent with the proposed contraction sheath model. Motivated by the phenomenon of dynamic instability, we propose a new model in which ATP hydrolysis, rather than conformational change, generates the force for secretion.IMPORTANCE The type VI secretion system (T6SS) is widely conserved among Gram-negative bacteria and is a central determinant of bacterial fitness in polymicrobial communities. The secretion system targets bacteria and secretes effectors that inhibit the growth of neighboring cells, using a contact-mediated-delivery system. Despite significant homology to the previously characterized Vibrio cholerae T6SS, our analysis reveals that effector secretion is driven by a distinct force generation mechanism in Pseudomonas aeruginosa The presence of two distinct force generation mechanisms in T6SS represents an example of the evolutionary diversification of force generation mechanisms.


Asunto(s)
Pseudomonas aeruginosa/metabolismo , Sistemas de Secreción Tipo VI/metabolismo , Vibrio cholerae/metabolismo , Evolución Biológica , Transporte Biológico , Pseudomonas aeruginosa/genética , Sistemas de Secreción Tipo VI/genética , Vibrio cholerae/genética
4.
Antioxid Redox Signal ; 39(16-18): 1027-1038, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37082952

RESUMEN

Significance: Innate immune cells adopt distinct memory states during the pathogenesis of acute and chronic inflammatory diseases. Intracellular generations of reactive oxygen species (ROS) play key roles during the programming dynamics of innate immune cells such as monocytes and macrophages. Recent Advances: ROS modulate the adaptation of innate leukocytes to varying intensities and durations of inflammatory signals, facilitate fundamental reprogramming dynamics such as priming, tolerance, and exhaustion, in addition to fundamental processes of proliferation, differentiation, phagocytosis, chemotaxis, as well as expression of pro- and anti-inflammatory mediators. ROS can be generated at distinct subcellular compartments including cellular membrane, mitochondria, and peroxisome. Complex inflammatory signals may finely regulate ROS generation within distinct subcellular compartments, which in turn may differentially facilitate innate memory dynamics. Critical Issues: Complex inflammatory signals with varying strengths and durations may differentially trigger ROS generation at peroxisome, mitochondria, and other subcellular organelles. Peroxisomal or mitochondrial ROS may facilitate the assembly of distinct signaling platforms involved in the programming of memory innate leukocytes. Despite the emerging connection of subcellular ROS with innate immune memory, underlying mechanisms are still not well defined. Future Directions: Recent important discoveries linking subcellular ROS and innate memory as critically reviewed here hold novel translational relevance related to acute and chronic inflammatory diseases. Capitalizing on these novel findings, future systems studies that use next-generation single-cell dynamic analyses in response to complex inflammatory environments are urgently needed to comprehensively decipher the programming dynamics of innate immune memory, finely modulated by subcellular ROS. Antioxid. Redox Signal. 39, 1027-1038.


Asunto(s)
Mitocondrias , Inmunidad Entrenada , Especies Reactivas de Oxígeno/metabolismo , Mitocondrias/metabolismo , Orgánulos/metabolismo , Transducción de Señal , Inmunidad Innata
5.
Life (Basel) ; 6(2)2016 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-27023616

RESUMEN

tRNAs are the fundamental components of the translation machinery as they deliver amino acids to the ribosomes during protein synthesis. Beyond their essential function in translation, tRNAs also function in regulating gene expression, modulating apoptosis and several other biological processes. There are multiple layers of regulatory mechanisms in each step of tRNA biogenesis. For example, tRNA 3' trailer processing is altered upon nutrient stress; tRNA modification is reprogrammed under various stresses; nuclear accumulation of tRNAs occurs upon nutrient deprivation; tRNA halves accumulate upon oxidative stress. Here we address how environmental stresses can affect nearly every step of tRNA biology and we describe the possible regulatory mechanisms that influence the function or expression of tRNAs under stress conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA