Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 74(5): 877-890.e6, 2019 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-31023583

RESUMEN

Endoplasmic reticulum (ER) stress and unfolded protein response are energetically challenging under nutrient stress conditions. However, the regulatory mechanisms that control the energetic demand under nutrient and ER stress are largely unknown. Here we show that ER stress and glucose deprivation stimulate mitochondrial bioenergetics and formation of respiratory supercomplexes (SCs) through protein kinase R-like ER kinase (PERK). Genetic ablation or pharmacological inhibition of PERK suppresses nutrient and ER stress-mediated increases in SC levels and reduces oxidative phosphorylation-dependent ATP production. Conversely, PERK activation augments respiratory SCs. The PERK-eIF2α-ATF4 axis increases supercomplex assembly factor 1 (SCAF1 or COX7A2L), promoting SCs and enhanced mitochondrial respiration. PERK activation is sufficient to rescue bioenergetic defects caused by complex I missense mutations derived from mitochondrial disease patients. These studies have identified an energetic communication between ER and mitochondria, with implications in cell survival and diseases associated with mitochondrial failures.


Asunto(s)
Factor de Transcripción Activador 4/genética , Metabolismo Energético/genética , Factor 2 Eucariótico de Iniciación/genética , Mitocondrias/genética , eIF-2 Quinasa/genética , Adenosina Trifosfato/metabolismo , Animales , Apoptosis , Línea Celular , Supervivencia Celular/genética , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Complejo IV de Transporte de Electrones/genética , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico/genética , Glucosa/metabolismo , Humanos , Ratones , Mitocondrias/metabolismo , Mitocondrias/patología , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/patología , Mutación Missense/genética , Nutrientes/metabolismo , Fosforilación , Factores de Empalme Serina-Arginina/genética , Transducción de Señal
2.
Trends Biochem Sci ; 47(12): 999-1008, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35961810

RESUMEN

Deep understanding of the pathophysiological role of the mitochondrial respiratory chain (MRC) relies on a well-grounded model explaining how its biogenesis is regulated. The lack of a consistent framework to clarify the modes and mechanisms governing the assembly of the MRC complexes and supercomplexes (SCs) works against progress in the field. The plasticity model was postulated as an attempt to explain the coexistence of mammalian MRC complexes as individual entities and associated in SC species. However, mounting data accumulated throughout the years question the universal validity of the plasticity model as originally proposed. Instead, as we argue here, a cooperative assembly model provides a much better explanation to the phenomena observed when studying MRC biogenesis in physiological and pathological settings.


Asunto(s)
Mitocondrias , Membranas Mitocondriales , Animales , Transporte de Electrón/fisiología , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Mamíferos
3.
Proc Natl Acad Sci U S A ; 120(40): e2307093120, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37751552

RESUMEN

Energy conversion by electron transport chains occurs through the sequential transfer of electrons between protein complexes and intermediate electron carriers, creating the proton motive force that enables ATP synthesis and membrane transport. These protein complexes can also form higher order assemblies known as respiratory supercomplexes (SCs). The electron transport chain of the opportunistic pathogen Pseudomonas aeruginosa is closely linked with its ability to invade host tissue, tolerate harsh conditions, and resist antibiotics but is poorly characterized. Here, we determine the structure of a P. aeruginosa SC that forms between the quinol:cytochrome c oxidoreductase (cytochrome bc1) and one of the organism's terminal oxidases, cytochrome cbb3, which is found only in some bacteria. Remarkably, the SC structure also includes two intermediate electron carriers: a diheme cytochrome c4 and a single heme cytochrome c5. Together, these proteins allow electron transfer from ubiquinol in cytochrome bc1 to oxygen in cytochrome cbb3. We also present evidence that different isoforms of cytochrome cbb3 can participate in formation of this SC without changing the overall SC architecture. Incorporating these different subunit isoforms into the SC would allow the bacterium to adapt to different environmental conditions. Bioinformatic analysis focusing on structural motifs in the SC suggests that cytochrome bc1-cbb3 SCs also exist in other bacterial pathogens.


Asunto(s)
Citocromos c , Pseudomonas aeruginosa , Transporte de Electrón , Transporte Biológico , Antibacterianos
4.
J Biol Chem ; 300(2): 105626, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38211818

RESUMEN

Mitochondrial electron transport chain complexes organize into supramolecular structures called respiratory supercomplexes (SCs). The role of respiratory SCs remains largely unconfirmed despite evidence supporting their necessity for mitochondrial respiratory function. The mechanisms underlying the formation of the I1III2IV1 "respirasome" SC are also not fully understood, further limiting insights into these processes in physiology and diseases, including neurodegeneration and metabolic syndromes. NDUFB4 is a complex I accessory subunit that contains residues that interact with the subunit UQCRC1 from complex III, suggesting that NDUFB4 is integral for I1III2IV1 respirasome integrity. Here, we introduced specific point mutations to Asn24 (N24) and Arg30 (R30) residues on NDUFB4 to decipher the role of I1III2-containing respiratory SCs in cellular metabolism while minimizing the functional consequences to complex I assembly. Our results demonstrate that NDUFB4 point mutations N24A and R30A impair I1III2IV1 respirasome assembly and reduce mitochondrial respiratory flux. Steady-state metabolomics also revealed a global decrease in citric acid cycle metabolites, affecting NADH-generating substrates. Taken together, our findings highlight an integral role of NDUFB4 in respirasome assembly and demonstrate the functional significance of SCs in regulating mammalian cell bioenergetics.


Asunto(s)
Complejo I de Transporte de Electrón , Mitocondrias , Transporte de Electrón , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Complejo III de Transporte de Electrones/genética , Complejo III de Transporte de Electrones/metabolismo , Metabolismo Energético , Mitocondrias/genética , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Humanos , Células HEK293
5.
EMBO Rep ; 24(11): e57092, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37828827

RESUMEN

The mitochondrial respiratory chain (MRC) is a key energy transducer in eukaryotic cells. Four respiratory chain complexes cooperate in the transfer of electrons derived from various metabolic pathways to molecular oxygen, thereby establishing an electrochemical gradient over the inner mitochondrial membrane that powers ATP synthesis. This electron transport relies on mobile electron carries that functionally connect the complexes. While the individual complexes can operate independently, they are in situ organized into large assemblies termed respiratory supercomplexes. Recent structural and functional studies have provided some answers to the question of whether the supercomplex organization confers an advantage for cellular energy conversion. However, the jury is still out, regarding the universality of these claims. In this review, we discuss the current knowledge on the functional significance of MRC supercomplexes, highlight experimental limitations, and suggest potential new strategies to overcome these obstacles.


Asunto(s)
Mitocondrias , Membranas Mitocondriales , Membranas Mitocondriales/metabolismo , Transporte de Electrón , Mitocondrias/metabolismo
6.
J Physiol ; 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38630964

RESUMEN

In eukaryotic cells, aerobic energy is produced by mitochondria through oxygen uptake. However, little is known about the early mitochondrial responses to moderate hypobaric hypoxia (MHH) in highly metabolic active tissues. Here, we describe the mitochondrial responses to acute MHH in the heart and skeletal muscle. Rats were randomly allocated into a normoxia control group (n = 10) and a hypoxia group (n = 30), divided into three groups (0, 6, and 24 h post-MHH). The normoxia situation was recapitulated at the University of Granada, at 662 m above sea level. The MHH situation was performed at the High-Performance Altitude Training Centre of Sierra Nevada located in Granada at 2320 m above sea level. We found a significant increase in mitochondrial supercomplex assembly in the heart as soon as the animals reached 2320 m above sea level and their levels are maintained 24 h post-exposure, but not in skeletal muscle. Furthermore, in skeletal muscle, at 0 and 6 h, there was increased dynamin-related protein 1 (Drp1) expression and a significant reduction in Mitofusin 2. In conclusion, mitochondria from the muscle and heart respond differently to MHH: mitochondrial supercomplexes increase in the heart, whereas, in skeletal muscle, the mitochondrial pro-fission response is trigged. Considering that skeletal muscle was not actively involved in the ascent when the heart was beating faster to compensate for the hypobaric, hypoxic conditions, we speculate that the different responses to MHH are a result of the different energetic requirements of the tissues upon MHH. KEY POINTS: The heart and the skeletal muscle showed different mitochondrial responses to moderate hypobaric hypoxia. Moderate hypobaric hypoxia increases the assembly of the electron transport chain complexes into supercomplexes in the heart. Skeletal muscle shows an early mitochondrial pro-fission response following exposure to moderate hypobaric hypoxia.

7.
EMBO J ; 39(3): e102817, 2020 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-31912925

RESUMEN

Mitochondrial respiratory chain (MRC) enzymes associate in supercomplexes (SCs) that are structurally interdependent. This may explain why defects in a single component often produce combined enzyme deficiencies in patients. A case in point is the alleged destabilization of complex I in the absence of complex III. To clarify the structural and functional relationships between complexes, we have used comprehensive proteomic, functional, and biogenetical approaches to analyze a MT-CYB-deficient human cell line. We show that the absence of complex III blocks complex I biogenesis by preventing the incorporation of the NADH module rather than decreasing its stability. In addition, complex IV subunits appeared sequestered within complex III subassemblies, leading to defective complex IV assembly as well. Therefore, we propose that complex III is central for MRC maturation and SC formation. Our results challenge the notion that SC biogenesis requires the pre-formation of fully assembled individual complexes. In contrast, they support a cooperative-assembly model in which the main role of complex III in SCs is to provide a structural and functional platform for the completion of overall MRC biogenesis.


Asunto(s)
Complejo III de Transporte de Electrones/metabolismo , Complejo IV de Transporte de Electrones/química , Complejo I de Transporte de Electrón/metabolismo , Proteómica/métodos , Línea Celular , Complejo I de Transporte de Electrón/genética , Complejo III de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Estabilidad de Enzimas , Humanos , Mitocondrias/metabolismo , Mutación , NAD/metabolismo
8.
IUBMB Life ; 76(8): 485-504, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38529880

RESUMEN

The functional and structural relationship among the individual components of the mitochondrial respiratory chain constitutes a central aspect of our understanding of aerobic catabolism. This interplay has been a subject of intense debate for over 50 years. It is well established that individual respiratory enzymes associate into higher-order structures known as respiratory supercomplexes, which represent the evolutionarily conserved organizing principle of the mitochondrial respiratory chain. In the yeast Saccharomyces cerevisiae, supercomplexes are formed by a complex III homodimer flanked by one or two complex IV monomers, and their high-resolution structures have been recently elucidated. Despite the wealth of structural information, several proposed supercomplex functions remain speculative and our understanding of their physiological relevance is still limited. Recent advances in the field were made possible by the construction of yeast strains where the association of complex III and IV into supercomplexes is impeded, leading to diminished respiratory capacity and compromised cellular competitive fitness. Here, we discuss the experimental evidence and hypotheses relative to the functional roles of yeast respiratory supercomplexes. Moreover, we review the current models of yeast complex III and IV assembly in the context of supercomplex formation and highlight the data scattered throughout the literature suggesting the existence of cross talk between their biogenetic processes.


Asunto(s)
Mitocondrias , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Mitocondrias/metabolismo , Mitocondrias/genética , Complejo III de Transporte de Electrones/metabolismo , Complejo III de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Complejo IV de Transporte de Electrones/genética , Transporte de Electrón , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
9.
Biochem Soc Trans ; 52(4): 1647-1659, 2024 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-39177070

RESUMEN

Mitochondrial respiration is major source of chemical energy for all free-living eukaryotes. Nevertheless, the mechanisms of the respiratory complexes and supercomplexes remain poorly understood. Here, I review recent structural and functional investigations of plant supercomplex I + III2 from Arabidopsis thaliana and Vigna radiata. I discuss commonalities, open questions and implications for complex I, complex III2 and supercomplexes in plants and non-plants. Studies across further clades will enhance our understanding of respiration and the potential universal mechanisms of its complexes and supercomplexes.


Asunto(s)
Arabidopsis , Arabidopsis/metabolismo , Arabidopsis/enzimología , Complejo I de Transporte de Electrón/metabolismo , Complejo I de Transporte de Electrón/química , Complejo III de Transporte de Electrones/metabolismo , Complejo III de Transporte de Electrones/química , Mitocondrias/metabolismo , Plantas/metabolismo , Plantas/enzimología , Fabaceae/metabolismo
10.
Neurobiol Dis ; 184: 106199, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37321421

RESUMEN

Mitochondrial reactive oxygen species (mROS) have been generally considered harmful byproducts wanted to clear when elevated to avoid brain damage. However, the abundance of mROS in astrocytes is very high -about one order of magnitude above that in neurons-, despite they are essential to preserve cell metabolism and animal behavior. Here, we have focused on this apparent ambiguity by discussing (i) the intrinsic mechanisms accounting for the higher production of mROS by the mitochondrial respiratory chain in astrocytes than in neurons, (ii) the specific molecular targets of astrocytic beneficial mROS, and (iii) how decreased astrocytic mROS causes excess neuronal mROS leading to cellular and organismal damage. We hope that this mini-review serves to clarifying the apparent controversy on the beneficial versus deleterious faces of ROS in the brain from molecular to higher-order organismal levels.


Asunto(s)
Encéfalo , Mitocondrias , Animales , Especies Reactivas de Oxígeno/metabolismo , Mitocondrias/metabolismo , Encéfalo/metabolismo
11.
J Cell Sci ; 134(13)2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34106255

RESUMEN

Mitochondrial supercomplexes form around a conserved core of monomeric complex I and dimeric complex III; wherein a subunit of the former, NDUFA11, is conspicuously situated at the interface. We identified nduf-11 (B0491.5) as encoding the Caenorhabditis elegans homologue of NDUFA11. Animals homozygous for a CRISPR-Cas9-generated knockout allele of nduf-11 arrested at the second larval (L2) development stage. Reducing (but not eliminating) expression using RNAi allowed development to adulthood, enabling characterisation of the consequences: destabilisation of complex I and its supercomplexes and perturbation of respiratory function. The loss of NADH dehydrogenase activity was compensated by enhanced complex II activity, with the potential for detrimental reactive oxygen species (ROS) production. Cryo-electron tomography highlighted aberrant morphology of cristae and widening of both cristae junctions and the intermembrane space. The requirement of NDUF-11 for balanced respiration, mitochondrial morphology and development presumably arises due to its involvement in complex I and supercomplex maintenance. This highlights the importance of respiratory complex integrity for health and the potential for its perturbation to cause mitochondrial disease. This article has an associated First Person interview with Amber Knapp-Wilson, joint first author of the paper.


Asunto(s)
Complejo I de Transporte de Electrón , Mitocondrias , Animales , Caenorhabditis elegans , Transporte de Electrón , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo
12.
Biol Chem ; 404(5): 399-415, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-36952351

RESUMEN

The orchestrated activity of the mitochondrial respiratory or electron transport chain (ETC) and ATP synthase convert reduction power (NADH, FADH2) into ATP, the cell's energy currency in a process named oxidative phosphorylation (OXPHOS). Three out of the four ETC complexes are found in supramolecular assemblies: complex I, III, and IV form the respiratory supercomplexes (SC). The plasticity model suggests that SC formation is a form of adaptation to changing conditions such as energy supply, redox state, and stress. Complex I, the NADH-dehydrogenase, is part of the largest supercomplex (CI + CIII2 + CIVn). Here, we demonstrate the role of NDUFB10, a subunit of the membrane arm of complex I, in complex I and supercomplex assembly on the one hand and bioenergetics function on the other. NDUFB10 knockout was correlated with a decrease of SCAF1, a supercomplex assembly factor, and a reduction of respiration and mitochondrial membrane potential. This likely is due to loss of proton pumping since the CI P P -module is downregulated and the P D -module is completely abolished in NDUFB10 knock outs.


Asunto(s)
Complejo I de Transporte de Electrón , NADH Deshidrogenasa , Adenosina Trifosfato/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Complejo III de Transporte de Electrones/metabolismo , Mitocondrias/metabolismo , NAD/metabolismo , Fosforilación Oxidativa , NADH Deshidrogenasa/metabolismo
13.
Proc Natl Acad Sci U S A ; 117(17): 9329-9337, 2020 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-32291341

RESUMEN

The organization of the mitochondrial electron transport chain proteins into supercomplexes (SCs) is now undisputed; however, their assembly process, or the role of differential expression isoforms, remain to be determined. In Saccharomyces cerevisiae, cytochrome c oxidase (CIV) forms SCs of varying stoichiometry with cytochrome bc1 (CIII). Recent studies have revealed, in normoxic growth conditions, an interface made exclusively by Cox5A, the only yeast respiratory protein that exists as one of two isoforms depending on oxygen levels. Here we present the cryo-EM structures of the III2-IV1 and III2-IV2 SCs containing the hypoxic isoform Cox5B solved at 3.4 and 2.8 Å, respectively. We show that the change of isoform does not affect SC formation or activity, and that SC stoichiometry is dictated by the level of CIII/CIV biosynthesis. Comparison of the CIV5B- and CIV5A-containing SC structures highlighted few differences, found mainly in the region of Cox5. Additional density was revealed in all SCs, independent of the CIV isoform, in a pocket formed by Cox1, Cox3, Cox12, and Cox13, away from the CIII-CIV interface. In the CIV5B-containing hypoxic SCs, this could be confidently assigned to the hypoxia-induced gene 1 (Hig1) type 2 protein Rcf2. With conserved residues in mammalian Hig1 proteins and Cox3/Cox12/Cox13 orthologs, we propose that Hig1 type 2 proteins are stoichiometric subunits of CIV, at least when within a III-IV SC.


Asunto(s)
Complejo III de Transporte de Electrones/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Microscopía por Crioelectrón/métodos , Complejo III de Transporte de Electrones/química , Complejo IV de Transporte de Electrones/química , Complejo IV de Transporte de Electrones/fisiología , Hipoxia/metabolismo , Mitocondrias/química , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Isoformas de Proteínas , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología
14.
Int J Mol Sci ; 24(20)2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37894910

RESUMEN

The study of the supramolecular organization of the mitochondrial oxidative phosphorylation system (OXPHOS) in various eukaryotes has led to the accumulation of a considerable amount of data on the composition, stoichiometry, and architecture of its constituent superstructures. However, the link between the features of system arrangement and the biological characteristics of the studied organisms has been poorly explored. Here, we report a comparative investigation into supramolecular and functional OXPHOS organization in the mitochondria of etiolated shoots of winter wheat (Triticum aestivum L.), maize (Zea mays L.), and pea (Pisum sativum L.). Investigations based on BN-PAGE, in-gel activity assays, and densitometric analysis revealed both similarities and specific OXPHOS features apparently related to the life strategies of each species. Frost-resistant winter wheat was distinguished by highly stable basic I1III2IVa/b respirasomes and V2 dimers, highly active complex I, and labile complex IV, which were probably essential for effective OXPHOS adaptation during hypothermia. Maize, a C4 plant, had the highly stable dimers IV2 and V2, less active complex I, and active alternative NAD(P)H dehydrogenases. The latter fact could contribute to successful chloroplast-mitochondrial cooperation, which is essential for highly efficient photosynthesis in this species. The pea OXPHOS contained detergent-resistant high-molecular respirasomes I1-2III2IVn, highly active complexes IV and V, and stable succinate dehydrogenase, suggesting an active energy metabolism in organelles of this plant. The results and conclusions are in good agreement with the literature data on the respiratory activity of mitochondria from these species and are summarized in a proposed scheme of organization of OXPHOS fragments.


Asunto(s)
Mitocondrias , Fosforilación Oxidativa , Mitocondrias/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Metabolismo Energético , Complejo I de Transporte de Electrón/metabolismo , Triticum/metabolismo
15.
Int J Mol Sci ; 24(20)2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37894823

RESUMEN

The current view of the mitochondrial respiratory chain complexes I, III and IV foresees the occurrence of their assembly in supercomplexes, providing additional functional properties when compared with randomly colliding isolated complexes. According to the plasticity model, the two structural states of the respiratory chain may interconvert, influenced by the intracellular prevailing conditions. In previous studies, we suggested the mitochondrial membrane potential as a factor for controlling their dynamic balance. Here, we investigated if and how the cAMP/PKA-mediated signalling influences the aggregation state of the respiratory complexes. An analysis of the inhibitory titration profiles of the endogenous oxygen consumption rates in intact HepG2 cells with specific inhibitors of the respiratory complexes was performed to quantify, in the framework of the metabolic flux theory, the corresponding control coefficients. The attained results, pharmacologically inhibiting either PKA or sAC, indicated that the reversible phosphorylation of the respiratory chain complexes/supercomplexes influenced their assembly state in response to the membrane potential. This conclusion was supported by the scrutiny of the available structure of the CI/CIII2/CIV respirasome, enabling us to map several PKA-targeted serine residues exposed to the matrix side of the complexes I, III and IV at the contact interfaces of the three complexes.


Asunto(s)
Mitocondrias , Membranas Mitocondriales , Transporte de Electrón , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Fosforilación
16.
Am J Physiol Regul Integr Comp Physiol ; 323(1): R28-R42, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35470710

RESUMEN

Complexes of the electron transport system can associate with each other to form supercomplexes (SCs) within mitochondrial membranes, perhaps increasing respiratory capacity or reducing reactive oxygen species production. In this study, we determined the abundance, composition, and stability of SCs in a mammalian hibernator, in which both whole animal and mitochondrial metabolism change greatly throughout winter. We isolated mitochondria from thirteen-lined ground squirrels (Ictidomys tridecemlineatus) in different hibernation states, as well as from rats (Rattus norvegicus). We extracted mitochondrial proteins using two nonionic detergents of different strengths and quantified SC abundance using two-dimensional gel electrophoresis and immunoblotting. Rat heart and liver had fewer SCs than ground squirrels. Within ground squirrels, SCs are dynamic, changing among hibernation states within a matter of hours. In brown adipose tissue, Complex III composition in different SCs differed between the torpid and interbout euthermic phase of a hibernation bout. In heart and liver, complex III composition changed between winter and summer. We also evaluated the stability of liver SCs using a stronger detergent and found that the stability of SCs differed; torpor SCs were more stable than the SCs of ground squirrels in other states and rats. This study is the first report of SC changes during hibernation and the first to demonstrate their dynamics on a short timescale.


Asunto(s)
Hibernación , Letargo , Animales , Transporte de Electrón , Complejo III de Transporte de Electrones/metabolismo , Hibernación/fisiología , Ratas , Sciuridae/fisiología , Letargo/fisiología
17.
New Phytol ; 235(4): 1315-1329, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35588181

RESUMEN

One of the key functions of mitochondria is the production of ATP to support cellular metabolism and growth. The last step of mitochondrial ATP synthesis is performed by the oxidative phosphorylation (OXPHOS) system, an ensemble of protein complexes embedded in the inner mitochondrial membrane. In the last 25 yr, many structures of OXPHOS complexes and supercomplexes have been resolved in yeast, mammals, and bacteria. However, structures of plant OXPHOS enzymes only became available very recently. In this review, we highlight the plant-specific features revealed by the recent structures and discuss how they advance our understanding of the function and assembly of plant OXPHOS complexes. We also propose new hypotheses to be tested and discuss older findings to be re-evaluated. Further biochemical and structural work on the plant OXPHOS system will lead to a deeper understanding of plant respiration and its regulation, with significant agricultural, environmental, and societal implications.


Asunto(s)
Membranas Mitocondriales , Fosforilación Oxidativa , Adenosina Trifosfato/metabolismo , Animales , Mamíferos , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Saccharomyces cerevisiae/metabolismo
18.
Clin Genet ; 102(1): 56-60, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35246835

RESUMEN

Genetic defect in the nuclear encoded subunits of cytochrome c oxidase are very rare. To date, most deleterious variants affect the mitochondrially encoded subunits of complex IV and the nuclear genes encoded for assembly factors. A biallelic pathogenic variant in the mitochondrial complex IV subunit COX5A was previously reported in a couple of sibs with failure to thrive, lactic acidosis and pulmonary hypertension and a lethal phenotype. Here, we describe a second family with a 11-year-old girl presenting with failure to thrive, lactic acidosis, hypoglycemia and short stature. Clinical exome revealed the homozygous missense variant c.266 T > G in COX5A, which produces a drop of the corresponding protein and a reduction of the COX activity. Compared to the previous observation, this girl showed an attenuated metabolic derangement without involvement of the cardiovascular system and neurodevelopment. Our observation confirms that COX5A recessive variants may cause mitochondrial disease and expands the associated phenotype to less severe presentations.


Asunto(s)
Acidosis Láctica , Enanismo , Hipoglucemia , Acidosis Láctica/genética , Acidosis Láctica/patología , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Insuficiencia de Crecimiento/genética , Homocigoto , Humanos , Hipoglucemia/genética , Fenotipo
19.
EMBO Rep ; 21(12): e51015, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33016568

RESUMEN

Respiratory chains are crucial for cellular energy conversion and consist of multi-subunit complexes that can assemble into supercomplexes. These structures have been intensively characterized in various organisms, but their physiological roles remain unclear. Here, we elucidate their function by leveraging a high-resolution structural model of yeast respiratory supercomplexes that allowed us to inhibit supercomplex formation by mutation of key residues in the interaction interface. Analyses of a mutant defective in supercomplex formation, which still contains fully functional individual complexes, show that the lack of supercomplex assembly delays the diffusion of cytochrome c between the separated complexes, thus reducing electron transfer efficiency. Consequently, competitive cellular fitness is severely reduced in the absence of supercomplex formation and can be restored by overexpression of cytochrome c. In sum, our results establish how respiratory supercomplexes increase the efficiency of cellular energy conversion, thereby providing an evolutionary advantage for aerobic organisms.


Asunto(s)
Citocromos c , Proteínas de Saccharomyces cerevisiae , Citocromos c/genética , Transporte de Electrón , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
20.
BMC Biol ; 19(1): 265, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34911556

RESUMEN

BACKGROUND: Tissue hypoxia is a key feature of several endemic hepatic diseases, including alcoholic and non-alcoholic fatty liver disease, and organ failure. Hypoxia imposes a severe metabolic challenge on the liver, potentially disrupting its capacity to carry out essential functions including fuel storage and the integration of lipid metabolism at the whole-body level. Mitochondrial respiratory function is understood to be critical in mediating the hepatic hypoxic response, yet the time-dependent nature of this response and the role of the respiratory chain in this remain unclear. RESULTS: Here, we report that hepatic respiratory capacity is enhanced following short-term exposure to hypoxia (2 days, 10% O2) and is associated with increased abundance of the respiratory chain supercomplex III2+IV and increased cardiolipin levels. Suppression of this enhanced respiratory capacity, achieved via mild inhibition of mitochondrial complex III, disrupted metabolic homeostasis. Hypoxic exposure for 2 days led to accumulation of plasma and hepatic long chain acyl-carnitines. This was observed alongside depletion of hepatic triacylglycerol species with total chain lengths of 39-53 carbons, containing palmitic, palmitoleic, stearic, and oleic acids, which are associated with de novo lipogenesis. The changes to hepatic respiratory capacity and lipid metabolism following 2 days hypoxic exposure were transient, becoming resolved after 14 days in line with systemic acclimation to hypoxia and elevated circulating haemoglobin concentrations. CONCLUSIONS: The liver maintains metabolic homeostasis in response to shorter term hypoxic exposure through transient enhancement of respiratory chain capacity and alterations to lipid metabolism. These findings may have implications in understanding and treating hepatic pathologies associated with hypoxia.


Asunto(s)
Metabolismo de los Lípidos , Hígado , Homeostasis , Humanos , Hipoxia/metabolismo , Lipogénesis , Hígado/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA