Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Mol Biol Rep ; 47(10): 8243-8250, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32897521

RESUMEN

Microsatellites are widely used to investigate connectivity and parentage in marine organisms. Despite surgeonfish (Acanthuridae) being dominant members of most reef fish assemblages and having an ecological key role in coral reef ecosystems, there is limited information describing the scale at which populations are connected and very few microsatellite markers have been screened. Here, we developed fourteen microsatellite markers for the convict surgeonfish Acanthurus triostegus with the aim to infer its genetic connectivity throughout its distribution range. Genetic diversity and variability was tested over 152 fishes sampled from four locations across the Indo-Pacific: Mayotte (Western Indian Ocean), Papua New Guinea and New Caledonia (Southwestern Pacific Ocean), and Moorea (French Polynesia). Over all locations, the number of alleles per locus varied from 5 to 24 per locus, and expected heterozygosities ranged from 0.468 to 0.941. Significant deviations from Hardy-Weinberg equilibrium were detected for two loci in two to three locations and were attributed to the presence of null alleles. These markers revealed for the first time a strong and significant distinctiveness between Indian Ocean and Pacific Ocean A. triostegus populations. We further conducted cross-species amplification tests in 13 Pacific congener species to investigate the possible use of these microsatellites in other Acanthuridae species. The phylogenetic placement of A. triostegus branching off from the clade containing nearly all Acanthurus + Ctenochaetus species likely explain the rather good transferability of these microsatellite markers towards other Acanthuridae species. This suggests that this fourteen new microsatellite loci will be helpful tools not only for inferring population structure of various surgeonfish but also to clarify systematic relationships among Acanthuridae.


Asunto(s)
Peces/genética , Variación Genética , Repeticiones de Microsatélite , Animales , Especificidad de la Especie
2.
Mol Ecol ; 24(3): 656-72, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25533191

RESUMEN

Intestinal tracts are among the most densely populated microbial ecosystems. Gut microbiota and their influence on the host have been well characterized in terrestrial vertebrates but much less so in fish. This is especially true for coral reef fishes, which are among the most abundant groups of vertebrates on earth. Surgeonfishes (family: Acanthuridae) are part of a large and diverse family of reef fish that display a wide range of feeding behaviours, which in turn has a strong impact on the reef ecology. Here, we studied the composition of the gut microbiota of nine surgeonfish and three nonsurgeonfish species from the Red Sea. High-throughput pyrosequencing results showed that members of the phylum Firmicutes, especially of the genus Epulopiscium, were dominant in the gut microbiota of seven surgeonfishes. Even so, there were large inter- and intraspecies differences in the diversity of surgeonfish microbiota. Replicates of the same host species shared only a small number of operational taxonomic units (OTUs), although these accounted for most of the sequences. There was a statistically significant correlation between the phylogeny of the host and their gut microbiota, but the two were not completely congruent. Notably, the gut microbiota of three nonsurgeonfish species clustered with some surgeonfish species. The microbiota of the macro- and microalgavores was distinct, while the microbiota of the others (carnivores, omnivores and detritivores) seemed to be transient and dynamic. Despite some anomalies, both host phylogeny and diet were important drivers for the intestinal microbial community structure of surgeonfishes from the Red Sea.


Asunto(s)
Dieta , Intestinos/microbiología , Microbiota , Perciformes/microbiología , Animales , Teorema de Bayes , Arrecifes de Coral , ADN Bacteriano/genética , ADN Mitocondrial/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Océano Índico , Funciones de Verosimilitud , Datos de Secuencia Molecular , Perciformes/genética , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
3.
Proc Biol Sci ; 281(1781): 20133046, 2014 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-24573852

RESUMEN

The evolution of ecological processes on coral reefs was examined based on Eocene fossil fishes from Monte Bolca, Italy and extant species from the Great Barrier Reef, Australia. Using ecologically relevant morphological metrics, we investigated the evolution of herbivory in surgeonfishes (Acanthuridae) and rabbitfishes (Siganidae). Eocene and Recent surgeonfishes showed remarkable similarities, with grazers, browsers and even specialized, long-snouted forms having Eocene analogues. These long-snouted Eocene species were probably pair-forming, crevice-feeding forms like their Recent counterparts. Although Eocene surgeonfishes likely played a critical role as herbivores during the origins of modern coral reefs, they lacked the novel morphologies seen in modern Acanthurus and Siganus (including eyes positioned high above their low-set mouths). Today, these forms dominate coral reefs in both abundance and species richness and are associated with feeding on shallow, exposed algal turfs. The radiation of these new forms, and their expansion into new habitats in the Oligocene-Miocene, reflects the second phase in the development of fish herbivory on coral reefs that is closely associated with the exploitation of highly productive short algal turfs.


Asunto(s)
Adaptación Biológica/fisiología , Evolución Biológica , Arrecifes de Coral , Fósiles , Herbivoria/fisiología , Perciformes/fisiología , Animales , Australia , Pesos y Medidas Corporales , Italia , Especificidad de la Especie
4.
J Fish Dis ; 37(4): 357-62, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23617760

RESUMEN

Twenty-eight goldring surgeonfish, Ctenochaetus strigosus (Bennett), manifesting skin lesions and originating from the north-western and main Hawaiian Islands were examined. Skin lesions were amorphous and ranged from simple dark or light discolouration to multicoloured tan to white sessile masses with an undulant surface. Skin lesions covered 2-66% of the fish surface, and there was no predilection for lesions affecting a particular part of the fish. Males appeared over-represented. Microscopy revealed the skin lesions to be hyperplasia, melanophoromas or iridophoromas. The presence of skin tumours in a relatively unspoiled area of Hawaii is intriguing. Explaining their distribution, cause and impact on survivorship of fish all merit further study because C. strigosus is an economically important fish in the region.


Asunto(s)
Enfermedades de los Peces/patología , Perciformes , Enfermedades de la Piel/veterinaria , Animales , Femenino , Hawaii , Masculino , Fotogrametría/veterinaria , Enfermedades de la Piel/patología
5.
Ecol Evol ; 14(3): e11070, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38435013

RESUMEN

Unveiling the intricate relationships between animal movement ecology, feeding behavior, and internal energy budgeting is crucial for a comprehensive understanding of ecosystem functioning, especially on coral reefs under significant anthropogenic stress. Here, herbivorous fishes play a vital role as mediators between algae growth and coral recruitment. Our research examines the feeding preferences, bite rates, inter-bite distances, and foraging energy expenditure of the Brown surgeonfish (Acanthurus nigrofuscus) and the Yellowtail tang (Zebrasoma xanthurum) within the fish community on a Red Sea coral reef. To this end, we used advanced methods such as remote underwater stereo-video, AI-driven object recognition, species classification, and 3D tracking. Despite their comparatively low biomass, the two surgeonfish species significantly influence grazing pressure on the studied coral reef. A. nigrofuscus exhibits specialized feeding preferences and Z. xanthurum a more generalist approach, highlighting niche differentiation and their importance in maintaining reef ecosystem balance. Despite these differences in their foraging strategies, on a population level, both species achieve a similar level of energy efficiency. This study highlights the transformative potential of cutting-edge technologies in revealing the functional feeding traits and energy utilization of keystone species. It facilitates the detailed mapping of energy seascapes, guiding targeted conservation efforts to enhance ecosystem health and biodiversity.

6.
Toxins (Basel) ; 15(3)2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36977121

RESUMEN

Published data were used to model the transfer of ciguatoxins (CTX) across three trophic levels of a marine food chain on the Great Barrier Reef (GBR), Australia, to produce a mildly toxic common coral trout (Plectropomus leopardus), one of the most targeted food fishes on the GBR. Our model generated a 1.6 kg grouper with a flesh concentration of 0.1 µg/kg of Pacific-ciguatoxin-1 (P-CTX-1 = CTX1B) from 1.1 to 4.3 µg of P-CTX-1 equivalents (eq.) entering the food chain from 0.7 to 2.7 million benthic dinoflagellates (Gambierdiscus sp.) producing 1.6 pg/cell of the P-CTX-1 precursor, P-CTX-4B (CTX4B). We simulated the food chain transfer of ciguatoxins via surgeonfishes by modelling Ctenochaetus striatus feeding on turf algae. A C. striatus feeding on ≥1000 Gambierdiscus/cm2 of turf algae accumulates sufficient toxin in <2 days that when preyed on, produces a 1.6 kg common coral trout with a flesh concentration of 0.1 µg/kg P-CTX-1. Our model shows that even transient blooms of highly ciguatoxic Gambierdiscus can generate ciguateric fishes. In contrast, sparse cell densities of ≤10 Gambierdiscus/cm2 are unlikely to pose a significant risk, at least in areas where the P-CTX-1 family of ciguatoxins predominate. The ciguatera risk from intermediate Gambierdiscus densities (~100 cells/cm2) is more difficult to assess, as it requires feeding times for surgeonfish (~4-14 days) that overlap with turnover rates of turf algae that are grazed by herbivorous fishes, at least in regions such as the GBR, where stocks of herbivorous fishes are not impacted by fishing. We use our model to explore how the duration of ciguatoxic Gambierdiscus blooms, the type of ciguatoxins they produce, and fish feeding behaviours can produce differences in relative toxicities between trophic levels. Our simple model indicates thresholds for the design of risk and mitigation strategies for ciguatera and the variables that can be manipulated to explore alternate scenarios for the accumulation and transfer of P-CTX-1 analogues through marine food chains and, potentially, for other ciguatoxins in other regions, as more data become available.


Asunto(s)
Antozoos , Lubina , Intoxicación por Ciguatera , Ciguatoxinas , Dinoflagelados , Animales , Ciguatoxinas/toxicidad , Ciguatoxinas/metabolismo , Lubina/metabolismo , Alimentos Marinos , Dinoflagelados/metabolismo
7.
PeerJ ; 11: e16264, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38025680

RESUMEN

On Caribbean coral reefs, losses of two key groups of grazers, herbivorous fishes and Diadema antillarum, coincided with dramatic increases in macroalgae, which have contributed to decreases in the resilience of these coral reefs and continued low coral cover. In some locations, herbivorous reef fishes and D. antillarum populations have begun to recover, and reductions in macroalgal cover and abundance have followed. Harder to determine, and perhaps more important, are the combined grazing effects of herbivorous fishes and D. antillarum on the structure of macroalgal communities. Surprisingly few studies have examined the feeding preferences of D. antillarum for different macroalgal species, and there have been even fewer comparative studies between these different herbivore types. Accordingly, a series of in-situ and ex-situ feeding assays involving herbivorous fishes and D. antillarum were used to examine feeding preferences. Ten macrophytes representing palatable and chemically and/or structurally defended species were used in these assays, including nine macroalgae, and one seagrass. All species were eaten by at least one of the herbivores tested, although consumption varied greatly. All herbivores consumed significant portions of two red algae species while avoiding Halimeda tuna, which has both chemical and structural defenses. Herbivorous fishes mostly avoided chemically defended species while D. antillarum consumed less of the structurally defended algae. These results suggest complementarity and redundancy in feeding by these different types of herbivores indicating the most effective macroalgal control and subsequent restoration of degraded coral reefs may depend on the recovery of both herbivorous fishes and D. antillarum.


Asunto(s)
Caimanes y Cocodrilos , Algas Marinas , Animales , Herbivoria , Arrecifes de Coral , Erizos de Mar , Peces
8.
Front Microbiol ; 12: 620458, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33841351

RESUMEN

Dysbiosis of coral microbiomes results from various biotic and environmental stressors, including interactions with important reef fishes which may act as vectors of opportunistic microbes via deposition of fecal material. Additionally, elevated sea surface temperatures have direct effects on coral microbiomes by promoting growth and virulence of opportunists and putative pathogens, thereby altering host immunity and health. However, interactions between these biotic and abiotic factors have yet to be evaluated. Here, we used a factorial experiment to investigate the combined effects of fecal pellet deposition by the widely distributed surgeonfish Ctenochaetus striatus and elevated sea surface temperatures on microbiomes associated with the reef-building coral Porites lobata. Our results showed that regardless of temperature, exposure of P. lobata to C. striatus feces increased alpha diversity, dispersion, and lead to a shift in microbial community composition - all indicative of microbial dysbiosis. Although elevated temperature did not result in significant changes in alpha and beta diversity, we noted an increasing number of differentially abundant taxa in corals exposed to both feces and thermal stress within the first 48h of the experiment. These included opportunistic microbial lineages and taxa closely related to potential coral pathogens (i.e., Vibrio vulnificus, Photobacterium rosenbergii). Some of these taxa were absent in controls but present in surgeonfish feces under both temperature regimes, suggesting mechanisms of microbial transmission and/or enrichment from fish feces to corals. Importantly, the impact to coral microbiomes by fish feces under higher temperatures appeared to inhibit wound healing in corals, as percentages of tissue recovery at the site of feces deposition were lower at 30°C compared to 26°C. Lower percentages of tissue recovery were associated with greater relative abundance of several bacterial lineages, with some of them found in surgeonfish feces (i.e., Rhodobacteraceae, Bdellovibrionaceae, Crocinitomicaceae). Our findings suggest that fish feces interact with elevated sea surface temperatures to favor microbial opportunism and enhance dysbiosis susceptibility in P. lobata. As the frequency and duration of thermal stress related events increase, the ability of coral microbiomes to recover from biotic stressors such as deposition of fish feces may be greatly affected, ultimately compromising coral health and resilience.

9.
Anim Microbiome ; 3(1): 25, 2021 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-33752761

RESUMEN

BACKGROUND: The microbiomes of foundation (habitat-forming) species such as corals and sponges underpin the biodiversity, productivity, and stability of ecosystems. Consumers shape communities of foundation species through trophic interactions, but the role of consumers in dispersing the microbiomes of such species is rarely examined. For example, stony corals rely on a nutritional symbiosis with single-celled endosymbiotic dinoflagellates (family Symbiodiniaceae) to construct reefs. Most corals acquire Symbiodiniaceae from the environment, but the processes that make Symbiodiniaceae available for uptake are not resolved. Here, we provide the first comprehensive, reef-scale demonstration that predation by diverse coral-eating (corallivorous) fish species promotes the dispersal of Symbiodiniaceae, based on symbiont cell densities and community compositions from the feces of four obligate corallivores, three facultative corallivores, two grazer/detritivores as well as samples of reef sediment and water. RESULTS: Obligate corallivore feces are environmental hotspots of Symbiodiniaceae cells: live symbiont cell concentrations in such feces are 5-7 orders of magnitude higher than sediment and water environmental reservoirs. Symbiodiniaceae community compositions in the feces of obligate corallivores are similar to those in two locally abundant coral genera (Pocillopora and Porites), but differ from Symbiodiniaceae communities in the feces of facultative corallivores and grazer/detritivores as well as sediment and water. Combining our data on live Symbiodiniaceae cell densities in feces with in situ observations of fish, we estimate that some obligate corallivorous fish species release over 100 million Symbiodiniaceae cells per 100 m2 of reef per day. Released corallivore feces came in direct contact with coral colonies in the fore reef zone following 91% of observed egestion events, providing a potential mechanism for the transfer of live Symbiodiniaceae cells among coral colonies. CONCLUSIONS: Taken together, our findings show that fish predation on corals may support the maintenance of coral cover on reefs in an unexpected way: through the dispersal of beneficial coral symbionts in corallivore feces. Few studies examine the processes that make symbionts available to foundation species, or how environmental reservoirs of such symbionts are replenished. This work sets the stage for parallel studies of consumer-mediated microbiome dispersal and assembly in other sessile, habitat-forming species.

10.
Toxins (Basel) ; 13(8)2021 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-34437386

RESUMEN

We review and develop conceptual models for the bio-transfer of ciguatoxins in food chains for Platypus Bay and the Great Barrier Reef on the east coast of Australia. Platypus Bay is unique in repeatedly producing ciguateric fishes in Australia, with ciguatoxins produced by benthic dinoflagellates (Gambierdiscus spp.) growing epiphytically on free-living, benthic macroalgae. The Gambierdiscus are consumed by invertebrates living within the macroalgae, which are preyed upon by small carnivorous fishes, which are then preyed upon by Spanish mackerel (Scomberomorus commerson). We hypothesise that Gambierdiscus and/or Fukuyoa species growing on turf algae are the main source of ciguatoxins entering marine food chains to cause ciguatera on the Great Barrier Reef. The abundance of surgeonfish that feed on turf algae may act as a feedback mechanism controlling the flow of ciguatoxins through this marine food chain. If this hypothesis is broadly applicable, then a reduction in herbivory from overharvesting of herbivores could lead to increases in ciguatera by concentrating ciguatoxins through the remaining, smaller population of herbivores. Modelling the dilution of ciguatoxins by somatic growth in Spanish mackerel and coral trout (Plectropomus leopardus) revealed that growth could not significantly reduce the toxicity of fish flesh, except in young fast-growing fishes or legal-sized fishes contaminated with low levels of ciguatoxins. If Spanish mackerel along the east coast of Australia can depurate ciguatoxins, it is most likely with a half-life of ≤1-year. Our review and conceptual models can aid management and research of ciguatera in Australia, and globally.


Asunto(s)
Ciguatoxinas , Peces , Cadena Alimentaria , Modelos Biológicos , Animales , Australia , Bahías , Ciguatoxinas/metabolismo , Peces/crecimiento & desarrollo , Peces/metabolismo
11.
Artículo en Inglés | MEDLINE | ID: mdl-26652655

RESUMEN

In this study, the complete mitogenome sequence of the palette surgeonfish, Paracanthurus hepatus (Perciformes: Acanthuridae), has been sequenced by next-generation sequencing method. The assembled mitogenome was 16 498 bp in length, consisted of 13 protein-coding genes, 22 transfer RNAs, 2 ribosomal RNAs genes. The overall base composition of palette surgeonfish was 28.6% for A, 28.6% for C, 16.3% for G, 26.4% for T and showed 87% identities to somber surgeonfish Zebrasoma flavescens. The complete mitogenome of the palette surgeonfish provides essential and important DNA molecular data for further phylogeography and evolutionary analysis for surgeonfish's phylogeny.


Asunto(s)
Genes Mitocondriales , Genoma Mitocondrial , Perciformes/genética , Filogenia , Animales , Composición de Base , Secuencia de Bases , ADN Mitocondrial , Orden Génico , Tamaño del Genoma , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de Secuencia de ADN
12.
Mar Pollut Bull ; 114(2): 934-940, 2017 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-27865519

RESUMEN

Increasing sediment inputs are recognised as an important factor leading to coral reef degradation. However, the role of sediments in ecological processes is poorly understood. This study used paired-choice trials to quantify the effects of sediment grain size and chemical composition on feeding by the abundant detritivorous reef fish, Ctenochaetus striatus. The size of sediments from algal turfs were also compared to those ingested by reef-dwelling C. striatus. Algal turfs containing coarser sediments were preferred by C. striatus, while sediment composition (reefal carbonates vs. riverine silicates) had little effect. On the reef, C. striatus ingested finer sediments than those present in algal turfs. C. striatus appears to prefer algal turfs with coarser sediments as this facilitates ingestion of fine detrital particles, while finer sediments prevent selective feeding on detritus. These findings suggest that fine sediments from terrestrial runoff or dredging may be detrimental to feeding by detritivorous species.


Asunto(s)
Arrecifes de Coral , Conducta Alimentaria , Sedimentos Geológicos/análisis , Perciformes/fisiología , Contaminantes del Agua/análisis , Animales , Antozoos , Peces
13.
Front Microbiol ; 7: 285, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27014209

RESUMEN

Epulopiscium is a group of giant bacteria found in high abundance in intestinal tracts of herbivorous surgeonfish. Despite their peculiarly large cell size (can be up to 600 µm), extreme polyploidy (some with over 100,000 genome copies per cell) and viviparity (whereby mother cells produce live offspring), details about their diversity, distribution or their role in the host gut are lacking. Previous studies have highlighted the existence of morphologically distinct Epulopiscium cell types (defined as morphotypes A to J) in some surgeonfish genera, but the corresponding genetic diversity and distribution among other surgeonfishes remain mostly unknown. Therefore, we investigated the phylogenetic diversity of Epulopiscium, distribution and co-occurrence in multiple hosts. Here, we identified eleven new phylogenetic clades, six of which were also morphologically characterized. Three of these novel clades were phylogenetically and morphologically similar to cigar-shaped type A1 cells, found in a wide range of surgeonfishes including Acanthurus nigrofuscus, while three were similar to smaller, rod-shaped type E that has not been phylogenetically classified thus far. Our results also confirmed that biogeography appears to have relatively little influence on Epulopiscium diversity, as clades found in the Great Barrier Reef and Hawaii were also recovered from the Red Sea. Although multiple symbiont clades inhabited a given species of host surgeonfish and multiple host species possessed a given symbiont clade, statistical analysis of host and symbiont phylogenies indicated significant cophylogeny, which in turn suggests co-evolutionary relationships. A cluster analysis of Epulopiscium sequences from previously published amplicon sequencing dataset revealed a similar pattern, where specific clades were consistently found in high abundance amongst closely related surgeonfishes. Differences in abundance may indicate specialization of clades to certain gut environments reflected by inferred differences in the host diets. Overall, our analysis identified a large phylogenetic diversity of Epulopiscium (up to 10% sequence divergence of 16S rRNA genes), which lets us hypothesize that there are multiple species that are spread across guts of different host species.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA