Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Annu Rev Biochem ; 83: 275-89, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24437662

RESUMEN

Most single animal cells have an internal vector that determines where recycling membrane is added to the cell's surface. Because of the specific molecular composition of this added membrane, a dynamic asymmetry is formed on the surface of the cell. The consequences of this dynamic asymmetry are discussed, together with what they imply for how cells move. The polarity of a single-celled embryo, such as that of the nematode Caenorhabditis elegans, is explored in a similar framework.


Asunto(s)
Membrana Celular/química , Endocitosis , Animales , Biología/métodos , Caenorhabditis elegans , Movimiento Celular , Citoesqueleto/metabolismo , Dictyostelium , Fibroblastos/metabolismo , Células HeLa , Hemaglutininas/química , Humanos , Proteínas de la Membrana/química , Proteínas/química
2.
Sensors (Basel) ; 23(3)2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36772645

RESUMEN

A method for detecting the surface defects of high reflection objects using phase deflection is proposed. The abrupt change in the surface gradient at the defect leads to the change in the fringe phase. Therefore, Gray code combined with a four-step phase-shift method was employed to obtain the surface gradients to characterize the defects. Then, through the double surface illumination model, the relationship between illumination intensity and phase was established. The causes of periodic error interference were analyzed, and the method of adjusting the fringe width to eliminate it was proposed. Finally, experimental results showed the effectiveness of the proposed method.

3.
Macromol Rapid Commun ; 39(14): e1800189, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29786905

RESUMEN

The fabrication of polymer brushes via surface-initiated controlled radical polymerizations has progressively developed beyond a simple surface functionalization technique, enabling the design of complex polymer interfaces with a quasi-3D molecular organization. The modulation of polymer brush structure has led to an extremely broad tuning potential for technologically relevant interfacial, physicochemical properties, allowing one to precisely tune swelling, nanomechanical, and nanotribological characteristics of polymer films. In addition, the synthesis of multilayer brush interfaces with hierarchical architecture has been exploited to control biological phenomena on modified platforms, such as cell adhesion and settlement, or to fully prevent biological contamination from bacteria. In this feature article, the most recent developments in the synthesis and application of quasi-3D structured polymer brushes are summarized, placing particular attention on how the tuning of grafted-polymer architecture could translate into a variation of interfacial characteristics.


Asunto(s)
Resinas Acrílicas/química , Polimerizacion , Polímeros/química , Adhesión Celular , Conformación Molecular , Polímeros/síntesis química , Propiedades de Superficie
4.
ACS Appl Mater Interfaces ; 15(20): 25066-25076, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37167605

RESUMEN

Influenza viruses can move across the surface of host cells while interacting with their glycocalyx. This motility may assist in finding or forming locations for cell entry and thereby promote cellular uptake. Because the binding to and cleavage of cell surface receptors forms the driving force for the process, the surface-bound motility of influenza is expected to be dependent on the receptor density. Surface gradients with gradually varying receptor densities are thus a valuable tool to study binding and motility processes of influenza and can function as a mimic for local receptor density variations at the glycocalyx that may steer the directionality of a virus particle in finding the proper site of uptake. We have tracked individual influenza virus particles moving over surfaces with receptor density gradients. We analyzed the extracted virus tracks first at a general level to verify neuraminidase activity and subsequently with increasing detail to quantify the receptor density-dependent behavior on the level of individual virus particles. While a directional bias was not observed, most likely due to limitations of the steepness of the surface gradient, the surface mobility and the probability of sticking were found to be significantly dependent on receptor density. A combination of high surface mobility and high dissociation probability of influenza was observed at low receptor densities, while the opposite occurred at higher receptor densities. These properties result in an effective mechanism for finding high-receptor density patches, which are believed to be a key feature of potential locations for cell entry.


Asunto(s)
Gripe Humana , Orthomyxoviridae , Humanos , Receptores Virales/química , Receptores Virales/metabolismo , Receptores de Superficie Celular , Virión/metabolismo
5.
Colloids Surf B Biointerfaces ; 123: 225-35, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25262410

RESUMEN

A bioactive platform for the quantitative observation of cell migration is presented by (1) presenting migration factors in a well-defined manner on 2-D substrates, and (2) enabling continuous cell tracking. Well-defined substrate presentation is achieved by correctly orienting immobilized proteins (chemokines and cell adhesion molecules), such that the active site is accessible to cell surface receptors. A thiol-terminated self-assembled monolayer on a silica slide was used as a base substrate for subsequent chemistry. The thiol-terminated surface was converted to an immobilized metal ion surface using a maleimido-nitrilotriacetic acid (NTA) cross-linker that bound Histidine-tagged recombinant proteins on the surface with uniform distribution and specific orientation. This platform was used to study the influence of surface-immobilized chemokine SDF-1α and cell adhesion molecule ICAM-1 on murine splenic B lymphocyte migration. While soluble SDF-1α induced trans-migration in a Boyden Chamber type chemotaxis assay, immobilized SDF-1α alone did not elicit significant surface-migration on our test-platform surface. Surface-immobilized cell adhesion protein, ICAM-1, in conjunction with activation enabled migration of this cell type on our surface. Controlled exposure to UV light was used to produce stable linear gradients of His-tagged recombinant SDF-1α co-immobilized with ICAM-1 following our surface chemistry approach. XPS and antibody staining showed defined gradients of outwardly oriented SDF-1α active sites. This test platform can be especially valuable for investigators interested in studying the influence of surface-immobilized factors on cell behavior and may also be used as a cell migration enabling platform for testing the effects of various diffusible agents.


Asunto(s)
Movimiento Celular/fisiología , Animales , Linfocitos B/citología , Células Cultivadas , Quimiocina CXCL12/química , Molécula 1 de Adhesión Intercelular/química , Ratones , Ratones Transgénicos , Rayos Ultravioleta
6.
J Biomater Sci Polym Ed ; 23(12): 1613-28, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-21888758

RESUMEN

Due to the high importance of bacterial infections in medical devices there is an increasing interest in the design of anti-fouling coatings. The application of substrates with controlled chemical gradients to prevent microbial adhesion is presented. We describe here the co-polymerization of poly(ethylene glycol) dimethacrylate with a hyperbranched multimethacrylate (H30MA) using a chemical gradient generator; and the resulting films were characterized with respect to their ability to serve as coating for biomedical devices. The photo-polymerized materials present special surface properties due to the hyperbranched structure of H30MA and phase separation at specific concentrations in the PEGDM matrix. This approach affords the investigation of cell response to a large range of different chemistries on a single sample. Two bacterial strains commonly associated with surgical site infections, Escherichia coli and Pseudomonas aeruginosa, have been cultured on these substrates to study their attachment behaviour. These gradient-coated samples demonstrate less bacterial adhesion at higher concentrations of H30MA, and the adhesion is substantially affected by the extent of surface phase segregation.


Asunto(s)
Adhesión Bacteriana/fisiología , Incrustaciones Biológicas/prevención & control , Metacrilatos/química , Polietilenglicoles/química , Escherichia coli/fisiología , Interacciones Hidrofóbicas e Hidrofílicas , Ensayo de Materiales , Microscopía de Fuerza Atómica , Microscopía Electrónica de Rastreo , Estructura Molecular , Polimerizacion , Pseudomonas aeruginosa/fisiología , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA