Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.598
Filtrar
Más filtros

Intervalo de año de publicación
1.
Mol Microbiol ; 122(3): 347-356, 2024 09.
Artículo en Inglés | MEDLINE | ID: mdl-39044538

RESUMEN

From the moment of birth, the newborn gastrointestinal tract is infiltrated by various bacteria originating from both maternal and environmental sources. These colonizing bacteria form a complex microbiota community that undergoes continuous changes until adulthood and plays an important role in infant health. The maturation of the infant gut microbiota is driven by many factors and follows a distinct patterned trajectory, with specific bacterial taxa establish in the intestine in accordance with developmental milestones as the infant grows. In this review, we highlight how elements such as diet and host physiology select for specific microbial functions and shape the composition of the bacterial community in the large intestine.


Asunto(s)
Microbioma Gastrointestinal , Microbioma Gastrointestinal/fisiología , Humanos , Lactante , Recién Nacido , Dieta , Bacterias/metabolismo , Bacterias/clasificación , Bacterias/genética , Tracto Gastrointestinal/microbiología , Animales
2.
Ecol Lett ; 27(6): e14446, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38814284

RESUMEN

Grime's competitive, stress-tolerant, ruderal (CSR) theory predicts a shift in plant communities from ruderal to stress-tolerant strategies during secondary succession. However, this fundamental tenet lacks empirical validation using long-term continuous successional data. Utilizing a 60-year longitudinal data of old-field succession, we investigated the community-level dynamics of plant strategies over time. Our findings reveal that while plant communities generally transitioned from ruderal to stress-tolerant strategies during succession, initial abandonment conditions crucially shaped early successional strategies, leading to varied strategy trajectories across different fields. Furthermore, we found a notable divergence in the CSR strategies of alien and native species over succession. Initially, alien and native species exhibited similar ruderal strategies, but in later stages, alien species exhibited higher ruderal and lower stress tolerance compared to native species. Overall, our findings underscore the applicability of Grime's predictions regarding temporal shifts in CSR strategies depending on both initial community conditions and species origin.


Asunto(s)
Especies Introducidas , Plantas , Fenómenos Fisiológicos de las Plantas , Estrés Fisiológico , Ecosistema , Modelos Biológicos , Desarrollo de la Planta
3.
Ecol Lett ; 27(8): e14488, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39092560

RESUMEN

A significant fraction of Earth's ecosystems undergoes periodic wet-dry alternating transitional states. These globally distributed water-driven transitional ecosystems, such as intermittent rivers and coastal shorelines, have traditionally been studied as two distinct entities, whereas they constitute a single, interconnected meta-ecosystem. This has resulted in a poor conceptual and empirical understanding of water-driven transitional ecosystems. Here, we develop a conceptual framework that places the temporal availability of water as the core driver of biodiversity and functional patterns of transitional ecosystems at the global scale. Biological covers (e.g., aquatic biofilms and biocrusts) serve as an excellent model system thriving in both aquatic and terrestrial states, where their succession underscores the intricate interplay between these two states. The duration, frequency, and rate of change of wet-dry cycles impose distinct plausible scenarios where different types of biological covers can occur depending on their desiccation/hydration resistance traits. This implies that the distinct eco-evolutionary potential of biological covers, represented by their trait profiles, would support different functions while maintaining similar multifunctionality levels. By embracing multiple alternating transitional states as interconnected entities, our approach can help to better understand and manage global change impacts on biodiversity and multifunctionality in water-driven transitional ecosystems, while providing new avenues for interdisciplinary studies.


Asunto(s)
Biodiversidad , Ecosistema , Biopelículas
4.
Ecol Lett ; 27(3): e14422, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38549235

RESUMEN

Understanding how diversity is maintained in plant communities requires that we first understand the mechanisms of competition for limiting resources. In ecology, there is an underappreciated but fundamental distinction between systems in which the depletion of limiting resources reduces the growth rates of competitors and systems in which resource depletion reduces the time available for competitors to grow, a mechanism we call 'competition for time'. Importantly, modern community ecology and our framing of the coexistence problem are built on the implicit assumption that competition reduces the growth rate. However, recent theoretical work suggests competition for time may be the predominant competitive mechanism in a broad array of natural communities, a significant advance given that when species compete for time, diversity-maintaining trade-offs emerge organically. In this study, we first introduce competition for time conceptually using a simple model of interacting species. Then, we perform an experiment in a Mediterranean annual grassland to determine whether competition for time is an important competitive mechanism in a field system. Indeed, we find that species respond to increased competition through reductions in their lifespan rather than their rate of growth. In total, our study suggests competition for time may be overlooked as a mechanism of biodiversity maintenance.


Asunto(s)
Biodiversidad , Ecología , Plantas , Ecosistema
5.
Am Nat ; 204(4): 327-344, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39326054

RESUMEN

AbstractSuccessional dynamics can vary because of a range of ecological and environmental factors, but our understanding of biogeographic variation in succession, and the processes contributing to community development across ecosystems, is limited. The pattern and rate of recruitment of dispersive propagules likely differs over large spatial scales and can be an important predictor of successional trajectory. Over a 20° tropical-temperate latitudinal gradient, we measured sessile invertebrates over 12 months of community development and successive 3-month recruitment windows to understand succession and how it is influenced by recruitment. Succession and recruitment patterns varied over latitude. In the tropics, fast temporal turnover, fluctuating abundances, and lack of successional progression suggest that the contribution of stochastic processes was high. As latitude increased, successional progression became more apparent, characterized by increasing species richness and community cover and a shift to more competitive taxa over time. At temperate locations, species identities were similar between older communities and recruiting assemblages; however, community composition became more variable across space over time. Such divergence suggests an important role of early colonizers and species interactions on community structure. These findings demonstrate differences in the processes contributing to community development and biodiversity patterns over latitude. Understanding such biogeographic variation in community dynamics and identifying the prevalence of different processes can provide insights into how communities assemble and persist in response to environmental variability.


Asunto(s)
Biodiversidad , Invertebrados , Clima Tropical , Animales , Invertebrados/fisiología , Dinámica Poblacional
6.
Proc Biol Sci ; 291(2023): 20232711, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38772420

RESUMEN

In social insect colonies, selfish behaviour due to intracolonial conflict among members can result in colony-level costs despite close relatedness. In certain termite species, queens use asexual reproduction for within-colony queen succession but rely on sexual reproduction for worker and alate production, resulting in multiple half-clones of a single primary queen competing for personal reproduction. Our study demonstrates that competition over asexual queen succession among different clone types leads to the overproduction of parthenogenetic offspring, resulting in the production of dysfunctional parthenogenetic alates. By genotyping the queens of 23 field colonies of Reticulitermes speratus, we found that clone variation in the queen population reduces as colonies develop. Field sampling of alates and primary reproductives of incipient colonies showed that overproduced parthenogenetic offspring develop into alates that have significantly smaller body sizes and much lower survivorship than sexually produced alates. Our results indicate that while the production of earlier and more parthenogenetic eggs is advantageous for winning the competition for personal reproduction, it comes at a great cost to the colony. Thus, this study highlights the evolutionary interplay between individual-level and colony-level selection on parthenogenesis by queens.


Asunto(s)
Isópteros , Partenogénesis , Animales , Isópteros/fisiología , Isópteros/genética , Femenino , Reproducción , Conducta Social
7.
BMC Microbiol ; 24(1): 429, 2024 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-39443910

RESUMEN

BACKGROUND: Sweet sorghum is used mainly as an energy crop and feed crop in arid and semiarid regions, and ensiling is a satisfactory method for preserving high-quality sweet sorghum. The aim of this study was to reveal the dynamics of the fermentation quality, bacterial communities, and fermentation weight loss (FWL) of sweet sorghum silage during fermentation. METHODS: Sweet sorghum was harvested at the first inflorescence spikelet stage and ensiled without (CK) or with lactic acid bacterial (LAB) additives (L). After ensiling, samples were collected on days 0, 1, 3, 5, 15, 40, and 100 to assess the fermentation quality, bacterial communities, and FWL. RESULTS: For CK and L, on day 1, the pH was 5.77 and 5.57, respectively, and the lactic acid (LA) was 1.30 and 2.81 g/kg dry matter (DM), respectively. Compared with CK, L had a lower pH and higher LA from days 1 to 5 (P < 0.05), a lower FWL from days 5 to 100 (P < 0.05), and a greater abundance of Lactiplantibacillus from days 1 to 15 (P < 0.05). The main bacterial genera were Leuconostoc and Weissella in CK and Lactiplantibacillus, Leuconostoc, and Weissella in L on day 1; Lactiplantibacillus in all silages from days 3 to 40; and Lactiplantibacillus and Lentilactobacillus in all silages on day 100. CONCLUSIONS: Sweet sorghum silage fermented relatively slowly during the first day. Moreover, inoculation with LAB accelerated fermentation and optimized bacterial communities during the initial fermentation phase. Inoculation with LAB also reduced the silage FWL, and the LAB succession relay occurred in the silage throughout the fermentation process.


Asunto(s)
Fermentación , Ensilaje , Sorghum , Sorghum/microbiología , Ensilaje/microbiología , Bacterias/clasificación , Bacterias/metabolismo , Bacterias/aislamiento & purificación , Bacterias/genética , Bacterias/crecimiento & desarrollo , Concentración de Iones de Hidrógeno , Ácido Láctico/metabolismo , Pérdida de Peso , Lactobacillales/metabolismo , Lactobacillales/crecimiento & desarrollo , Lactobacillales/aislamiento & purificación
8.
New Phytol ; 244(2): 670-682, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39165156

RESUMEN

Theory questions the persistence of nonreciprocal interactions in which one plant has a positive net effect on a neighbor that, in return, has a negative net impact on its benefactor - a phenomenon known as antagonistic facilitation. We develop a spatially explicit consumer-resource model for belowground plant competition between ecosystem engineers, plants able to mine resources and make them available for any other plant in the community, and exploiters. We use the model to determine in what environmental conditions antagonistic facilitation via soil-resource engineering emerges as an optimal strategy. Antagonistic facilitation emerges in stressful environments where ecosystem engineers' self-benefits from mining resources outweigh the competition with opportunistic neighbors. Among all potential causes of stress considered in the model, the key environmental parameter driving changes in the interaction between plants is the proportion of the resource that becomes readily available for plant consumption in the absence of any mining activity. Our results align with theories of primary succession and the stress gradient hypothesis. However, we find that the total root biomass and its spatial allocation through the root system, often used to measure the sign of the interaction between plants, do not predict facilitation reliably.


Asunto(s)
Ecosistema , Modelos Biológicos , Suelo , Suelo/química , Raíces de Plantas/fisiología , Raíces de Plantas/crecimiento & desarrollo , Biomasa , Ambiente , Plantas
9.
New Phytol ; 242(4): 1739-1752, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38581206

RESUMEN

The development of terrestrial ecosystems depends greatly on plant mutualists such as mycorrhizal fungi. The global retreat of glaciers exposes nutrient-poor substrates in extreme environments and provides a unique opportunity to study early successions of mycorrhizal fungi by assessing their dynamics and drivers. We combined environmental DNA metabarcoding and measurements of local conditions to assess the succession of mycorrhizal communities during soil development in 46 glacier forelands around the globe, testing whether dynamics and drivers differ between mycorrhizal types. Mycorrhizal fungi colonized deglaciated areas very quickly (< 10 yr), with arbuscular mycorrhizal fungi tending to become more diverse through time compared to ectomycorrhizal fungi. Both alpha- and beta-diversity of arbuscular mycorrhizal fungi were significantly related to time since glacier retreat and plant communities, while microclimate and primary productivity were more important for ectomycorrhizal fungi. The richness and composition of mycorrhizal communities were also significantly explained by soil chemistry, highlighting the importance of microhabitat for community dynamics. The acceleration of ice melt and the modifications of microclimate forecasted by climate change scenarios are expected to impact the diversity of mycorrhizal partners. These changes could alter the interactions underlying biotic colonization and belowground-aboveground linkages, with multifaceted impacts on soil development and associated ecological processes.


Asunto(s)
Biodiversidad , Cubierta de Hielo , Micorrizas , Micorrizas/fisiología , Cubierta de Hielo/microbiología , Suelo/química , Microclima , Microbiología del Suelo
10.
New Phytol ; 242(3): 1018-1028, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38436203

RESUMEN

Biodiversity world-wide has been under increasing anthropogenic pressure in the past century. The long-term response of biotic communities has been tackled primarily by focusing on species richness, community composition and functionality. Equally important are shifts between entire communities and habitat types, which remain an unexplored level of biodiversity change. We have resurveyed > 2000 vegetation plots in temperate forests in central Europe to capture changes over an average of five decades. The plots were assigned to eight broad forest habitat types using an algorithmic classification system. We analysed transitions between the habitat types and interpreted the trend in terms of changes in environmental conditions. We identified a directional shift along the combined gradients of canopy openness and soil nutrients. Nutrient-poor open-canopy forest habitats have declined strongly in favour of fertile closed-canopy habitats. However, the shift was not uniform across the whole gradients. We conclude that the shifts in habitat types represent a century-long successional trend with significant consequences for forest biodiversity. Open forest habitats should be urgently targeted for plant diversity restoration through the implementation of active management. The approach presented here can be applied to other habitat types and at different spatio-temporal scales.


Asunto(s)
Ecosistema , Bosques , Biodiversidad , Plantas , Biota
11.
New Phytol ; 243(1): 132-144, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38742309

RESUMEN

Nutrient limitation may constrain the ability of recovering and mature tropical forests to serve as a carbon sink. However, it is unclear to what extent trees can utilize nutrient acquisition strategies - especially root phosphatase enzymes and mycorrhizal symbioses - to overcome low nutrient availability across secondary succession. Using a large-scale, full factorial nitrogen and phosphorus fertilization experiment of 76 plots along a secondary successional gradient in lowland wet tropical forests of Panama, we tested the extent to which root phosphatase enzyme activity and mycorrhizal colonization are flexible, and if investment shifts over succession, reflective of changing nutrient limitation. We also conducted a meta-analysis to test how tropical trees adjust these strategies in response to nutrient additions and across succession. We find that tropical trees are dynamic, adjusting investment in strategies - particularly root phosphatase - in response to changing nutrient conditions through succession. These changes reflect a shift from strong nitrogen to weak phosphorus limitation over succession. Our meta-analysis findings were consistent with our field study; we found more predictable responses of root phosphatase than mycorrhizal colonization to nutrient availability. Our findings suggest that nutrient acquisition strategies respond to nutrient availability and demand in tropical forests, likely critical for alleviating nutrient limitation.


Asunto(s)
Bosques , Micorrizas , Nitrógeno , Nutrientes , Fósforo , Árboles , Clima Tropical , Fósforo/metabolismo , Nitrógeno/metabolismo , Micorrizas/fisiología , Nutrientes/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Monoéster Fosfórico Hidrolasas/metabolismo , Panamá
12.
Mol Ecol ; 33(4): e17241, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38078555

RESUMEN

Across ecology, and particularly within microbial ecology, there is limited understanding how the generation and maintenance of diversity. Although recent work has shown that both local assembly processes and species pools are important in structuring microbial communities, the relative contributions of these mechanisms remain an important question. Moreover, the roles of local assembly processes and species pools are drastically different when explicitly considering the potential for saturation or unsaturation, yet this issue is rarely addressed. Thus, we established a conceptual model that incorporated saturation theory into the microbiological domain to advance the understanding of mechanisms controlling soil bacterial diversity during forest secondary succession. Conceptual model hypotheses were tested by coupling soil bacterial diversity, local assembly processes and species pools using six different forest successional chronosequences distributed across multiple climate zones. Consistent with the unsaturated case proposed in our conceptual framework, we found that species pool consistently affected α-diversity, even while local assembly processes on local richness operate. In contrast, the effects of species pool on ß-diversity disappeared once local assembly processes were taken into account, and changes in environmental conditions during secondary succession led to shifts in ß-diversity through mediation of the strength of heterogeneous selection. Overall, this study represents one of the first to demonstrate that most local bacterial communities might be unsaturated, where the effect of species pool on α-diversity is robust to the consideration of multiple environmental influences, but ß-diversity is constrained by environmental selection.


Asunto(s)
Biodiversidad , Microbiota , Bosques , Ecología , Bacterias/genética , Suelo , Ecosistema
13.
Glob Chang Biol ; 30(5): e17276, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38683126

RESUMEN

Boreal forests are frequently subjected to disturbances, including wildfire and clear-cutting. While these disturbances can cause soil carbon (C) losses, the long-term accumulation dynamics of soil C stocks during subsequent stand development is controlled by biological processes related to the balance of net primary production (NPP) and outputs via heterotrophic respiration and leaching, many of which remain poorly understood. We review the biological processes suggested to influence soil C accumulation in boreal forests. Our review indicates that median C accumulation rates following wildfire and clear-cutting are similar (0.15 and 0.20 Mg ha-1 year-1, respectively), however, variation between studies is extremely high. Further, while many individual studies show linear increases in soil C stocks through time after disturbance, there are indications that C stock recovery is fastest early to mid-succession (e.g. 15-80 years) and then slows as forests mature (e.g. >100 years). We indicate that the rapid build-up of soil C in younger stands appears not only driven by higher plant production, but also by a high rate of mycorrhizal hyphal production, and mycorrhizal suppression of saprotrophs. As stands mature, the balance between reductions in plant and mycorrhizal production, increasing plant litter recalcitrance, and ectomycorrhizal decomposers and saprotrophs have been highlighted as key controls on soil C accumulation rates. While some of these controls appear well understood (e.g. temporal patterns in NPP, changes in aboveground litter quality), many others remain research frontiers. Notably, very little data exists describing and comparing successional patterns of root production, mycorrhizal functional traits, mycorrhizal-saprotroph interactions, or C outputs via heterotrophic respiration and dissolved organic C following different disturbances. We argue that these less frequently described controls require attention, as they will be key not only for understanding ecosystem C balances, but also for representing these dynamics more accurately in soil organic C and Earth system models.


Asunto(s)
Carbono , Suelo , Taiga , Incendios Forestales , Suelo/química , Carbono/metabolismo , Carbono/análisis , Bosques , Micorrizas/fisiología , Microbiología del Suelo , Agricultura Forestal
14.
Glob Chang Biol ; 30(1): e17057, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38273541

RESUMEN

The worldwide retreat of glaciers is causing a faster than ever increase in ice-free areas that are leading to the emergence of new ecosystems. Understanding the dynamics of these environments is critical to predicting the consequences of climate change on mountains and at high latitudes. Climatic differences between regions of the world could modulate the emergence of biodiversity and functionality after glacier retreat, yet global tests of this hypothesis are lacking. Nematodes are the most abundant soil animals, with keystone roles in ecosystem functioning, but the lack of global-scale studies limits our understanding of how the taxonomic and functional diversity of nematodes changes during the colonization of proglacial landscapes. We used environmental DNA metabarcoding to characterize nematode communities of 48 glacier forelands from five continents. We assessed how different facets of biodiversity change with the age of deglaciated terrains and tested the hypothesis that colonization patterns are different across forelands with different climatic conditions. Nematodes colonized ice-free areas almost immediately. Both taxonomic and functional richness quickly increased over time, but the increase in nematode diversity was modulated by climate, so that colonization started earlier in forelands with mild summer temperatures. Colder forelands initially hosted poor communities, but the colonization rate then accelerated, eventually leveling biodiversity differences between climatic regimes in the long term. Immediately after glacier retreat, communities were dominated by colonizer taxa with short generation time and r-ecological strategy but community composition shifted through time, with increased frequency of more persister taxa with K-ecological strategy. These changes mostly occurred through the addition of new traits instead of their replacement during succession. The effects of local climate on nematode colonization led to heterogeneous but predictable patterns around the world that likely affect soil communities and overall ecosystem development.


Asunto(s)
Ecosistema , Nematodos , Animales , Suelo , Cubierta de Hielo , Biodiversidad
15.
Glob Chang Biol ; 30(1): e17140, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38273497

RESUMEN

Growing evidence suggests that liana competition with trees is threatening the global carbon sink by slowing the recovery of forests following disturbance. A recent theory based on local and regional evidence further proposes that the competitive success of lianas over trees is driven by interactions between forest disturbance and climate. We present the first global assessment of liana-tree relative performance in response to forest disturbance and climate drivers. Using an unprecedented dataset, we analysed 651 vegetation samples representing 26,538 lianas and 82,802 trees from 556 unique locations worldwide, derived from 83 publications. Results show that lianas perform better relative to trees (increasing liana-to-tree ratio) when forests are disturbed, under warmer temperatures and lower precipitation and towards the tropical lowlands. We also found that lianas can be a critical factor hindering forest recovery in disturbed forests experiencing liana-favourable climates, as chronosequence data show that high competitive success of lianas over trees can persist for decades following disturbances, especially when the annual mean temperature exceeds 27.8°C, precipitation is less than 1614 mm and climatic water deficit is more than 829 mm. These findings reveal that degraded tropical forests with environmental conditions favouring lianas are disproportionately more vulnerable to liana dominance and thus can potentially stall succession, with important implications for the global carbon sink, and hence should be the highest priority to consider for restoration management.


Des preuves de plus en plus nombreuses suggèrent que la competition entre lianes et les arbres menace le puits de carbone mondial en ralentissant la récupération des forêts après une perturbation. Une théorie récente, fondée sur des observations locales et régionales, propose en outre que le succès compétitif des lianes sur les arbres est dû aux interactions entre la perturbation forestière et le climat. Nous présentons la première évaluation mondiale de la performance relative des lianes par rapport aux arbres en réponse aux perturbations forestières et aux facteurs climatiques. En utilisant un ensemble de données sans précédent, nous avons analysé 651 échantillons de végétation représentant 26,538 lianes et 82,802 arbres, issus de 556 emplacements uniques dans le monde entier, tirés de 83 publications. Les résultats montrent que les lianes ont de meilleure performances par rapport aux arbres (augmentation du ratio liane-arbre) lorsque les forêts sont perturbées, sous des zones chaudes aves précipitations faibles, et vers les basses altitudes tropicales. Nous avons également constaté que les lianes peuvent être un facteur critique entravant la récupération des forêts dans les forêts perturbées connaissant des climats favorables aux lianes, car les données de chronoséquence montrent que le succès compétitif élevé des lianes sur les arbres peut persister pendant des décennies après les perturbations, surtout lorsque la température annuelle moyenne dépasse 27.8°C, que les précipitations sont inférieures à 1614 mm et que le déficit hydrique climatique est supérieur à 829 mm. Ces découvertes révèlent que les forêts tropicales dégradées avec des conditions environnementales favorables aux lianes sont disproportionnellement plus vulnérables à la dominance des lianes, et peuvent ainsi potentiellement entraver la succession, avec d'importantes implications pour le puits de carbone mondial et devraient donc être la plus haute priorité à considérer pour la gestion de la restauration.


Asunto(s)
Árboles , Clima Tropical , Árboles/fisiología , Bosques , Secuestro de Carbono , Agua
16.
Ann Bot ; 133(5-6): 819-832, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38150535

RESUMEN

BACKGROUND AND AIMS: In many systems, postfire vegetation recovery is characterized by temporal changes in plant species composition and richness. We attribute this to changes in resource availability with time since fire, with the magnitude of species turnover determined by the degree of resource limitation. Here, we test the hypothesis that postfire species turnover in South African fynbos heathland is powered by fire-modulated changes in nutrient availability, with the magnitude of turnover in nutrient-constrained fynbos being greater than in fertile renosterveld shrubland. We also test the hypothesis that floristic overlaps between fynbos and renosterveld are attributable to nutritional augmentation of fynbos soils immediately after fire. METHODS: We use vegetation survey data from two sites on the Cape Peninsula to compare changes in species richness and composition with time since fire. KEY RESULTS: Fynbos communities display a clear decline in species richness with time since fire, whereas no such decline is apparent in renosterveld. In fynbos, declining species richness is associated with declines in the richness of plant families having high foliar concentrations of nitrogen, phosphorus and potassium and possessing attributes that are nutritionally costly. In contrast, families that dominate late-succession fynbos possess adaptations for the acquisition and retention of sparse nutrients. At the family level, recently burnt fynbos is compositionally more similar to renosterveld than is mature fynbos. CONCLUSIONS: Our data suggest that nutritionally driven species turnover contributes significantly to fynbos community richness. We propose that the extremely low baseline fertility of fynbos soils serves to lengthen the nutritional resource axis along which species can differentiate and coexist, thereby providing the opportunity for low-nutrient extremophiles to coexist spatially with species adapted to more fertile soil. This mechanism has the potential to operate in any resource-constrained system in which episodic disturbance affects resource availability.


Asunto(s)
Biodiversidad , Suelo , Sudáfrica , Suelo/química , Nutrientes/metabolismo , Incendios , Ecosistema , Nitrógeno/metabolismo , Fósforo/metabolismo , Fósforo/análisis , Plantas/metabolismo
17.
Ecol Appl ; : e3036, 2024 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-39344180

RESUMEN

In fire-prone regions, the occurrence of some faunal species is contingent on the presence of resources that arise through post-fire plant succession. Through planned burning, managers can alter resource availability and aim to provide the conditions required to promote biodiversity. Understanding how species occurrence changes at different spatial and temporal scales after fire is essential to achieve this goal. However, many fire prescriptions are guided primarily by the responses of fire-sensitive plants when setting tolerable fire intervals. This approach assumes that maintaining floristic diversity will satisfy the requirements of fauna. We surveyed bird species in two semi-arid vegetation types across an environmental gradient in south-eastern Australia. We conducted four surveys at each of 253 sites across a 75-year chronosequence of time since fire and used generalized additive mixed models to examine changes in the occurrence of birds in response to time since fire. Model predictions were compared to plant-derived fire prescriptions currently guiding fire management in the region. Time since fire was a significant predictor for 18 of 28 species modeled, in at least one vegetation type, over a gradient of 1.3° of latitude. We detected considerable variation in the responses of some species, both between vegetation types and geographically within a vegetation type. Our evaluation of plant-derived fire prescriptions suggests that the intervals considered acceptable for maintaining floristic diversity may not be sustainable for populations of birds requiring longer unburnt vegetation, with 6 of the 12 species assessed attaining a mean occurrence probability of 20.3% by the minimum tolerable fire interval, and 57.3% by the maximum tolerable fire interval, in their respective vegetation types. Our findings highlight the potential vulnerability of fire-responsive bird species if fire prescriptions are applied in a manner that fails to account for the slow development of habitat resources needed by some species, and the variation detected within the responses of species. This highlights the need for species-specific data collected at an appropriate spatial scale to inform management plans.

18.
J Anim Ecol ; 93(8): 1003-1021, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38864368

RESUMEN

Terrestrial invertebrates are highly important for the decomposition of dung from large mammals. Mammal dung has been present in many of Earth's ecosystems for millions of years, enabling the evolution of a broad diversity of dung-associated invertebrates that process various components of the dung. Today, large herbivorous mammals are increasingly introduced to ecosystems with the aim of restoring the ecological functions formerly provided by their extinct counterparts. However, we still know little about the ecosystem functions and nutrient flows in these rewilded ecosystems, including the dynamics of dung decomposition. In fact, the succession of insect communities in dung is an area of limited research attention also outside a rewilding context. In this study, we use environmental DNA metabarcoding of dung from rewilded Galloway cattle in an experimental set-up to investigate invertebrate communities and functional dynamics over a time span of 53 days, starting from the time of deposition. We find a strong signal of successional change in community composition, including for the species that are directly dependent on dung as a resource. While several of these species were detected consistently across the sampling period, others appeared confined to either early or late successional stages. We believe that this is indicative of evolutionary adaptation to a highly dynamic resource, with species showing niche partitioning on a temporal scale. However, our results show consistently high species diversity within the functional groups that are directly dependent on dung. Our findings of such redundancy suggest functional stability of the dung-associated invertebrate community, with several species ready to fill vacant niches if other species disappear. Importantly, this might also buffer the ecosystem functions related to dung decomposition against environmental change. Interestingly, alpha diversity peaked after approximately 20-25 days in both meadow and pasture habitats, and did not decrease substantially during the experimental period, probably due to preservation of eDNA in the dung after the disappearance of visiting invertebrates, and from detection of tissue remains and cryptic life stages.


Asunto(s)
Artrópodos , Biodiversidad , Código de Barras del ADN Taxonómico , Heces , Animales , Bovinos/fisiología , Heces/química , Artrópodos/fisiología , ADN Ambiental/análisis , Ecosistema
19.
Microb Ecol ; 87(1): 43, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38363394

RESUMEN

Biological soil crusts (biocrusts) are considered "desert ecosystem engineers" because they play a vital role in the restoration and stability maintenance of deserts, including those cold sandy land ecosystems at high latitudes, which are especially understudied. Microorganisms participate in the formation and succession of biocrusts, contributing to soil properties' improvement and the stability of soil aggregates, and thus vegetation development. Accordingly, understanding the composition and successional characteristics of microorganisms is a prerequisite for analyzing the ecological functions of biocrusts and related applications. Here, the Hulun Buir Sandy Land region in northeastern China-lying at the highest latitude of any sandy land in the country-was selected for study. Through a field investigation and next-generation sequencing (Illumina MiSeq PE300 Platform), our goal was to assess the shifts in diversity and community composition of soil bacteria and fungi across different stages during the succession of biocrusts in this region, and to uncover the main factors involved in shaping their soil microbial community. The results revealed that the nutrient enrichment capacity of biocrusts for available nitrogen, total nitrogen, total phosphorus, total content of water-soluble salt, available potassium, soil organic matter, and available phosphorus was progressively enhanced by the succession of cyanobacterial crusts to lichen crusts and then to moss crusts. In tandem, soil bacterial diversity increased as biocrust succession proceeded but fungal diversity decreased. A total of 32 bacterial phyla and 11 fungal phyla were identified, these also known to occur in other desert ecosystems. Among those taxa, the relative abundance of Proteobacteria and Cyanobacteria significantly increased and decreased, respectively, along the cyanobacterial crust-lichen-moss crust successional gradient. However, for Actinobacteria, Chloroflexi, and Acidobacteria their changed relative abundance was significantly hump-shaped, increasing in the shift from cyanobacterial crust to lichen crust, and then decreasing as lichen crust shifted to moss crust. In this process, the improved soil properties effectively enhanced soil bacterial and fungal community composition. Altogether, these findings broaden our understanding about how soil microbial properties can change during the succession of biocrusts in high-latitude, cold sandy land ecosystems.


Asunto(s)
Cianobacterias , Líquenes , Microbiota , Ecosistema , Suelo , Arena , Microbiología del Suelo , Nitrógeno , Fósforo , China
20.
Environ Sci Technol ; 58(42): 18915-18927, 2024 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-39380403

RESUMEN

Biodegradable plastics (BPs) are pervasively available as alternatives to traditional plastics, but their natural degradation characteristics and microbial-driven degradation mechanisms are poorly understood, especially in aquatic environments, the primary sink of plastic debris. Herein, the three-month dynamic degradation process of BPs (the copolymer of poly(butylene adipate-co-terephthalate) and polylactic acid (PLA) (PBAT/PLA) and single PLA) in a natural aquatic environment was investigated, with nonbiodegradable plastics polyvinyl chloride, polypropylene, and polystyrene as controls. PBAT/PLA showed the weight loss of 47.4% at 50 days and severe fragmentation within two months, but no significant decay for other plastics. The significant increase in the specific surface area and roughness and the weakening of hydrophobicity within the first month promoted microbial attachment to the PBAT/PLA surface. Then, a complete microbial succession occurred, including biofilm formation, maturation, and dispersion. Metagenomic analysis indicated that plastispheres selectively enriched degraders. Based on the functional genes involved in BPs degradation, a total of 16 high-quality metagenome-assembled genomes of degraders (mainly Burkholderiaceae) were recovered from the PBAT/PLA plastisphere. These microbes showed the greatest degrading potential at the biofilm maturation stage and executed the functions by PLA_depolymerase, polyesterase, hydrolase, and esterase. These findings will enhance understanding of BPs' environmental behavior and microbial roles on plastic degradation.


Asunto(s)
Plásticos Biodegradables , Biodegradación Ambiental , Metagenómica , Plásticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA