Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.111
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 186(18): 3862-3881.e28, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37572660

RESUMEN

Male sexual behavior is innate and rewarding. Despite its centrality to reproduction, a molecularly specified neural circuit governing innate male sexual behavior and reward remains to be characterized. We have discovered a developmentally wired neural circuit necessary and sufficient for male mating. This circuit connects chemosensory input to BNSTprTac1 neurons, which innervate POATacr1 neurons that project to centers regulating motor output and reward. Epistasis studies demonstrate that BNSTprTac1 neurons are upstream of POATacr1 neurons, and BNSTprTac1-released substance P following mate recognition potentiates activation of POATacr1 neurons through Tacr1 to initiate mating. Experimental activation of POATacr1 neurons triggers mating, even in sexually satiated males, and it is rewarding, eliciting dopamine release and self-stimulation of these cells. Together, we have uncovered a neural circuit that governs the key aspects of innate male sexual behavior: motor displays, drive, and reward.


Asunto(s)
Vías Nerviosas , Conducta Sexual Animal , Animales , Masculino , Neuronas/fisiología , Recompensa , Conducta Sexual Animal/fisiología , Ratones
2.
Cell ; 185(22): 4170-4189.e20, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-36240781

RESUMEN

Nociceptive pain is a hallmark of many chronic inflammatory conditions including inflammatory bowel diseases (IBDs); however, whether pain-sensing neurons influence intestinal inflammation remains poorly defined. Employing chemogenetic silencing, adenoviral-mediated colon-specific silencing, and pharmacological ablation of TRPV1+ nociceptors, we observed more severe inflammation and defective tissue-protective reparative processes in a murine model of intestinal damage and inflammation. Disrupted nociception led to significant alterations in the intestinal microbiota and a transmissible dysbiosis, while mono-colonization of germ-free mice with Gram+Clostridium spp. promoted intestinal tissue protection through a nociceptor-dependent pathway. Mechanistically, disruption of nociception resulted in decreased levels of substance P, and therapeutic delivery of substance P promoted tissue-protective effects exerted by TRPV1+ nociceptors in a microbiota-dependent manner. Finally, dysregulated nociceptor gene expression was observed in intestinal biopsies from IBD patients. Collectively, these findings indicate an evolutionarily conserved functional link between nociception, the intestinal microbiota, and the restoration of intestinal homeostasis.


Asunto(s)
Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , Ratones , Animales , Microbioma Gastrointestinal/fisiología , Nociceptores/fisiología , Sustancia P , Disbiosis , Inflamación
3.
Cell ; 168(6): 1135-1148.e12, 2017 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-28262351

RESUMEN

Investigation of host-environment interactions in the gut would benefit from a culture system that maintained tissue architecture yet allowed tight experimental control. We devised a microfabricated organ culture system that viably preserves the normal multicellular composition of the mouse intestine, with luminal flow to control perturbations (e.g., microbes, drugs). It enables studying short-term responses of diverse gut components (immune, neuronal, etc.). We focused on the early response to bacteria that induce either Th17 or RORg+ T-regulatory (Treg) cells in vivo. Transcriptional responses partially reproduced in vivo signatures, but these microbes elicited diametrically opposite changes in expression of a neuronal-specific gene set, notably nociceptive neuropeptides. We demonstrated activation of sensory neurons by microbes, correlating with RORg+ Treg induction. Colonic RORg+ Treg frequencies increased in mice lacking TAC1 neuropeptide precursor and decreased in capsaicin-diet fed mice. Thus, differential engagement of the enteric nervous system may partake in bifurcating pro- or anti-inflammatory responses to microbes.


Asunto(s)
Clostridium/crecimiento & desarrollo , Intestinos/crecimiento & desarrollo , Intestinos/microbiología , Técnicas de Cultivo de Órganos , Animales , Clostridium/clasificación , Clostridium/fisiología , Intestinos/citología , Ratones , Simbiosis
4.
Immunity ; 53(5): 1063-1077.e7, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33098765

RESUMEN

Dendritic cells (DCs) of the cDC2 lineage initiate allergic immunity and in the dermis are marked by their expression of CD301b. CD301b+ dermal DCs respond to allergens encountered in vivo, but not in vitro. This suggests that another cell in the dermis may sense allergens and relay that information to activate and induce the migration of CD301b+ DCs to the draining lymph node (dLN). Using a model of cutaneous allergen exposure, we show that allergens directly activated TRPV1+ sensory neurons leading to itch and pain behaviors. Allergen-activated sensory neurons released the neuropeptide Substance P, which stimulated proximally located CD301b+ DCs through the Mas-related G-protein coupled receptor member A1 (MRGPRA1). Substance P induced CD301b+ DC migration to the dLN where they initiated T helper-2 cell differentiation. Thus, sensory neurons act as primary sensors of allergens, linking exposure to activation of allergic-skewing DCs and the initiation of an allergic immune response.


Asunto(s)
Alérgenos/inmunología , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Hipersensibilidad/etiología , Hipersensibilidad/metabolismo , Células Receptoras Sensoriales/metabolismo , Sustancia P/biosíntesis , Animales , Biomarcadores , Movimiento Celular/inmunología , Femenino , Ganglios Espinales/citología , Hipersensibilidad/diagnóstico , Masculino , Ratones , Células Receptoras Sensoriales/inmunología
5.
Proc Natl Acad Sci U S A ; 120(18): e2220777120, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37098063

RESUMEN

The role of parvalbumin (PV) interneurons in vascular control is poorly understood. Here, we investigated the hemodynamic responses elicited by optogenetic stimulation of PV interneurons using electrophysiology, functional magnetic resonance imaging (fMRI), wide-field optical imaging (OIS), and pharmacological applications. As a control, forepaw stimulation was used. Stimulation of PV interneurons in the somatosensory cortex evoked a biphasic fMRI response in the photostimulation site and negative fMRI signals in projection regions. Activation of PV neurons engaged two separable neurovascular mechanisms in the stimulation site. First, an early vasoconstrictive response caused by the PV-driven inhibition is sensitive to the brain state affected by anesthesia or wakefulness. Second, a later ultraslow vasodilation lasting a minute is closely dependent on the sum of interneuron multiunit activities, but is not due to increased metabolism, neural or vascular rebound, or increased glial activity. The ultraslow response is mediated by neuropeptide substance P (SP) released from PV neurons under anesthesia, but disappears during wakefulness, suggesting that SP signaling is important for vascular regulation during sleep. Our findings provide a comprehensive perspective about the role of PV neurons in controlling the vascular response.


Asunto(s)
Parvalbúminas , Sustancia P , Parvalbúminas/metabolismo , Sustancia P/farmacología , Sustancia P/metabolismo , Vasodilatación , Vasoconstricción , Interneuronas/fisiología
6.
Am J Physiol Cell Physiol ; 326(5): C1482-C1493, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38525537

RESUMEN

Corneal fibroblasts maintain homeostasis of the corneal stroma by mediating the synthesis and degradation of extracellular collagen, and these actions are promoted by transforming growth factor-ß (TGF-ß) and interleukin-1ß (IL-1ß), respectively. The cornea is densely innervated with sensory nerve fibers that are not only responsible for sensation but also required for physiological processes such as tear secretion and wound healing. Loss or dysfunction of corneal nerves thus impairs corneal epithelial wound healing and can lead to neurotrophic keratopathy. The sensory neurotransmitter substance P (SP) promotes corneal epithelial wound healing by enhancing the stimulatory effects of growth factors and fibronectin. We have now investigated the role of SP in collagen metabolism mediated by human corneal fibroblasts in culture. Although SP alone had no effect on collagen synthesis or degradation by these cells, it promoted the stimulatory effect of TGF-ß on collagen type I synthesis without affecting that of IL-1ß on the expression of matrix metalloproteinase-1. This effect of SP on TGF-ß-induced collagen synthesis was accompanied by activation of p38 mitogen-activated protein kinase (MAPK) signaling and was attenuated by pharmacological inhibition of p38 or of the neurokinin-1 receptor. Our results thus implicate SP as a modulator of TGF-ß-induced collagen type I synthesis by human corneal fibroblasts, and they suggest that loss of this function may contribute to the development of neurotrophic keratopathy.NEW & NOTEWORTHY This study investigates the role of substance P (SP) in collagen metabolism mediated by human corneal fibroblasts in culture. We found that, although SP alone had no effect on collagen synthesis or degradation by corneal fibroblasts, it promoted the stimulatory effect of transforming growth factor-ß on collagen type I synthesis without affecting that of interleukin-1ß on the expression of matrix metalloproteinase-1.


Asunto(s)
Fibroblastos , Interleucina-1beta , Sustancia P , Factor de Crecimiento Transformador beta , Proteínas Quinasas p38 Activadas por Mitógenos , Humanos , Sustancia P/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Fibroblastos/metabolismo , Fibroblastos/efectos de los fármacos , Células Cultivadas , Interleucina-1beta/metabolismo , Colágeno Tipo I/metabolismo , Colágeno Tipo I/biosíntesis , Receptores de Neuroquinina-1/metabolismo , Córnea/metabolismo , Córnea/efectos de los fármacos , Metaloproteinasa 1 de la Matriz/metabolismo , Metaloproteinasa 1 de la Matriz/genética , Colágeno/metabolismo , Colágeno/biosíntesis , Transducción de Señal/efectos de los fármacos , Sustancia Propia/metabolismo , Sustancia Propia/efectos de los fármacos , Queratocitos de la Córnea/metabolismo , Queratocitos de la Córnea/efectos de los fármacos
7.
Small ; 20(23): e2310734, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38143290

RESUMEN

Achieving satisfactory bone tissue regeneration in osteoporotic patients with ordinary biomaterials is challenging because of the decreased bone mineral density and aberrant bone microenvironment. In addressing this issue, a biomimetic scaffold (PMEH/SP), incorporating 4-hexylresorcinol (4HR), and substance P (SP) into the poly(lactic-go-glycolic acid) (PLGA) scaffold with magnesium hydroxide (M) and extracellular matrix (E) is introduced, enabling the consecutive release of bioactive agents. 4HR and SP induced the phosphorylation of p38 MAPK and ERK in human umbilical vein endothelial cells (HUVECs), thereby upregulating VEGF expression level. The migration and tube-forming ability of endothelial cells can be promoted by the scaffold, which accelerates the formation and maturation of the bone. Moreover, 4HR played a crucial role in the inhibition of osteoclastogenesis by interrupting the IκB/NF-κB signaling pathway and exhibiting SP, thereby enhancing the migration and angiogenesis of HUVECs. Based on such a synergistic effect, osteoporosis can be suppressed, and bone regeneration can be achieved by inhibiting the RANKL pathway in vitro and in vivo, which is a commonly known mechanism of bone physiology. Therefore, the study presents a promising approach for developing a multifunctional regenerative material for sophisticated osteoporotic bone regeneration.


Asunto(s)
Regeneración Ósea , Células Endoteliales de la Vena Umbilical Humana , Osteoporosis , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Andamios del Tejido , Regeneración Ósea/efectos de los fármacos , Humanos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Andamios del Tejido/química , Osteoporosis/tratamiento farmacológico , Osteoporosis/metabolismo , Animales , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Osteogénesis/efectos de los fármacos
8.
Int Arch Allergy Immunol ; : 1-13, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38588639

RESUMEN

INTRODUCTION: Epithelial barrier disruption is the initial cause of various diseases. We previously reported that acupoint catgut embedding (AE) improves tight junction proteins (TJs) in rats with allergic rhinitis. However, whether AE improves the epithelial barrier in local allergic rhinitis (LAR) remains unknown. METHODS: A total of 36 Sprague Dawley (SD) male rats aged 5-7 weeks were divided into 6 groups with 6 rats each: control group, LAR model group, false acupoint embedding + LAR group, acupoint embedding + LAR group, capsaicin + LAR group, and tunicamycin + acupoint embedding + LAR group. Behavioral observation, ELISA to detect inflammatory factors in nasal lavage fluid and serum IgE, nasal mucosal permeability test, hematoxylin-eosin staining, PCR to detect Substance P (SP), Western blot, and immunofluorescence to detect endoplasmic reticulum stress (ERS) index and TJs were used to investigate the mechanism of AE in LAR. RESULTS: AE improved the symptoms and pathological features of nasal mucosa of LAR rats, reduced the inflammatory factors (IL4, IL5, IL13) of nasal lavage fluid, and showed no significant change in serum IgE levels in all groups. In addition, AE decreased the expression of SP in nasal mucosa of LAR rats, inhibited ERS, increased the expression of tight junction protein, reduced the permeability of nasal mucosa, and improved the function of nasal mucosal barrier. CONCLUSION: This study confirms that AE can improve the nasal mucosal barrier function of LAR by reducing the expression of SP, inhibiting ERS and increasing the expression of TJs, thus enhancing the nasal mucosal barrier function.

9.
Exp Physiol ; 109(1): 45-54, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37417654

RESUMEN

Proprioceptors are non-nociceptive low-threshold mechanoreceptors. However, recent studies have shown that proprioceptors are acid-sensitive and express a variety of proton-sensing ion channels and receptors. Accordingly, although proprioceptors are commonly known as mechanosensing neurons that monitor muscle contraction status and body position, they may have a role in the development of pain associated with tissue acidosis. In clinical practice, proprioception training is beneficial for pain relief. Here we summarize the current evidence to sketch a different role of proprioceptors in 'non-nociceptive pain' with a focus on their acid-sensing properties.


Asunto(s)
Dolor Musculoesquelético , Humanos , Canales Iónicos Sensibles al Ácido/fisiología , Células Receptoras Sensoriales/fisiología , Mecanorreceptores , Propiocepción/fisiología
10.
Part Fibre Toxicol ; 21(1): 5, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38321545

RESUMEN

BACKGROUND: Currently, society and industry generate huge amounts of plastics worldwide. The ubiquity of microplastics is obvious, but its impact on the animal and human organism remains not fully understood. The digestive tract is one of the first barriers between pathogens and xenobiotics and a living organism. Its proper functioning is extremely important in order to maintain homeostasis. The aim of this study was to determine the effect of microplastic on enteric nervous system and histological structure of swine duodenum. The experiment was carried out on 15 sexually immature gilts, approximately 8 weeks old. The animals were randomly divided into 3 study groups (n = 5/group). The control group received empty gelatin capsules once a day for 28 days, the first research group received daily gelatin capsules with polyethylene terephthalate (PET) particles as a mixture of particles of various sizes (maximum particle size 300 µm) at a dose of 0.1 g/animal/day. The second study group received a dose ten times higher-1 g/animal/day. RESULTS: A dose of 1 g/day/animal causes more changes in the enteric nervous system and in the histological structure of duodenum. Statistically significant differences in the expression of cocaine and amphetamine regulated transcript, galanin, neuronal nitric oxide synthase, substance P, vesicular acetylcholine transporter and vasoactive intestinal peptide between control and high dose group was noted. The histopathological changes were more frequently observed in the pigs receiving higher dose of PET. CONCLUSION: Based on this study it may be assumed, that oral intake of microplastic might have potential negative influence on digestive tract, but it is dose-dependent.


Asunto(s)
Microplásticos , Plásticos , Humanos , Porcinos , Animales , Femenino , Tereftalatos Polietilenos/metabolismo , Tereftalatos Polietilenos/farmacología , Gelatina/metabolismo , Gelatina/farmacología , Duodeno/metabolismo , Neuronas
11.
Ann Vasc Surg ; 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39009119

RESUMEN

OBJECTIVE: To study and compare the effects of venoactive drug (VAD) therapy and ovarian vein embolization or resection (OVE or OVR, accordingly) on the levels of vasoactive peptides and cytokines in patients with pelvic venous disorders (PeVD). METHODS: The study included 70 consecutive female patients with PeVD symptoms, such as chronic pelvic pain (CPP), dyspareunia, dysuria, and vulvar varicosities. Based on the results of clinical examination and duplex ultrasound (DUS) of the pelvic veins, the patients were allocated to the VAD therapy (n=38) or OVE/OVR (n=32). Additionally, the enzyme-linked immunosorbent assay (ELISA) tests were performed to determine levels of calcitonin gene-related peptide (CGRP), substance P (SP), interleukins 6 and 8 (IL-6, IL-8) and monocyte chemotactic protein-1 (MCP-1) after a 2-month course of VAD therapy and at 3 months after OVE/OVR. RESULTS: The VAD therapy was associated with a significant decrease in CPP in 84% of patients with PeVD and isolated lesions of the parametrial veins (PVs) and uterine veins (UVs). VAD had no significant effect on the pelvic venous reflux. No changes in the CGRP, SP, IL-6, IL-8 and MCP-1 levels were detected after treatment. At 3 months after OVE or OVR, all patients with PeVD and combined lesions of the ovarian veins (OVs), PVs and UVs reported almost complete relief of CPP. Along with elimination of reflux in OVs, the disappearance of reflux in PVs and UVs was noted. A decrease in the CGRP and SP levels was observed (0.7 ± 0.1 ng/mL and 0.12 ± 0.02 ng/mL before treatment; 0.5 ± 0.12 ng/mL and 0.09 ± 0.06 ng/mL after treatment, respectively; all P<0.05). No changes in cytokine levels were revealed. CONCLUSION: Treatment with VAD is associated with the CPP relief, but has no significant effect on the CGRP, SP, IL-6, IL-8, and MCP-1 levels. OVE/OVR results in the CPP relief, elimination of the pelvic venous reflux and a significant decrease in the CGRP and SP levels, but does not change cytokine levels.

12.
Int Endod J ; 57(5): 576-585, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38294105

RESUMEN

AIM: The purpose of this study was to quantify the effect of five different root canal preparation instruments on Substance P (SP), Calcitonin gene-related peptide (CGRP) and their receptors expression in healthy human periodontal ligament. METHODOLOGY: STROBE guidelines were used to design a study using 60 periodontal ligament samples obtained from healthy lower premolars where extraction was indicated for orthodontic reasons. Prior to extraction 40 of these premolars were equally divided into four groups and root canals were prepared using different systems: Mtwo, Reciproc Blue, HyFlex EDM and Plex-V. Ten premolars were prepared with hand files and served as a positive control group. The remaining 10 premolars where extracted without treatment and served as a negative control group. All periodontal ligament samples were processed to measure the expression of SP, CGRP and their receptors by radioimmunoassay. Kruskal-Wallis and Duncan tests were performed to determine statistically significant differences between the groups for each variable. RESULTS: Greater expression of all the peptides measured were found in the hand-file preparation group, followed by the Reciproc Blue, Mtwo, HyFlex EDM and Plex-V groups. The lower SP, CGRP and their receptors values were for the intact teeth control group. Kruskal-Wallis test showed statistically significant differences amongst groups (p < .001). Dunn post-hoc tests showed statistically significant differences in SP, CGRP and their receptors expression between the intact teeth and the hand-file and Reciproc Blue groups. Hand-file group showed significant differences with the other groups, except with Reciproc Blue, where no differences were observed in any of the peptides measured. Finally, no differences were observed between Plex-V and HyFlex in any of the peptides measured. CONCLUSIONS: Root canal preparation with hand files and Reciproc Blue generates the highest expression of SP, CGRP, NK1 and CGRP1R in human periodontal ligament, whilst Plex-V and HyFlex maintain the basal expression of neuropeptides and their receptors. Mtwo showed intermediate results between Reciproc Blue and HyFlex.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina , Sustancia P , Humanos , Sustancia P/metabolismo , Péptido Relacionado con Gen de Calcitonina/metabolismo , Ligamento Periodontal/metabolismo , Preparación del Conducto Radicular , Diente Premolar , Cavidad Pulpar , Diseño de Equipo
13.
Lasers Med Sci ; 39(1): 54, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38296870

RESUMEN

Neurogenic inflammation, mediated by T helper 17 cell (Th17) and neurons that release neuropeptides such as substance P (SP), is thought to play a role in the pathogenesis of psoriasis. Excimer light is used in the treatment of psoriasis via induction of T cell apoptosis. The objective of this study is to study the effect of excimer light on active versus stable psoriasis and investigate the levels of substance P and its receptor in both groups. The study included 27 stable and 27 active psoriatic patients as well as 10 matched healthy controls. Clinical examination (in the form of local psoriasis severity index (PSI) and visual analogue scale (VAS)) was done to determine disease severity, level of itching, and quality of life. Tissue levels of SP and neurokinin-1 receptor (NK-1R) were measured by ELISA before and after 9 excimer light sessions in 43 patients. A statistically significant lower levels of PSI and VAS were reached after therapy with no significant difference between the stable and active groups. The mean tissue levels of SP before therapy were significantly higher than the control group. Lower levels of SP and NK-1 receptor were found after treatment overall and in each group. Excimer therapy can be effective for both stable and active plaque psoriasis and this effect could be partly through its role on ameliorating the neurogenic inflammation.


Asunto(s)
Psoriasis , Sustancia P , Humanos , Inflamación Neurogénica , Calidad de Vida , Psoriasis/radioterapia , Prurito
14.
Genomics ; 115(5): 110679, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37423397

RESUMEN

The slight release of substance P (SP) from the end of peripheral nerve fibers causes a neurogenic inflammatory reaction, promotes vascular dilation and increases vascular permeability. However, whether SP can promote the angiogenesis of bone marrow mesenchymal stem cells (BMSCs) under high glucose conditions has not been reported. This study analyzed the targets, biological processes and molecular mechanisms underlying the effects of SP on BMSCs. BMSCs cultured in vitro were divided into a normal control group, high glucose control group, high glucose SP group and high glucose Akt inhibitor group to verify the effects of SP on BMSCs proliferation, migration and angiogenic differentiation. SP was found to act on 28 targets of BMSCs and participate in angiogenesis. Thirty-six core proteins, including AKT1, APP, BRCA1, CREBBP and EGFR, were identified. In a high glucose environment, SP increased the BMSCs proliferation optical density value and cell migration number and reduced the BMSCs apoptosis rate. In addition, SP induced BMSCs to highly express the CD31 protein, maintain the wall structure integrity of the matrix glue mesh and promote increases in the number of matrix glue meshes. These experiments showed that in a high glucose environment, SP acts on 28 targets of BMSCs that encode core proteins, such as AKT1, APP and BRCA1, and improves BMSCs proliferation, migration and angiogenic differentiation through the Akt signaling pathway.

15.
Int J Mol Sci ; 25(11)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38892091

RESUMEN

Substance P (SP) plays a crucial role in pain modulation, with significant implications for major depressive disorder (MDD), anxiety disorders, and post-traumatic stress disorder (PTSD). Elevated SP levels are linked to heightened pain sensitivity and various psychiatric conditions, spurring interest in potential therapeutic interventions. In chronic pain, commonly associated with MDD and anxiety disorders, SP emerges as a key mediator in pain and emotional regulation. This review examines SP's impact on pain perception and its contributions to MDD, anxiety disorders, and PTSD. The association of SP with increased pain sensitivity and chronic pain conditions underscores its importance in pain modulation. Additionally, SP influences the pathophysiology of MDD, anxiety disorders, and PTSD, highlighting its potential as a therapeutic target. Understanding SP's diverse effects provides valuable insights into the mechanisms underlying these psychiatric disorders and their treatment. Further research is essential to explore SP modulation in psychiatric disorders and develop more effective treatment strategies.


Asunto(s)
Dolor Crónico , Trastorno Depresivo Mayor , Trastornos por Estrés Postraumático , Sustancia P , Humanos , Dolor Crónico/psicología , Sustancia P/metabolismo , Trastorno Depresivo Mayor/metabolismo , Trastorno Depresivo Mayor/fisiopatología , Trastornos por Estrés Postraumático/metabolismo , Trastornos de Ansiedad , Animales , Trastornos Mentales/metabolismo
16.
Int J Mol Sci ; 25(3)2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38339140

RESUMEN

A role for substance P has been proposed in musculoskeletal fibrosis, with effects mediated through transforming growth factor beta (TGFß). We examined the in vitro effects of substance P on proliferation, collagen secretion, and collagen deposition in rat primary dermal fibroblasts cultured in medium containing 10% fetal bovine serum, with or without TGFß. In six-day cultures, substance P increased cell proliferation at concentrations from 0.0002 to 100 nM. TGFß increased proliferation at concentrations from 0.0002 to 2 pg/mL, although higher concentrations inhibited proliferation. Substance P treatment alone at concentrations of 100, 0.2, and 0.00002 nM did not increase collagen deposition per cell, yet when combined with TGFß (5 ng/mL), increased collagen deposition compared to TGFß treatment alone. Substance P treatment (100 nM) also increased smooth muscle actin (SMA) expression at 72 h of culture at a level similar to 5 ng/mL of TGFß; only TGFß increased SMA at 48 h of culture. Thus, substance P may play a role in potentiating matrix deposition in vivo when combined with TGFß, although this potentiation may be dependent on the concentration of each factor. Treatments targeting substance P may be a viable strategy for treating fibrosis where both substance P and TGFß play roles.


Asunto(s)
Sustancia P , Factor de Crecimiento Transformador beta , Ratas , Animales , Factor de Crecimiento Transformador beta/metabolismo , Sustancia P/farmacología , Sustancia P/metabolismo , Células Cultivadas , Fibroblastos/metabolismo , Colágeno/metabolismo , Fibrosis , Factor de Crecimiento Transformador beta1/metabolismo
17.
Int J Mol Sci ; 25(12)2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38928206

RESUMEN

Substance P (SP), encoded by the Tac1 gene, has been shown to promote leukocyte infiltration and organ impairment in mice with sepsis. Neurokinin-1 receptor (NK1R) is the major receptor that mediates the detrimental impact of SP on sepsis. This investigation studied whether SP affects the expression of adhesion molecules, including intercellular cell adhesion molecule-1 (ICAM1) and vascular cell adhesion molecule-1 (VCAM1) on vascular endothelial cells in the liver and lungs, contributing to leukocyte infiltration in these tissues of mice with sepsis. Sepsis was induced by caecal ligation and puncture (CLP) surgery in mice. The actions of SP were inhibited by deleting the Tac1 gene, blocking NK1R, or combining these two methods. The activity of myeloperoxidase and the concentrations of ICAM1 and VCAM1 in the liver and lungs, as well as the expression of ICAM1 and VCAM1 on vascular endothelial cells in these tissues, were measured. The activity of myeloperoxidase and the concentration of ICAM1 and VCAM1 in the liver and lungs, as well as the expression of ICAM1 and VCAM1 on vascular endothelial cells in these tissues, increased in mice with CLP surgery-induced sepsis. Suppressing the biosynthesis of SP and its interactions with NK1R attenuated CLP surgery-induced alterations in the liver and lungs of mice. Our findings indicate that SP upregulates the expression of ICAM1 and VCAM1 on vascular endothelial cells in the liver and lungs, thereby increasing leukocyte infiltration in these tissues of mice with CLP surgery-induced sepsis by activating NK1R.


Asunto(s)
Células Endoteliales , Molécula 1 de Adhesión Intercelular , Hígado , Pulmón , Receptores de Neuroquinina-1 , Sepsis , Sustancia P , Molécula 1 de Adhesión Celular Vascular , Animales , Sepsis/metabolismo , Sepsis/patología , Ratones , Sustancia P/metabolismo , Pulmón/metabolismo , Pulmón/patología , Hígado/metabolismo , Hígado/patología , Molécula 1 de Adhesión Intercelular/metabolismo , Molécula 1 de Adhesión Intercelular/genética , Células Endoteliales/metabolismo , Molécula 1 de Adhesión Celular Vascular/metabolismo , Molécula 1 de Adhesión Celular Vascular/genética , Receptores de Neuroquinina-1/metabolismo , Receptores de Neuroquinina-1/genética , Masculino , Leucocitos/metabolismo , Ratones Endogámicos C57BL , Peroxidasa/metabolismo , Moléculas de Adhesión Celular/metabolismo , Moléculas de Adhesión Celular/genética , Modelos Animales de Enfermedad
18.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38612572

RESUMEN

Fetal programming is a process initiated by intrauterine conditions, leaving a lasting impact on the offspring's health, whether they manifest immediately or later in life. It is believed that children born to mothers with gestational diabetes mellitus (GDM) and excessive gestational weight gain (EGWG) may be at an increased risk of developing type 2 diabetes mellitus (T2DM) and obesity later in their adult lives. Substance P is a neurotransmitter associated with obesity development and impairment of insulin signaling. Dysregulation of substance P could lead to several pregnancy pathologies, such as preeclampsia and preterm birth. Our study aimed to compare substance P concentrations in serum and umbilical cord blood in patients with GDM, EGWG, and healthy women with a family history of gestational weight gain. Substance P levels in umbilical cord blood were significantly higher in the GDM group compared to the EGWG and control groups. Substance P levels in serum and umbilical cord blood were positively correlated in all groups and the GDM group. A very interesting direction for future research is the relationship between the concentration of substance P in newborns of diabetic mothers and the occurrence of respiratory distress syndrome as a complication of impaired surfactant synthesis. To our knowledge, it is the first study assessing substance P concentration in GDM and EGWG patients.


Asunto(s)
Diabetes Mellitus Tipo 2 , Diabetes Gestacional , Ganancia de Peso Gestacional , Nacimiento Prematuro , Recién Nacido , Adulto , Niño , Embarazo , Humanos , Femenino , Sustancia P , Aumento de Peso , Obesidad , Antropometría
19.
Int J Mol Sci ; 25(6)2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38542511

RESUMEN

Pulmonary fibrosis results from the deposition and proliferation of extracellular matrix components in the lungs. Despite being an airway disorder, pulmonary fibrosis also has notable effects on the pulmonary vasculature, with the development and severity of pulmonary hypertension tied closely to patient mortality. Furthermore, the anatomical proximity of blood vessels, the alveolar epithelium, lymphatic tissue, and airway spaces highlights the need to identify shared pathogenic mechanisms and pleiotropic signaling across various cell types. Sensory nerves and their transmitters have a variety of effects on the various cell types within the lungs; however, their effects on many cell types and functions during pulmonary fibrosis have not yet been investigated. This review highlights the importance of gaining a new understanding of sensory nerve function in the context of pulmonary fibrosis as a potential tool to limit airway and vascular dysfunction.


Asunto(s)
Hipertensión Pulmonar , Fibrosis Pulmonar , Humanos , Fibrosis Pulmonar/metabolismo , Pulmón/metabolismo , Vías Aferentes , Hipertensión Pulmonar/metabolismo , Mucosa Respiratoria/metabolismo
20.
Int J Mol Sci ; 25(11)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38891925

RESUMEN

Stress exposure worsens allergic inflammatory diseases substantially. Mast cells (MCs) play a key role in peripheral immune responses to neuroendocrine stress mediators such as nerve growth factor (NGF) and substance P (SP). Mast cell proteases (MCPs) and cholinergic factors (Chrna7, SLURP1) were recently described to modulate MC stress response. We studied MCPs and Chrna7/SLURP1 and their interplay in a mouse model for noise induced stress (NiS) and atopic dermatitis-like allergic inflammation (AlD) and in cultured MC lacking Chrna7. We found that the cholinergic stress axis interacts with neuroendocrine stress mediators and stress-mediator cleaving enzymes in AlD. SP-cleaving mMCP4+ MC were upregulated in AlD and further upregulated by stress in NiS+AlD. Anti-NGF neutralizing antibody treatment blocked the stress-induced upregulation in vivo, and mMCP4+ MCs correlated with measures of AlD disease activity. Finally, high mMCP4 production in response to SP depended on Chrna7/SLURP1 in cultured MCs. In conclusion, mMCP4 and its upstream regulation by Chrna7/SLURP1 are interesting novel targets for the treatment of allergic inflammation and its aggravation by stress.


Asunto(s)
Dermatitis Atópica , Modelos Animales de Enfermedad , Mastocitos , Piel , Receptor Nicotínico de Acetilcolina alfa 7 , Animales , Mastocitos/metabolismo , Mastocitos/inmunología , Dermatitis Atópica/metabolismo , Dermatitis Atópica/patología , Dermatitis Atópica/inmunología , Ratones , Piel/metabolismo , Piel/patología , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Inflamación/metabolismo , Inflamación/patología , Péptido Hidrolasas/metabolismo , Activador de Plasminógeno de Tipo Uroquinasa/metabolismo , Sustancia P/metabolismo , Estrés Fisiológico , Ratones Endogámicos C57BL , Factor de Crecimiento Nervioso/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA